Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2006 Sep 16;8(1):1–23. doi: 10.1016/S0950-3536(05)80230-6

1 Viruses, virulence and pathogenicity

Jonathan Hibbs, Neal S Young
PMCID: PMC7134682  PMID: 7663043

Abstract

Pathogenicity is a complex process with stringent requirements of both the host cell and the infecting virion. Among these requirements are a port of entry into host cells, a means of replication for the virus, and a means by which infection damages host cells. Damage to the host can result from multiple mechanisms including transformation, suppression of cellular metabolism, apoptosis, autoimmune responses directed against infected or uninfected tissues, or by molecular mimicry. In the attempt to identify new associations between viral infection and disease, investigators should be mindful that variable host factors as well as viral infection may be required for pathogenesis. Efforts to associate specific viral infections with specific diseases may be obscured by final common pathways through which multiple agents damage host cells in similar ways.

References

  1. Aceti A, Taliani G, Sorice M, Amendolea MA. HCV and Sjogren's syndrome. Lancet. 1992;339:1425–1426. doi: 10.1016/0140-6736(92)91252-4. [DOI] [PubMed] [Google Scholar]
  2. Alcami A, Smith GL. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell. 1992;71:153–167. doi: 10.1016/0092-8674(92)90274-g. [DOI] [PubMed] [Google Scholar]
  3. Allbritton NL, Verret CR, Wolley RC, Eisen HN. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. Journal of Experimental Medicine. 1988;167:514–527. doi: 10.1084/jem.167.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allen I, Brankin B. Pathogenesis of multiple sclerosis—the immune diathesis and the role of viruses. Journal of Neuropathology and Experimental Neurology. 1993;52:95–105. doi: 10.1097/00005072-199303000-00001. [DOI] [PubMed] [Google Scholar]
  5. Alvarez FL, Neu N, Rose NR. Heart-specific autoantibodies induced by Coxsackievirus B3: identification of heart autoantigens. Clinical Immunology and Immunopathology. 1987;43:129–139. doi: 10.1016/0090-1229(87)90164-4. [DOI] [PubMed] [Google Scholar]
  6. Ando K, Moriyama T, Guidotti LG. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. Journal of Experimental Medicine. 1993;178:1541–1554. doi: 10.1084/jem.178.5.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Soluble CD4: another therapeutic option in HIV infection. Lancet. 1990;335:1128–1130. Anonymous. [PubMed] [Google Scholar]
  8. Atkinson MA, Bowman MA, Campbell L. Cellular immunity to a determinant common to glutamate decarboxylase and Coxsackie virus in insulin-dependent diabetes. Journal of Clinical Investigation. 1994;94:2125–2129. doi: 10.1172/JCI117567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Baboonian C, Venables PJ, Williams DG. Cross reaction of antibodies to a glycine/alanine repeat sequence of Epstein-Barr virus nuclear antigen-1 with collagen, cytokeratin, and actin. Annals of the Rheumatic Diseases. 1991;50:772–775. doi: 10.1136/ard.50.11.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bacigalupo A, Hows J, Gluckman E. Bone marrow transplantation (BMT) versus immunosuppression for the treatment of severe aplastic anacmia (SAA): a report of the EBMT SAA working party. British Journal of Haematology. 1988;70:177–182. doi: 10.1111/j.1365-2141.1988.tb02460.x. [DOI] [PubMed] [Google Scholar]
  11. Barnett LA, Fujinami RS. Molecular mimicry: a mechanism for autoimmune injury. FASEB Journal. 1992;6:840–844. doi: 10.1096/fasebj.6.3.1740233. [DOI] [PubMed] [Google Scholar]
  12. Battegay M, Oehen S, Schulz M. Vaccination with a synthetic peptide modulates lymphocytic choriomeningitis virus-mediated immunopathology. Journal of Virology. 1992;66:1199–1201. doi: 10.1128/jvi.66.2.1199-1201.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bergelson JM, Shepley MP, Chan BM. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 1992;255:1718–1720. doi: 10.1126/science.1553561. [DOI] [PubMed] [Google Scholar]
  14. Bergelson JM, Chan M, Solomon KR. Vol. 91. 1994. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses; pp. 6245–6249. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bernhardt G, Bibb JA, Bradley J, Wimmer E. Molecular characterization of the cellular receptor for poliovirus. Virology. 1994;199:105–113. doi: 10.1006/viro.1994.1102. [DOI] [PubMed] [Google Scholar]
  16. Blomberg J, Nived O, Pipkorn R. Increased antiretroviral antibody reactivity in sera from a defined population of patients with systemic lupus erythematosus. Correlation with autoantibodies and clinical manifestations. Arthritis and Rheumatism. 1994;37:57–66. doi: 10.1002/art.1780370109. [DOI] [PubMed] [Google Scholar]
  17. Brody JA. Epidemiology of multiple sclerosis and a possible virus aetiology. Lancet. 1972;2:173–176. doi: 10.1016/s0140-6736(72)91340-2. [DOI] [PubMed] [Google Scholar]
  18. Brown KE, Anderson SM, Young NS. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993;262:114–117. doi: 10.1126/science.8211117. [DOI] [PubMed] [Google Scholar]
  19. Brown KE, Hibbs JR, Gallinella G. Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen) New England Journal of Medicine. 1994;330:1192–1196. doi: 10.1056/NEJM199404283301704. [DOI] [PubMed] [Google Scholar]
  20. Buschard K, Rygaard J, Lung E. The inability of a diabetogenic virus to induce diabetes mellitus in athymic (nude) mice. Acta Pathologica Microbiologica Scandinavica [C] 1976;84:299–303. doi: 10.1111/j.1699-0463.1976.tb00033.x. [DOI] [PubMed] [Google Scholar]
  21. Capon DJ, Ward RH. Antiviral effects of CD4 derivatives. Current Opinions in Immunology. 1989;2:433–438. doi: 10.1016/0952-7915(89)90156-8. [DOI] [PubMed] [Google Scholar]
  22. Carnegie PR, Lumsden CE. Encephalitogenic peptides from spinal cord. Nature. 1966;209:1354–1355. doi: 10.1038/2091354a0. [DOI] [PubMed] [Google Scholar]
  23. Casali P, Nakamura M, Ginsberg-Fellner F, Notkins AL. Frequency of B cells committed to the production of antibodies to insulin in newly diagnosed patients with insulin-dependent diabetes mellitus and generation of high affinity human monoclonal IgG to insulin. Journal of Immunology. 1990;144:3741–3747. [PubMed] [Google Scholar]
  24. Centers for Disease Control Arbovirus disease—United States, 1993. Morbidity and Mortality Weekly Reports. 1994;43:385–387. [PubMed] [Google Scholar]
  25. Chaldakov GN. Inhibition of receptor-mediated cellular entry of viruses including HIV: a perspective on further researches on chemotherapy in viral diseases including AIDS. Medical Hypotheses. 1990;33:265–268. doi: 10.1016/0306-9877(90)90140-a. [DOI] [PubMed] [Google Scholar]
  26. Champlin R, Ho W, Gale RP. Antithymocyte globulin treatment in patients with aplastic anemia: a prospective randomized trial. New England Journal of Medicine. 1983;308:113–118. doi: 10.1056/NEJM198301203080301. [DOI] [PubMed] [Google Scholar]
  27. Chiou SK, Rao L, White E. Bcl-2 blocks p53-dependent apoptosis. Molecular and Cellular Biology. 1994;14:2556–2563. doi: 10.1128/mcb.14.4.2556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chorba T, Coccia P, Holman RC. The role of parvovirus B19 in aplastic crisis and erythema infectiosum (fifth disease) Journal of Infectious Diseases. 1986;154:383–393. doi: 10.1093/infdis/154.3.383. [DOI] [PubMed] [Google Scholar]
  29. Chow LH, Beisel KW, McManus BM. Enteroviral infection of mice with severe combined immunodeficiency. Evidence for direct viral pathogenesis of myocardial injury. Laboratory Investigation. 1992;66:24–31. [PubMed] [Google Scholar]
  30. Clapham PR. Human Immunodeficiency Virus infection of non-haematopoietic cells. The role of CD4-independent entry. Reviews of Medical Virology. 1991;1:51–58. [Google Scholar]
  31. Clapham PR, Weber JN, Whitby D. Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature. 1989;337:368–370. doi: 10.1038/337368a0. [DOI] [PubMed] [Google Scholar]
  32. Cohen JJ. Programmed cell death in the immune system. Advances in Immunology. 1991;50:55–85. doi: 10.1016/s0065-2776(08)60822-6. [DOI] [PubMed] [Google Scholar]
  33. Cohen JJ. Programmed cell death and apoptosis in lymphocyte development and function. Chest. 1993;103:99S–101S. doi: 10.1378/chest.103.2_supplement.99s. [DOI] [PubMed] [Google Scholar]
  34. Cohen JJ, Duke RC, Chervenak R. DNA fragmentation in targets of CTL: an example of programmed cell death in the immune system. Advances in Experimental Medicine and Biology. 1985;184:493–508. doi: 10.1007/978-1-4684-8326-0_32. [DOI] [PubMed] [Google Scholar]
  35. Colonno RJ. Virus receptors: the Achilles' heel of human rhinoviruses. Advances in Experimental Medicine and Biology. 1992;312:61–70. doi: 10.1007/978-1-4615-3462-4_5. [DOI] [PubMed] [Google Scholar]
  36. Compton DAS. Genetics and immunology. In: Matthews WB, editor. McAlpine's Multiple Sclerosis. Churchill Livingstone; Edinburgh: 1991. pp. 301–319. [Google Scholar]
  37. Craighead JE. Viral diabetes mellitus in man and experimental animals. American Journal of Medicine. 1981;70:127–134. doi: 10.1016/0002-9343(81)90419-8. [DOI] [PubMed] [Google Scholar]
  38. Craighead JE, Steinke J. Diabetes mellitus-like syndrome in mice infected with encephalomyocarditis virus. American Journal of Pathology. 1971;63:119–134. [PMC free article] [PubMed] [Google Scholar]
  39. Daar ES, Li XL, Moudgil T, Ho DD. Vol. 87. 1990. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates; pp. 6574–6578. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Daar ES, Ho DD. Relative resistance of primary HIV-1 isolates to neutralization by soluble CD4. American Journal of Medicine. 1991;90:22S–26S. doi: 10.1016/0002-9343(91)90407-o. [DOI] [PubMed] [Google Scholar]
  41. Dalgleish AG, Beverley PC, Clapham PR. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312:763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
  42. Damien RT. Molecular mimicry: antigen sharing by parasite and host and its consequences. American Naturalist. 1964;98:129–149. [Google Scholar]
  43. D'Andrea AD, Moreau JF, Showers MO. Molecular mimicry of erythropoietin by the spleen focus-forming virus gp55 glycoprotein: the first stage of Friend virus-induced erythroleukemia. Biochemica et Biophysica Acta. 1992;1114:31–41. doi: 10.1016/0304-419x(92)90004-i. [DOI] [PubMed] [Google Scholar]
  44. Dawson VL, Dawson TM, Uhl GR, Snyder SH. Vol. 90. 1994. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures; pp. 3256–3259. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Debbas M, White E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes and Development. 1993;7:546–554. doi: 10.1101/gad.7.4.546. [DOI] [PubMed] [Google Scholar]
  46. DeCaprio JA, Ludlow JW, Figge J. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–283. doi: 10.1016/0092-8674(88)90559-4. [DOI] [PubMed] [Google Scholar]
  47. Degre M, Vandvik B, Hovig T. Subacute sclerosing panencephalitis: isolation and ultrastructural characterization of a measles-like virus from brain obtained at autopsy. Acta Pathologica Microbiologica Scandinavica [B] 1972;80:713–728. doi: 10.1111/j.1699-0463.1972.tb00199.x. [DOI] [PubMed] [Google Scholar]
  48. De Rossi A, Ometto L, Roncella S. HIV-1 induces down-regulation of bcl-2 expression and death by apoptosis of EBV-immortalized B cells: a model for a persistent ‘self-limiting’ HIV-1 infection. Virology. 1994;198:234–244. doi: 10.1006/viro.1994.1026. [DOI] [PubMed] [Google Scholar]
  49. Di Giovine FS, Bailly S, Bootman J. Absence of lentiviral and human T cell leukemia viral sequences in patients with rheumatoid arthritis. Arthritis and Rheumatism. 1994;37:349–358. doi: 10.1002/art.1780370308. [DOI] [PubMed] [Google Scholar]
  50. Dive C, Gregory CD, Phipps DJ. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochimica et Biophysica Acta. 1992;1133:275–285. doi: 10.1016/0167-4889(92)90048-g. [DOI] [PubMed] [Google Scholar]
  51. Duke RC, Chervenak R, Cohen JJ. Vol. 80. 1983. Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis; pp. 6361–6365. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Dupre J, Hramiak I, Mahon JL, Stiller CR. Induction and pathophysiology of remission of insulin-dependent diabetes mellitus during administration of ciclosporin. London Diabetes Study Group. Hormone Research. 1990;33:152–158. doi: 10.1159/000181499. [DOI] [PubMed] [Google Scholar]
  53. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–937. doi: 10.1126/science.2537532. [DOI] [PubMed] [Google Scholar]
  54. Eyler YL, Pfau CJ, Broomhall KS, Thomsen AR. The combination of major histocompatibility complex (MHC) and non-MHC genes influences murine lymphocytic choriomeningitis virus pathogenesis. Scandinavian Journal of Immunology. 1989;29:527–533. doi: 10.1111/j.1365-3083.1989.tb01155.x. [DOI] [PubMed] [Google Scholar]
  55. Ferri C, Greco F, Longombardo G. Antibodies against hepatitis C virus in mixed cryoglobulinemia patients. Infection. 1991;19:417–420. doi: 10.1007/BF01726453. [DOI] [PubMed] [Google Scholar]
  56. Ferri C, Greco F, Longombardo G. Antibodies to hepatitis C virus in patients with mixed cryoglobulinemia. Arthritis and Rheumatism. 1991;34:1606–1610. doi: 10.1002/art.1780341221. [DOI] [PubMed] [Google Scholar]
  57. Ferri C, Greco F, Longombardo G. Association between hepatitis C virus and mixed cryoglobulinemia. Clinical and Experimental Rheumatology. 1991;9:621–624. [PubMed] [Google Scholar]
  58. Feutren G, Papoz L, Assan R. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre doubleblind trial. Lancet. 1986;2:119–124. doi: 10.1016/s0140-6736(86)91943-4. [DOI] [PubMed] [Google Scholar]
  59. Fields BN. Viruses and tissue injury. Nature. 1984;307:213–214. doi: 10.1038/307213a0. [DOI] [PubMed] [Google Scholar]
  60. Fingeroth JD, Weis JJ, Tedder TF. Vol. 81. 1984. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2; pp. 4510–4514. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Fox RI, Luppi M, Pisa P, Kang HI. Potential role of Epstein-Barr virus in Sjogren's syndrome and rheumatoid arthritis. Journal of Rheumatology. 1992;32:18–24. (supplement) [PubMed] [Google Scholar]
  62. French D, Mammarella S, Curia MC. Amplifications of multiple regions of the HTLV-I genome from DNA of an Italian spastic paraparesis patient but not from DNA of multiple sclerosis patients. Journal of the Neurological Sciences. 1991;103:82–89. doi: 10.1016/0022-510x(91)90288-i. [DOI] [PubMed] [Google Scholar]
  63. Fujinami RS, Nelson JA, Walker L, Oldstone MB. Sequence homology and immunologic cross-reactivity of human cytomegalovirus with HLA-DR beta chain: a means for graft rejection and immunosuppression. Journal of Virology. 1988;62:100–105. doi: 10.1128/jvi.62.1.100-105.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Fujiwara T, Grimm EA, Mukhopadhyay T. A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Research. 1993;53:4129–4133. [PubMed] [Google Scholar]
  65. Garcia-Blanco MA, Cullen BR. Molecular basis of latency in pathogenic human viruses. Science. 1991;254:815–820. doi: 10.1126/science.1658933. [DOI] [PubMed] [Google Scholar]
  66. Garry RF. New evidence for involvement of retroviruses in Sjogren's syndrome and other autoimmune diseases. Arthritis and Rheumatism. 1994;37:465–469. doi: 10.1002/art.1780370405. [DOI] [PubMed] [Google Scholar]
  67. Geist LJ, Hunninghake GW. Potential role of viruses in the pathogenesis of pulmonary fibrosis. Chest. 1993;103:119S–120S. doi: 10.1378/chest.103.2_supplement.119s. [DOI] [PubMed] [Google Scholar]
  68. Genis P, Jett M, Bernton EW. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. Journal of Experimental Medicine. 1992;176:1703–1718. doi: 10.1084/jem.176.6.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Gessain A, Barin F, Vernant JC. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet. 1985;2:407–410. doi: 10.1016/s0140-6736(85)92734-5. [DOI] [PubMed] [Google Scholar]
  70. Ginsberg HS, Moldawer LL, Sehgal PB. Vol. 88. 1991. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia; pp. 1651–1655. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Gitnick GL, Rosen VJ. Electron microscopic studies of viral agents in Crohn's disease. Lancet. 1976;2:217–219. doi: 10.1016/s0140-6736(76)91023-0. [DOI] [PubMed] [Google Scholar]
  72. Gleason RE, Kahn CB, Funk IB, Craighead JE. Seasonal incidence of insulin-dependent diabetes (IDDM) in Massachusetts, 1964–1973. International Journal of Hematology. 1982;11:39–45. doi: 10.1093/ije/11.1.39. [DOI] [PubMed] [Google Scholar]
  73. Gooding LR. Virus proteins that counteract host immune defenses. Cell. 1992;71:5–7. doi: 10.1016/0092-8674(92)90259-f. [DOI] [PubMed] [Google Scholar]
  74. Gorny MK, Wroblewska Z, Pleasure D. CSF antibodies to myelin basic protein and oligodendrocytes in multiple sclerosis and other neurological diseases. Acta Neurologica Scandinavica. 1983;67:338–347. doi: 10.1111/j.1600-0404.1983.tb03151.x. [DOI] [PubMed] [Google Scholar]
  75. Greenstein JI, McFarland HF, Mingioli ES, McFarlin DE. The lymphoproliferative response to measles virus in twins with multiple sclerosis. Annals of Neurology. 1984;15:79–87. doi: 10.1002/ana.410150115. [DOI] [PubMed] [Google Scholar]
  76. Greve JM, Davis G, Meyer AM. The major human rhinovirus receptor is ICAM-1. Cell. 1989;56:839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  77. Groux H, Torpier G, Monte D. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. Journal of Experimental Medicine. 1992;175:331–340. doi: 10.1084/jem.175.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Gundersen E. Is diabetes of infectious origin? Journal of Infectious Diseases. 1927;41:197–202. [Google Scholar]
  79. Guzman MG, Kouri GP, Bravo J. Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. American Journal of Tropical Medicine and Hygiene. 1990;42:179–184. doi: 10.4269/ajtmh.1990.42.179. [DOI] [PubMed] [Google Scholar]
  80. Haddad J, Deny P, Munz-Gotheil C. Lymphocytic sialadenitis of Sjogren's syndrome associated with chronic hepatitis C virus liver disease. Lancet. 1992;339:321–323. doi: 10.1016/0140-6736(92)91645-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Harlan DM, Hengartner H, Huang ML. Vol. 91. 1994. Mice expressing both B7-1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness; pp. 3137–3141. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Henderson S, Row M, Gregory C. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65:1107–1115. doi: 10.1016/0092-8674(91)90007-l. [DOI] [PubMed] [Google Scholar]
  83. Hibbs JR, Frickhofen N, Rosenfeld SJ. Aplastic anemia and viral hepatitis. Non-A, Non-B, Non-C? Journal of the American Medical Association. 1992;267:2051–2054. [PubMed] [Google Scholar]
  84. Hibbs JR, Issaragrisil S, Young NS. High prevalence of hepatitis C viremia among aplastic anemia patients and controls from Thailand. American Journal of Tropical Medicine and Hygiene. 1992;46:564–570. doi: 10.4269/ajtmh.1992.46.564. [DOI] [PubMed] [Google Scholar]
  85. Hinshaw VS, Olsen CW, Dybdahl-Sissoko N, Evans D. Apoptosis: a mechanism of cell killing by influenza A and B viruses. Journal of Virology. 1994;68:3667–3673. doi: 10.1128/jvi.68.6.3667-3673.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Huber SA, Polgar J, Schultheiss P, Schwimmbeck P. Augmentation of pathogenesis of coxsackievirus B3 infections in mice by exogenous administration of interleukin-1 and interleukin-2. Journal of Virology. 1994;68:195–206. doi: 10.1128/jvi.68.1.195-206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Inghirami G, Nakamura M, Balow JE. Model for studying virus attachment: identification and quantitation of Epstein-Barr virus-binding cells by using biotinylated virus in flow cytometry. Journal of Virology. 1988;62:2453–2463. doi: 10.1128/jvi.62.7.2453-2463.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Inoue N, Harada S, Miyasaka N. Analysis of antibody titers to Epstein-Barr virus nuclear antigens in sera of patients with Sjogren's syndrome and with rheumatoid arthritis. Journal of Infectious Diseases. 1991;164:22–28. doi: 10.1093/infdis/164.1.22. [DOI] [PubMed] [Google Scholar]
  89. Ioannides CG, Fisk B, Jerome KR. Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. Journal of Immunology. 1993;151:3693–3703. [PubMed] [Google Scholar]
  90. Issaragrisil S, Sriratanasatavorn C, Piankijagum A. Incidence of aplastic anemia in Bangkok. The Aplastic Anemia Study Group. Blood. 1991;77:2166–2168. [PubMed] [Google Scholar]
  91. Jacobson S, Friedman RM, Pfau CJ. Interferon induction by lymphocytic choriomeningitis viruses correlates with maximum virulence. Journal of General Virology. 1981;57:275–283. doi: 10.1099/0022-1317-57-2-275. [DOI] [PubMed] [Google Scholar]
  92. Jessen RH, Emancipator SN, Jacobs GH, Nedrud JG. Experimental IgA-IgG nephropathy induced by a viral respiratory pathogen. Dependence on antigen form and immune status. Laboratory Investigation. 1992;67:379–386. [PubMed] [Google Scholar]
  93. Joske D, Knecht H. Epstein-Barr virus in lymphomas: a review. Blood Reviews. 1993;7:215–222. doi: 10.1016/0268-960x(93)90008-r. [DOI] [PubMed] [Google Scholar]
  94. Kandolf R, Ameis D, Kirschner P. Vol. 84. 1987. In situ detection of enteroviral genomes in myocardial cells by nucleic acid hybridization: an approach to the diagnosis of viral heart disease; pp. 6272–6276. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Kaneko K, Sato S, Miyatake T, Tsuji S. Absence of highly homologous sequence to HTLV-I in Japanese multiple sclerosis. Neurology. 1991;41:31–34. doi: 10.1212/wnl.41.1.31. [DOI] [PubMed] [Google Scholar]
  96. Kawanishi M. Epstein-Barr virus induces fragmentation of chromosomal DNA during lytic infection. Journal of Virology. 1993;67:7654–7658. doi: 10.1128/jvi.67.12.7654-7658.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer. 1972;26:239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Khoobyarian N, Marczynska B. Cell immortalization: the role of viral genes and carcinogens. Virus Research. 1993;30:113–128. doi: 10.1016/0168-1702(93)90001-4. [DOI] [PubMed] [Google Scholar]
  99. Klatzmann D, Champagne E, Chamaret S. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984;312:767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
  100. Koike S, Taya C, Kurata T. Vol. 88. 1991. Transgenic mice susceptible to poliovirus; pp. 951–955. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Koprowski H, DeFreitas EC, Harper ME. Multiple sclerosis and human T-cell lymphotropic retroviruses. Nature. 1985;318:154–160. doi: 10.1038/318154a0. [DOI] [PubMed] [Google Scholar]
  102. Koziel MJ, Dudley D, Wong JT. Intrahepatic cytotoxic T lymphocytes specific for hepatitis C virus in persons with chronic hepatitis. Journal of Immunology. 1992;149:3339–3344. [PubMed] [Google Scholar]
  103. Lai KN, Li PK, Lui SF. Membranous nephropathy related to hepatitis B virus in adults. New England Journal of Medicine. 1991;324:1457–1463. doi: 10.1056/NEJM199105233242103. [DOI] [PubMed] [Google Scholar]
  104. Lambert PF. Papillomavirus DNA replication. Journal of Virology. 1991;65:3417–3420. doi: 10.1128/jvi.65.7.3417-3420.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Lane JR, Neumann DA, Lafond-Walker A. Interleukin 1 or tumor necrosis factor can promote Coxsackie B3-induced myocarditis in resistant B10.A mice. Journal of Experimental Medicine. 1992;175:1123–1129. doi: 10.1084/jem.175.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Lane JR, Neumann DA, Lafond-Walker A. Role of IL-1 and tumor necrosis factor in coxsackie virus-induced autoimmune myocarditis. Journal of Immunology. 1993;151:1682–1690. [PubMed] [Google Scholar]
  107. Leist TP, Aguet M, Hassig M. Lack of correlation between serum titres of interferon alpha, beta, natural killer cell activity and clinical susceptibility in mice infected with two isolates of lymphocytic choriomeningitis virus. Journal of General Virology. 1987;68:2213–2218. doi: 10.1099/0022-1317-68-8-2213. [DOI] [PubMed] [Google Scholar]
  108. Lentz TL. Binding of viral attachment protein to host-cell receptor: the Achilles heel of infectious viruses. Trends in Pharmacological Science. 1988;9:247–252. doi: 10.1016/0165-6147(88)90154-X. [DOI] [PubMed] [Google Scholar]
  109. Lentz TL. The recognition event between virus and host cell receptor: a target for antiviral agents. Journal of General Virology. 1990;71:751–766. doi: 10.1099/0022-1317-71-4-751. [DOI] [PubMed] [Google Scholar]
  110. Lentz TL, Burrage TG, Smith AL. Is the acetylcholine receptor a rabies virus receptor? Science. 1982;215:182–184. doi: 10.1126/science.7053569. [DOI] [PubMed] [Google Scholar]
  111. Levine AJ, Momand J, Finlay CA. The p53 tumor suppressor gene. Nature. 1991;351:453–456. doi: 10.1038/351453a0. [DOI] [PubMed] [Google Scholar]
  112. Levine B, Huang Q, Isaacs JT. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature. 1993;361:739–742. doi: 10.1038/361739a0. [DOI] [PubMed] [Google Scholar]
  113. Li JP, D'Andrea AD, Lodish HF, Baltimore D. Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor. Nature. 1990;343:762–764. doi: 10.1038/343762a0. [DOI] [PubMed] [Google Scholar]
  114. Linet MS, Tielsch JM, Markowitz JA. An apparent cluster of aplastic anemia in a small population of teenagers. Archives of Internal Medicine. 1985;145:635–640. [PubMed] [Google Scholar]
  115. Link H, Parelius M, Salmi AA. Measles antibodies and immunoglobulins in serum and cerebrospinal fluid in subacute sclerosing panencephalitis. Acta Neurologica Scandinavica. 1972;51:385–387. (supplement) [PubMed] [Google Scholar]
  116. Lisby G. Search for an HTLV-I-like retrovirus in patients with MS by enzymatic DNA amplification. Acta Neurologica Scandinavica. 1993;88:385–387. doi: 10.1111/j.1600-0404.1993.tb05364.x. [DOI] [PubMed] [Google Scholar]
  117. Liu JM, Green SW, Shimada T, Young NS. A block in full-length transcript maturation in cells nonpermissive for B19 parvovirus. Journal of Virology. 1992;66:4686–4692. doi: 10.1128/jvi.66.8.4686-4692.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Lodge PA, Herzum M, Olszewski J, Huber SA. Coxsackievirus B-3 myocarditis. Acute and chronic forms of the disease caused by different immunopathogenic mechanisms. American Journal of Pathology. 1987;128:455–463. [PMC free article] [PubMed] [Google Scholar]
  119. Lu YY, Koga Y, Tanaka K. Apoptosis induced in CD4+ cells expressing gp160 of human immunodeficiency virus type 1. Journal of Virology. 1994;68:390–399. doi: 10.1128/jvi.68.1.390-399.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Lwoff A. The concept of virus. Journal of General Microbiology. 1957;17:239–253. doi: 10.1099/00221287-17-2-239. [DOI] [PubMed] [Google Scholar]
  121. Martin SJ, Matear PM, Vyakarnam A. HIV-1 infection of human CD4+ T cells in vitro. Differential induction of apoptosis in these cells. Journal of Immunology. 1994;152:330–342. [PubMed] [Google Scholar]
  122. Martz E, Gamble SR. How do CTL control virus infections? Evidence for prelytic halt of herpes simplex. Viral Immunology. 1992;5:81–91. doi: 10.1089/vim.1992.5.81. [DOI] [PubMed] [Google Scholar]
  123. Massung RF, Jayarama V, Moyer RW. DNA sequence analysis of conserved and unique regions of swinepox virus: identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. Virology. 1993;197:511–528. doi: 10.1006/viro.1993.1625. [DOI] [PubMed] [Google Scholar]
  124. McDermott JR, Field EJ, Caspary EA. Relation of measles virus to encephalitogenic factor with reference to the aetiopathogenesis of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry. 1974;37:282–287. doi: 10.1136/jnnp.37.3.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. McDougall JK. Immortalization and transformation of human cells by human papillomavirus. Current Topics in Microbiology and Immunology. 1994;186:101–119. doi: 10.1007/978-3-642-78487-3_6. [DOI] [PubMed] [Google Scholar]
  126. Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  127. Mergia A, Lucia PA. Replication and regulation of primate foamy viruses. Virology. 1991;184:475–482. doi: 10.1016/0042-6822(91)90417-a. [DOI] [PubMed] [Google Scholar]
  128. Meyaard L, Otto SA, Jonker RR. Programmed death of T cells in HIV-1 infection Human immunodeficiency virus type 1-infected monocytic cells can destroy human neural cells after cell-to-cell adhesion [see comments] Annals of Neurology. 1992;32:11–17. doi: 10.1002/ana.410320104. [DOI] [PubMed] [Google Scholar]
  129. Miles AA. Vol. 5. 1955. The meaning of pathogenicity; pp. 1–16. (Symposia of the Society for General Microbiology). [Google Scholar]
  130. Moore KW, Rousset F, Banchereau J. Vol. 13. 1991. Evolving principles in immunopathology: interleukin 10 and its relationship to Epstein-Barr virus protein BCRF1; pp. 157–166. (Springer Seminars in Immunopathology). [DOI] [PubMed] [Google Scholar]
  131. Morey AL, Ferguson DJ, Fleming KA. Ultrastructural features of fetal erythroid precursors infected with parvovirus B19 in vitro: evidence of cell death by apoptosis. Journal of Pathology. 1993;169:213–220. doi: 10.1002/path.1711690207. [DOI] [PubMed] [Google Scholar]
  132. Moriyama T, Guilhot S, Klopchin K. Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus transgenic mice. Science. 1990;248:361–364. doi: 10.1126/science.1691527. [DOI] [PubMed] [Google Scholar]
  133. Mortimer PP, Humphries RK, Moore JG. A human parvovirus-like virus inhibits haematopoietic colony formation in vitro. Nature. 1983;302:426–429. doi: 10.1038/302426a0. [DOI] [PubMed] [Google Scholar]
  134. Moss DJ, Burrows SR, Baxter GD, Lavin MF. T cell-T cell killing is induced by specific epitopes: evidence for an apoptotic mechanism. Journal of Experimental Medicine. 1991;173:681–686. doi: 10.1084/jem.173.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Munshi NC, Zhou S, Woody MJ. Successful replication of parvovirus B19 in the human megakaryocytic leukemia cell line MB-02. Journal of Virology. 1993;67:562–566. doi: 10.1128/jvi.67.1.562-566.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Murphy PM. Viral imitations of host defense proteins. Flattery that turns to battery. Journal of the American Medical Association. 1994;271:1948–1952. [PubMed] [Google Scholar]
  137. Neu N, Beisel KW, Traystman MD. Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to coxsackievirus B3-induced myocarditis. Journal of Immunology. 1987;138:2488–2492. [PubMed] [Google Scholar]
  138. Neu N, Craig SW, Rose NR. Coxsackievirus induced myocarditis in mice: cardiac myosin autoantibodies do not cross-react with the virus. Clinical and Experimental Immunology. 1987;69:566–574. [PMC free article] [PubMed] [Google Scholar]
  139. Neumann DA, Lane JR, Wulff SM. In vivo deposition of myosin-specific autoantibodies in the hearts of mice with experimental autoimmune myocarditis. Journal of Immunology. 1992;148:3806–3813. [PubMed] [Google Scholar]
  140. Neumann DA, Rose NR, Ansari AA, Herskowitz A. Induction of multiple heart autoantibodies in mice with coxsackievirus B3- and cardiac myosin-induced autoimmune myocarditis. Journal of Immunology. 1994;152:343–350. [PubMed] [Google Scholar]
  141. Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science. 1992;258:424–429. doi: 10.1126/science.1411535. [DOI] [PubMed] [Google Scholar]
  142. Nevins JR. Disruption of cell-cycle control by viral oncoproteins. Biochemical Society Transactions. 1993;21:935–938. doi: 10.1042/bst0210935. [DOI] [PubMed] [Google Scholar]
  143. Nibert ML, Furlong DB, Fields BN. Mechanisms of viral pathogenesis. Distinct forms of reoviruses and their roles during replication in cells and host. Journal of Clinical Investigation. 1991;88:727–734. doi: 10.1172/JCI115369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Nicoll JA, Kinrade E, Love S. PCR-mediated search for herpes simplex virus DNA in sections of brain from patients with multiple sclerosis and other neurological disorders Postinfection treatment with antiviral serum results in survival of neural cells productively infected with virulent poliovirus. Journal of Virology. 1992;66:5152–5156. [Google Scholar]
  145. Nishimura M, Adachi A, Maeda M. Human T lymphotrophic virus type I may not be associated with multiple sclerosis in Japan. Journal of Immunology. 1990;144:1684–1688. [PubMed] [Google Scholar]
  146. Nistico A, Young NS. gamma-Interferon gene expression in the bone marrow of patients with aplastic anemia. Annals of Internal Medicine. 1994;120:463–469. doi: 10.7326/0003-4819-120-6-199403150-00003. [DOI] [PubMed] [Google Scholar]
  147. Noteborn MH, Todd D, Verschueren CA. A single chicken anemia virus protein induces apoptosis. Journal of Virology. 1994;68:346–351. doi: 10.1128/jvi.68.1.346-351.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Ohashi PS, Oehen S, Buerki K. Ablation of tolerance and induction of diabetes by virus infection in viral antigen transgenic mice. Cell. 1991;65:305–317. doi: 10.1016/0092-8674(91)90164-t. [DOI] [PubMed] [Google Scholar]
  149. Ohno K, Nakano T, Matsumoto Y. Apoptosis induced by tumor necrosis factor in cells chronically infected with feline immunodeficiency virus. Journal of Virology. 1993;67:2429–2433. doi: 10.1128/jvi.67.5.2429-2433.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Oldstone MBA. Virus-induced autoimmunity: molecular mimicry as a route to autoimmune disease. Journal of Autoimmunity. 1989;2:187–194. doi: 10.1016/0896-8411(89)90130-3. (supplement) [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Oldstone MB, Rodriguez M, Daughaday WH, Lampert PW. Viral perturbation of endocrine function: disordered cell function leads to disturbed homeostasis and disease. Nature. 1984;307:278–281. doi: 10.1038/307278a0. [DOI] [PubMed] [Google Scholar]
  152. Oldstone MB, Nerenberg M, Southern P. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell. 1991;65:319–331. doi: 10.1016/0092-8674(91)90165-u. [DOI] [PubMed] [Google Scholar]
  153. Osame M, Usuku K, Izumo S. HTLV-I associated myelopathy, a new clinical entity. Lancet. 1986;1:1031–1032. doi: 10.1016/s0140-6736(86)91298-5. [DOI] [PubMed] [Google Scholar]
  154. Ota K, Matsui M, Milford EL. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990;346:183–187. doi: 10.1038/346183a0. [DOI] [PubMed] [Google Scholar]
  155. Owren PA. Congenital hemolytic jaundice: the pathogenesis of the ‘hemolytic crisis’. Blood. 1948;3:231–248. [PubMed] [Google Scholar]
  156. Perron H, Geny C, Laurent A. Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Research in Virology. 1989;140:551–561. doi: 10.1016/s0923-2516(89)80141-4. [DOI] [PubMed] [Google Scholar]
  157. Perron H, Lalande B, Gratacap B. Isolation of retrovirus from patients with multiple sclerosis. Lancet. 1991;337:862–863. doi: 10.1016/0140-6736(91)92579-q. [DOI] [PubMed] [Google Scholar]
  158. Perron H, Suh M, Lalande B. Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. Journal of General Virology. 1993;74:65–72. doi: 10.1099/0022-1317-74-1-65. [DOI] [PubMed] [Google Scholar]
  159. Peters M, Vierling J, Gershwin ME. Immunology and the liver. Hepatology. 1991;13:977–994. [PubMed] [Google Scholar]
  160. Pette M, Liebert UG, Gobel U. Measles virus-directed responses of CD4+ T lymphocytes in MS patients and healthy individuals. Neurology. 1993;43:2019–2025. doi: 10.1212/wnl.43.10.2019. [DOI] [PubMed] [Google Scholar]
  161. Pfau CJ, Gresser I, Hunt KD. Lethal role of interferon in lymphocytic choriomeningitis virus-induced encephalitis. Journal of General Virology. 1983;64:1827–1830. doi: 10.1099/0022-1317-64-8-1827. [DOI] [PubMed] [Google Scholar]
  162. Porter AG. Picornavirus nonstructural proteins: emerging roles in virus replication and inhibition of host cell functions. Journal of Virology. 1993;67:6917–6921. doi: 10.1128/jvi.67.12.6917-6921.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Pulliam L, Herndier BG, Tang NM, McGrath MS. Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. Journal of Clinical Investigation. 1991;87:503–512. doi: 10.1172/JCI115024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Rao L, Debbas M, Sabbatini P. Vol. 89. 1992. The adenovirus EIA proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins; pp. 7742–7746. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Ray CG. Enteroviruses and reoviruses. In: Wilson JD, Braunwald E, Isselbacher KJ, editors. Harrison's Principles of Internal Medicine. McGraw-Hill Inc.; St. Louis: 1991. pp. 712–716. [Google Scholar]
  166. Razvi ES, Welsh RM. Programmed cell death of T lymphocytes during acute viral infection: a mechanism for virus-induced immune deficiency. Journal of Virology. 1993;67:5754–5765. doi: 10.1128/jvi.67.10.5754-5765.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Rehermann B, Michitaka K, Durazzo M. Viruses and auto-immune hepatitis. European Journal of Clinical Investigation. 1994;24(1):11–19. doi: 10.1111/j.1365-2362.1994.tb02053.x. [DOI] [PubMed] [Google Scholar]
  168. Riise T, Gronning M, Klauber MR. Clustering of residence of multiple sclerosis patients at age 13 to 20 years in Hordaland, Norway. American Journal of Epidemiology. 1991;133:932–939. doi: 10.1093/oxfordjournals.aje.a115972. [DOI] [PubMed] [Google Scholar]
  169. Rivers TM, Sprunt DH, Berry GP. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. Journal of Experimental Medicine. 1933;58:39–53. doi: 10.1084/jem.58.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Rouger P, Gane P, Salmon C. Tissue distribution of H, Lewis and P antigens as shown by a panel of 18 monoclonal antibodies. Revue Française de Transfusion et Immuno-Hematologie. 1987;30:699–708. doi: 10.1016/s0338-4535(87)80138-1. [DOI] [PubMed] [Google Scholar]
  171. Rous P. Transmission of a malignant new growth by means of a cell-free filtrate. Journal of the American Medical Association. 1911;56:198. [Google Scholar]
  172. Salmi AA, Panelius M, Halonen P. Measles virus antibody in cerebrospinal fluids from patients with multiple sclerosis. British Medical Journal. 1972;1:477–479. doi: 10.1136/bmj.1.5798.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Santamaria P, Nakhleh RE, Sutherland DE, Barbosa JJ. Characterization of T lymphocytes infiltrating human pancreas allograft affected by isletitis and recurrent diabetes. Diabetes. 1992;41:53–61. doi: 10.2337/diab.41.1.53. [DOI] [PubMed] [Google Scholar]
  174. Sellins KS, Cohen JJ. Polyomavirus DNA is damaged in target cells during cytotoxic T-lymphocyte-mediated killing. Journal of Virology. 1989;63:572–578. doi: 10.1128/jvi.63.2.572-578.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Sharpe AH, Fields BN. Reovirus inhibition of cellular DNA synthesis: role of the S1 gene. Journal of Virology. 1981;38:389–392. doi: 10.1128/jvi.38.1.389-392.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Sharpe AH, Fields BN. Reovirus inhibition of cellular RNA and protein synthesis: role of the S4 gene. Virology. 1982;122:381–391. doi: 10.1016/0042-6822(82)90237-9. [DOI] [PubMed] [Google Scholar]
  177. Sharpe AH, Hunter JJ, Chassler P, Jaenisch R. Role of abortive retroviral infection of neurons in spongiform CNS degeneration. Nature. 1990;346:181–183. doi: 10.1038/346181a0. [DOI] [PubMed] [Google Scholar]
  178. Shimomura S, Komatsu N, Frickhofen N. First continuous propagation of B19 parvovirus in a cell line. Blood. 1992;79:18–24. [PubMed] [Google Scholar]
  179. Simpson RW, McGinty L, Simon L. Association of parvoviruses with rehumatoid arthritis. Science. 1984;223:1425–1428. doi: 10.1126/science.6701529. [DOI] [PubMed] [Google Scholar]
  180. Sixbey JW, Yao QY. Immunoglobulin A-induced shift of Epstein-Barr virus tissue tropism. Science. 1992;255:1578–1580. doi: 10.1126/science.1312750. [DOI] [PubMed] [Google Scholar]
  181. Smith DH, Byrn RA, Marsters SA. Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science. 1987;238:1704–1707. doi: 10.1126/science.3500514. [DOI] [PubMed] [Google Scholar]
  182. Smith H. Mechanisms of virus pathogenicity. Bacteriological Reviews. 1972;36:291–310. doi: 10.1128/br.36.3.291-310.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Smith H. The little-known determinants of virus pathogenicity. Scandinavian Journal of Infectious Diseases. 1980;24:119–127. (supplement) [PubMed] [Google Scholar]
  184. Snijder EJ, Horzinek MC. Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. Journal of General Virology. 1993;74:2305–2316. doi: 10.1099/0022-1317-74-11-2305. [DOI] [PubMed] [Google Scholar]
  185. Stanley WM. Isolation of a crystalline protein possessing the properties of tobaccomosaic virus. Science. 1935;81:644–645. doi: 10.1126/science.81.2113.644. [DOI] [PubMed] [Google Scholar]
  186. Staunton EE, Merluzzi VJ, Rothlein R. A cellular adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989;56:849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  187. Stoner GL. Implications of progressive multifocal leukoencephalopathy and JC virus for the etiology of MS. Acta Neurologica Scandinavica. 1991;83:20–33. [PubMed] [Google Scholar]
  188. Sumida T, Yonaha F, Maeda T. Expression of sequences homologous to HTLV-I tax gene in the labial salivary glands of Japanese patients with Sjogren's syndrome. Arthritis and Rheumatism. 1994;37:545–550. doi: 10.1002/art.1780370415. [DOI] [PubMed] [Google Scholar]
  189. Taguchi F, Kawamura S, Fujiwara K. Replication of mouse hepatitis viruses with high and low virulence in cultured hepatocytes. Infection and Immunity. 1983;39:955–959. doi: 10.1128/iai.39.2.955-959.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Takizawa T, Matsukawa S, Higuchi Y. Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells. Journal of General Virology. 1993;74:2347–2355. doi: 10.1099/0022-1317-74-11-2347. [DOI] [PubMed] [Google Scholar]
  191. Tamm A, Ziegler T, Lautenschlager I. Detection of cytomegalovirus DNA in cells from synovial fluid and peripheral blood of patients with early rheumatoid arthritis. Journal of Rheumatology. 1993;20:1489–1493. [PubMed] [Google Scholar]
  192. Terai C, Kornbluth RS, Pauza CD. Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. Journal of Clinical Investigation. 1991;87:1710–1715. doi: 10.1172/JCI115188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Thormar H, Jervis GA, Karl SC, Brown HR. Passage in ferrets of encephalitogenic cell-associated measles virus isolated from brain of a patient with subacute sclerosing panencephalitis. Journal of Infectious Diseases. 1973;127:678–685. doi: 10.1093/infdis/127.6.678. [DOI] [PubMed] [Google Scholar]
  194. Toh BH, Yildiz A, Sotelo J. Viral infections and IgM autoantibodies to cytoplasmic intermediate filaments. Clinical and Experimental Immunology. 1979;37:76–82. [PMC free article] [PubMed] [Google Scholar]
  195. Tonietti G, Oldstone MB, Dixon FJ. The effect of induced chronic viral infections on the immunologic diseases of New Zealand mice. Journal of Experimental Medicine. 1970;132:89–109. doi: 10.1084/jem.132.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Ullrich SJ, Zeng ZZ, Jay G. Vol. 5. 1994. Transgenic mouse models of human gastric and hepatic carcinomas; pp. 61–68. (Seminars in Cancer Biology). [PubMed] [Google Scholar]
  197. Upton C, Macen JL, Schreiber M, McFadden G. Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology. 1991;184:370–382. doi: 10.1016/0042-6822(91)90853-4. [DOI] [PubMed] [Google Scholar]
  198. Upton C, Mossman K, McFadden G. Encoding of a homolog of the IFN-gamma receptor by myxomavirus. Science. 1992;258:1369–1372. doi: 10.1126/science.1455233. [DOI] [PubMed] [Google Scholar]
  199. Vento S, Garofano T, Di Perri G. Identification of hepatitis A virus as a trigger for autoimmune chronic hepatitis type 1 in susceptible individuals. Lancet. 1991;337:1183–1187. doi: 10.1016/0140-6736(91)92858-y. [DOI] [PubMed] [Google Scholar]
  200. Vieira P, de Waal-Malefyt R, Dang MN. Vol. 88. 1991. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI; pp. 1172–1176. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Von dem Borne AEGK, Bos MJE, Joustra-Maas N. A murine monoclonal IgM antibody specific for blood group P antigen (globoside) British Journal of Haematology. 1986;63:35–46. doi: 10.1111/j.1365-2141.1986.tb07492.x. [DOI] [PubMed] [Google Scholar]
  202. Welsh RM, McFarland HI. Mechanisms of viral pathogenesis. In: Young NS, editor. Viruses and Bone Marrow. Marcel Dekker Inc.; New York: 1993. pp. 3–30. [Google Scholar]
  203. Welsh RM, Nishioka WK, Antia R, Dundon PL. Mechanism of killing by virus-induced cytotoxic T lymphocytes elicited in vivo. Journal of Virology. 1990;64:3726–3733. doi: 10.1128/jvi.64.8.3726-3733.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Whyte P, Buchkovich KJ, Horowitz JM. Association between an oncogene and an anti-oncogene: the adenovirus ElA proteins bind to the retinoblastoma gene product. Nature. 1988;334:124–129. doi: 10.1038/334124a0. [DOI] [PubMed] [Google Scholar]
  205. Wilborn F, Schmidt CA, Brinkmann V. A potential role for human herpesvirus type 6 in nervous system disease. Journal of Neuroimmunology. 1994;49:213–214. doi: 10.1016/0165-5728(94)90198-8. [DOI] [PubMed] [Google Scholar]
  206. Williams RC, Jr, Husby G, Koster FT. Well-defined cell-surface receptors may be entry points for infectious agents. Scandinavian Journal of Immunology. 1986;23:529–533. doi: 10.1111/j.1365-3083.1986.tb01984.x. [DOI] [PubMed] [Google Scholar]
  207. Williams RK, Jiang GS, Snyder SW. Purification of the 110-kilodalton glycoprotein receptor for mouse hepatitis virus (MHV)-A59 from mouse liver and identification of a nonfunctional, homologous protein in MHV-resistant SJL/J mice. Journal of Virology. 1990;64:3817–3823. doi: 10.1128/jvi.64.8.3817-3823.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Wolfgram LJ, Beisel KW, Rose NR. Heart-specific autoantibodies following murine coxsackievirus B3 myocarditis. Journal of Experimental Medicine. 1985;161:1112–1121. doi: 10.1084/jem.161.5.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Woodruff JF. Viral myocarditis. A review. American Journal of Pathology. 1980;101:425–484. [PMC free article] [PubMed] [Google Scholar]
  210. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980;284:555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  211. Young NS, Mortimer PP, Moore JG, Humphries RK. Characterization of a virus that causes transient aplastic crisis. Journal of Clinical Investigation. 1984;73:224–230. doi: 10.1172/JCI111195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Young NS, Issaragrasil S, Chieh CW, Takaku F. Aplastic anaemia in the Orient. British Journal of Haematology. 1986;62:1–6. doi: 10.1111/j.1365-2141.1986.tb02893.x. [DOI] [PubMed] [Google Scholar]
  213. Zoumbos NC, Ferris WO, Hsu SM. Analysis of lymphocyte subsets in patients with aplastic anaemia. British Journal of Haematology. 1984;58:95–105. doi: 10.1111/j.1365-2141.1984.tb06063.x. [DOI] [PubMed] [Google Scholar]

Articles from Bailliere's Clinical Haematology are provided here courtesy of Elsevier

RESOURCES