Summary
Our aim was to evaluate the reverse transcription and polymerase chain reaction (RT/PCR) technique for the detection of rotavirus shedding by infected children as a routine diagnostic procedure, in comparison to the enzyme-linked immunosorbent assay (ELISA), electron microscopy (EM) and polyacrylamide gel etectrophoresis (PAGE) of rotavirus double stranded RNA.
Two-hundred and twenty stool specimens were collected from infants and young children with diarrhoea, and 10–20% faecal suspensions were made. Several methods of rotavirus dsRNA extraction were assayed. Electrophoretic analysis of viral RNA was carried out on 10% polyacrylamide gols followed by silver staining. RT/PCR was performed using oligonucleotide primers specific for both 3′ and 5′ ends of the rotavirus gene encoding VP7 which ere highly conserved among group A rotaviruses.
Following RNA extraction with phenol-chloroform and ethanol precipitation, RT/PCR could detect rotaviral RNA in only 11 of 25 samples known to contain rotaviruses by conventional methods. The purification of RNA extracts by CF11 cellulose and the application of the RNAID method were equally effective in extracting RNA and/or removing inhibitory substances from the faecal samples. RT/PCR led to the detection of 66 positive samples from 220 specimens tested (30%). whilst 64 specimens were positive by EUSA (29%), 59 (26.3%) by PAGE and 56 (25.4%) by EM. In our study, RT/PCR was 100 times more sensitive than the ELISA test in detecting rotaviruses serially diluted in a faecal suspension. Although RT/PCR is theoretically much more sensitive than ELISA, PAGE and EM for detection of rotaviruses, great care must be taken to remove inhibitory substances from the enzymatic reactions. We do not consider that RT/PCR should replace immunoassays with high sensitivity and specificity for rotavirus testing in faecal samples, although this technique has other applications, like the search for rotavirus in different clinical specimens (sera, cerebrospinal fluid, respiratory secretions, etc.) and in environmental samples, as well as the typing of viral strains using serotype-specific primers.
Key-words: Rotavirus RT/PCR, ELISA, PAGE, Electron microscopy, Viral analysis, Sensitivity
Abstract
La RT/PCR a été évaluée pour la détection des rotavirus dans les selles des enfants ayant une infection due à ces virus. Les résultats ont été comparés à ceux de la technique ELISA, de la microscopic électronique (ME) et de l'électrophorèse de l'ARN viral bicaténaire en gel de polyacrylamide (PAGE). Nous avons préparé des suspensions fécales à 10-20% en Tris-NaCl-CaCl2 à partir de 220 échantillons provenant d'enfants souffrant de gastroentérite aiguë et utilisé différentes méthodes d'extraction de l'ARN viral. Dans la RT/PCR, des oligonucléotides spécifiques des extrémités 3′ et 5′ du gène codant la glycoprotéine VP7 ont été utilisés. La purification des extraits d'ARN avec la CF11 cellulose et le méthode “RNAID” ont été également efficaces pour l'obtention de l'ARN viral.
L'amplification par la RT/PCR a permis de détecter 66 échantillons positifs (30 %), pendant que 64 ont été positifs par l'ELISA (29%), 59 (26.8%) par l'électrophorèse de l'ARN viral et 56 (25.4%) par la ME.
La RT/PCR est plus sensible que l'ELISA, la PAGE et la ME pour la détection des rotavirus. Cependant il faut veiller à éliminer les possibles inhibiteurs des réactions enzymatiques. Malgré cette efficacité, nous considérons que la RT/PCR ne doit pas remplacer les techniques immunoenzy- matiques ayant une grande sensibilité et une haute spécificité pour la détection des rotavirus dans les selles. Mais cette technique est utilisable pour la recherche des rotavirus dans d'autres prélèvements (sérum, LCR, sécrétions respiratoires etc.) ou dans des échantillons provenant de l'environnement; elle peut, de plus, permettre de caractériser les sérotypes viraux.
Mots-clés: Rotavirus, RT/PCR, ELISA, PAGE, Microscopic électronique, Analyse virale, Sensibilité.
References
- Buesa F.J., Duato M., Gimeno C., Garcia de Lomas J. Sequential variation in genomic RNA patterns of human rotaviruses isolated from infantile gastroenteritis. Ann. Virol. (Inst. Pasteur) 1987;138:307–314. doi: 10.1016/S0769-2617(87)80017-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flores J., Purcell R.H., Perez I., Wyatt R.G., Boeggeman E., Sereno M., White L., Chanock R.M., Kapikian A.Z. A dot hybridization assay for detection of rotavirus. Lancet. 1983;I:555–559. doi: 10.1016/s0140-6736(83)92811-8. [DOI] [PubMed] [Google Scholar]
- Fragosa M., Kumar A., Murray D.L. Rotavirus in nasopharingeal secretions of children with upper respiratory tract infections. Diagn. Microbiol. Infec. Dis. 1986;4:87–88. doi: 10.1016/0732-8893(86)90062-3. [DOI] [PubMed] [Google Scholar]
- Gentsch J.R., Glass R.I., Woods P., Gouvea V., Gorziglia M., Flores J., Das B.K., Bhan M.K. Identification of group A rotavirus gene 4 types by polymerase chain reaction. J. Clin. Microbiol. 1992;30:1365–1373. doi: 10.1128/jcm.30.6.1365-1373.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass R.I., Gentsch J., Smith J.C. Rotavirus vaccines: success by reassortment? Science. 1994;265:1389–1391. doi: 10.1126/science.8073280. [DOI] [PubMed] [Google Scholar]
- Gouvea V., Glass R.I., Woods P., Taniguchi K., Clark H.F., Forrester B., Fang Z.Y. Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J. Clin. Microbiol. 1990;28:276–282. doi: 10.1128/jcm.28.2.276-282.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herring A.J., Inglis N.F., Ojeh C.K., Snodgrass D.R., Menzies I.D. Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver stained polyacrylamide gels. J. Clin. Microbiol. 1982;16:173–477. doi: 10.1128/jcm.16.3.473-477.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husain M., Seth P., Broor S. Detection of group A rotavirus by reverse transcription and polymerase chain reaction in feces from children with acute gastroenteritis. Arch. Virol. 1995;140:1225–1233. doi: 10.1007/BF01322748. [DOI] [PubMed] [Google Scholar]
- Kapikian A.Z., Chanock R.M. In: Rotaviruses. Fields B.N., Knipe D.M., Howley P.M., editors. Lippincott-Raven Publishers; 1996. pp. 1657–1708. [Google Scholar]
- Kapikian A.Z., Flores J., Hoshino Y., Glass R.I., Midthun K., Gorziglia M., Chanock R.M. Rotavirus: the major etiologic agent of severe infantile diarrhea may be controllable by a “Jennerian” approach to vaccination. J. Infect. Dis. 1986;153:815–822. doi: 10.1093/infdis/153.5.815. [DOI] [PubMed] [Google Scholar]
- Le Guyader F., Dubois E., Ménard D., Pommepuy M. Detection of hepatitis A virus, rotavirus, and enterovirus in naturally contaminated shellfish and sediment by reverse transcription-seminested PCR. Appl. Environ. Microbiol. 1994;60:3665–3671. doi: 10.1128/aem.60.10.3665-3671.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy L., Lee I.M., Hadidi A. Simple and rapid preparation of infected plant tissue extracts for PCR amplification of virus, viroids and MLO nucleic acids. J. Virol. Methods. 1994;49:295–304. doi: 10.1016/0166-0934(94)90144-9. [DOI] [PubMed] [Google Scholar]
- Nakata S., Petrie B., Calomeni E.P., Estes M. Electron microscopy procedure influences detection of rotaviruses. J. Clin. Microbiol. 1987;25:1902–1906. doi: 10.1128/jcm.25.10.1902-1906.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vonsover A., Shif I., Silberstein I., Rudich H., Aboudy Y., Mendelsonn E., Shulman L., Nakagomi T., Nakagomi O. Identification of feline-and canine-like rotaviruses isolated from humans by restriction fragment length polymorphism assay. J. Clin. Microbiol. 1993;31:1783–1787. doi: 10.1128/jcm.31.7.1783-1787.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilde J., Eiden J., Yolken R. Removal of inhibitory substances from human fecal specimens for detection of group A rotaviruses by reverse transcriptase and polymerase chain reaction. J. Clin. Microbiol. 1990;28:1300–1307. doi: 10.1128/jcm.28.6.1300-1307.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilde J., Van R., Pickering L., Eiden J., Yolken R. Detection of rotaviruses in the day care envi-ronment by reverse transcriptase polymerase chain reaction. J. Infect. Dis. 1992;166:507–511. doi: 10.1093/infdis/166.3.507. [DOI] [PubMed] [Google Scholar]
- Wilde J., Yolken R., Willoughby R., Eiden J. Improved detection of rotavirus shedding by polymerase chain reaction. Lancet. 1991;337:323–326. doi: 10.1016/0140-6736(91)90945-l. [DOI] [PubMed] [Google Scholar]
- Ushijima H., Koike H., Mukoyama A., Hasegawa A., Nishimura S., Gentsch J. Detection and serotyping of rotaviruses in stool specimens by using reverse transcription and polymerase chain reaction amplification. J. Med. Virol. 1992;38:292–297. doi: 10.1002/jmv.1890380412. [DOI] [PubMed] [Google Scholar]
- Ushijima H., Xin K.Q., Nishimura S., Morikawa S., Abe T. Detection and sequencing of rotavirus VP7 gene from human materials (stools, sera, cerebrospinal fluids, and throat swabs) by reverse transcription and polymerase chain reaction amplification. J. Clin. Microbiol. 1994;32:2893–2897. doi: 10.1128/jcm.32.12.2893-2897.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu L., Harbour D., McCrae M.A. The application of polymerase chain reaction to the detection of rotaviruses in faeces. J. Virol Methods. 1990;27:29–38. doi: 10.1016/0166-0934(90)90143-4. [DOI] [PubMed] [Google Scholar]
- Zheng B.J., Chang R.X., Ma G.Z., Xie J.M., Liu Q., Liang X.R., Ng M.H. Rotavirus infection of the oropharynx and respiratory tract in young children. J Med. Virol. 1991;34:29–37. doi: 10.1002/jmv.1890340106. [DOI] [PubMed] [Google Scholar]