Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2009 Sep 23;138(2):183–194. doi: 10.1016/S0769-2617(87)80003-5

Inhibition of transmissible gastroenteritis coronavirus (TGEV) multiplication in vitro by non-immune lymphocytes

Inhibition de la multiplication in vitro du coronavirus de la gastroentérite transmissible (GET) par des lymphocytes non immuns

B Charley 1,*, H Laude 1, C La Bonnardière 1
PMCID: PMC7134748  PMID: 32288183

Summary

In vitro studies were undertaken to examine the effects of non-immune porcine peripheral blood leukocytes (PBL) on a Coronavirus infection due to transmissible gastroenteritis virus (TGEV). The assay consisted of TGEV-infected epithelial cells expressing viral antigens on the cell surface and producing low amounts of interferon (IFN). Non-immune PBL were found to limit virus replication at an effector-to-target ratio of 100/1 even when effector cells were depleted of phagocytic cells. Neutralizing anti-IFN antibodies did not abrogate the effect. PBL from newborn animals were as effective as adult cells, whereas fibroepithelial cells, human and mouse lymphoid cells did not exert antiviral effects. Under similar conditions, PBL from adult animals could lyse TGEV-infected cells even in the presence of anti-IFN antibodies. However, newborn PBL were not cytotoxic. Moreover, depletion of NK cells by monoclonal antibodies plus complement did not alter the inhibitory effect. These latter observations suggest that virus multiplication-inhibition effects and cytotoxic (or NK) activities are unrelated.

Key-words: Coronavirus, TGEV, Cytotoxicity, Lymphocyte; Interferon, Pig

References

  • 1.Alsheikly A., Orvell C., Harfast B., Anderson T., Perlmann P., Norrby E. Sendai-virus-induced cell-mediated cytotoxicity in vitro, The role of viral glycoproteins in cell-mediated cytotoxicity. Scand. J. Immunol. 1983;17:129–138. doi: 10.1111/j.1365-3083.1983.tb00775.x. [DOI] [PubMed] [Google Scholar]
  • 2.Arora D.J.S., Hotjde M., Justewicz D.M., Mandeville R. In vitro enhancement of human natural cell-mediated cytotoxicity by purified influenza virus glycoproteins. J. Virol. 1984;52:839–845. doi: 10.1128/jvi.52.3.839-845.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Casali P., Sissons J.G.P., Buchmeier M.J., Oldstone M.B.A. In vitro generation of human cytotoxic lymphocytes by virus, Viral glycoproteins induce non-specific cell-mediated cytotoxicity without release of interferon. J. exp. Med. 1981;154:840–855. doi: 10.1084/jem.154.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Casali P., Oldstone M.B.A. Mechanisms of killing of measles virus-infected cells by human lymphocytes: interferon-associated and -unassociated cell-mediated cytotoxicity. Cell. Immunol. 1982;70:330–344. doi: 10.1016/0008-8749(82)90334-3. [DOI] [PubMed] [Google Scholar]
  • 5.Cepica A., Derbyshire J.B. Antibody-dependent and spontaneous cell-mediated cytotoxicity against transmissible gastroenteritis virus-infected cells by lymphocytes from sows fetuses and neonatal piglets. Canad. J. comp. Med. 1984;48:258–261. [PMC free article] [PubMed] [Google Scholar]
  • 6.Charley B., Petit E., Laude H., La Bonnardière C. Myxovirus- and coro-navirus-induced in vitro stimulation of spontaneous cell-mediated cytotoxicity by porcine blood leukocytes. Ann. Virol. (Inst. Pasteur) 1983;134 E:119–126. [Google Scholar]
  • 7.Charley B., Petit E., Gelfi J., Laude H., La Bonnardière C. Factors modulating the natural killing activity in swine. In: Quinn P.J., editor. Cell-mediated immunity. Commission European Communities; Luxembourg: 1984. pp. 162–189. [Google Scholar]
  • 8.Charley B., Petit E., La Bonnardière C. Interferon-induced enhancement of newborn pig natural killing (NK) activity. Ann. Rech. Vét. 1985;4:399–402. [PubMed] [Google Scholar]
  • 9.Chu R.M., Glock R.D., Ross R.F., Cox D.F. Lymphoid tissues of the small intestine of swine from birth to one month of age. Amer. J. vet. Res. 1979;40:1713–1719. [PubMed] [Google Scholar]
  • 10.Fitzgerald P.A., Von Wussow P., Lopez C. Role of interferon in natural killing of HSV-l-infected fibroblasts. J. Immunol. 1982;129:819–823. [PubMed] [Google Scholar]
  • 11.Fitzgerald P., Mendelson M., Lopez C. Human natural killer cells limit replication of herpes simplex virus type 2 in vitro. J. Immunol. 1985;134:2666–2672. [PubMed] [Google Scholar]
  • 12.Haelterman E.D. On the pathogenesis of transmissible gastroenteritis of swine. J. Amer. vet. med. Ass. 1972;160:534–540. [PubMed] [Google Scholar]
  • 13.Hammerberg C., Schurig G.G. Characterization of monoclonal antibodies directed against swine leukocytes. Vet. Immunol. Immunopath. 1986;11:107–121. doi: 10.1016/0165-2427(86)90092-9. [DOI] [PubMed] [Google Scholar]
  • 14.Herberman R.B., Ortaldo J.R. Natural killer cells: their role in defenses against disease. Science. 1981;214:24–30. doi: 10.1126/science.7025208. [DOI] [PubMed] [Google Scholar]
  • 15.Huh N.D., Kim Y.B., Koren H.S., Amos D.B. Natural killing and antibody-dependent cellular cytotoxicity in specific pathogen-free miniature swine and germ-free piglets. — II. Ontogenic developments of NK and ADCC. Int. J. Cancer. 1981;28:175–178. doi: 10.1002/ijc.2910280210. [DOI] [PubMed] [Google Scholar]
  • 16.Kohl S., Harmon M.W. Human neonatal leukocyte interferon production and natural killer cytotoxicity in response to herpes simplex virus. J. Interferon Res. 1983;3:461–463. doi: 10.1089/jir.1983.3.461. [DOI] [PubMed] [Google Scholar]
  • 17.Kurane I., Hebblewaite D., Brandt W.E., Ennis F.A. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Virol. 1984;52:223–230. doi: 10.1128/jvi.52.1.223-230.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.La Bonnardière C., Laude H. High interferon titer in newborn pig intestine during experimentally induced viral enteritis. Infect. Immun. 1981;32:28–31. doi: 10.1128/iai.32.1.28-31.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.La Bonnardière C., Laude H. Interferon induction in rotavirus and Coronavirus infection; a review of recent results. Ann. Rech. Vét. 1983;14:507–511. [PubMed] [Google Scholar]
  • 20.Laude H. Thermal inactivation studies of a Coronavirus, transmissible gastroenteritis virus. J. gen. Virol. 1981;56:235–240. doi: 10.1099/0022-1317-56-2-235. [DOI] [PubMed] [Google Scholar]
  • 21.Laude H., Charley B., La Bonnardière C. Interactions of porcine enteric Coronavirus TGEV with macrophage and lymphocytes. In: Rottier P., Van der Zeijst B., Spaan W., Horzinek M., editors. Molecular biology and pathogenesis of coronaviruses. Plenum Press; New York: 1984. p. 385. [Google Scholar]
  • 22.Laude H., Chapsal J.M., Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis Coronavirus. — I. Properties of monoclonal antibodies directed against virion proteins. J. gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
  • 23.Lehrer R.I., Daker K., Ganz T., Selsted M.E. Direct inactivation of viruses by MCP1 and MCP2, natural peptide antibiotics from rabbit leukocytes. J. Virol. 1985;54:467–472. doi: 10.1128/jvi.54.2.467-472.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Leibold W., Bridge S. 75Se-release: a short and long-term assay system for cellular cytotoxicity. Z. Immun.-Forsch. 1979;155:287–311. [PubMed] [Google Scholar]
  • 25.McCauley I., Hartmann P.E. Changes in piglet leucocytes. B lymphocytes and plasma Cortisol from birth to three weaks after weaning. Res. Vet. Sci. 1984;37:234–241. [PubMed] [Google Scholar]
  • 26.Morse S.S., Morahan P.S. Activated macrophages mediate interferon-independent inhibition of herpes simplex virus. Cell. Immunol. 1984;58:72–84. doi: 10.1016/0008-8749(81)90150-7. [DOI] [PubMed] [Google Scholar]
  • 27.Pescovitz M.D., Lunney J.K., Sachs D.H. Preparation and characterization of monoclonal antibodies reactive with porcine PBL. J. Immunol. 1984;133:368–375. [PubMed] [Google Scholar]
  • 28.Salmon H. Specificity of pig T-lymphocyte antiserum: cytotoxicity and inhibiting properties onto E-rosette-forming lymphocytes. Ann. Immunol. (Inst. Pasteur) 1978;129 C:571–584. [PubMed] [Google Scholar]
  • 29.Salmon H. Surface markers of porcine lymphocytes and distribution in various lymphoid organs. Int. Arch. Allergy. 1979;60:262–274. doi: 10.1159/000232351. [DOI] [PubMed] [Google Scholar]
  • 30.Santoli D., Trinchieri G., Koprowski H. Cell-mediated cytotoxicity against virus-infected target cells in humans. — II. Interferon induction and activation of natural killer cells. J. Immunol. 1978;121:532–538. [PubMed] [Google Scholar]
  • 31.Shrivastana R.S., Le Jan C. Non-specific antiviral activity of bovine leukocytes against infectious bovine rhinotracheitis virus in vitro. Ann. Rech. Vet. 1982;13:251–257. [PubMed] [Google Scholar]
  • 32.Tardieu M., Hery C., Dupuy J.M. Neonatal susceptibility to MHV3 infection in mice. — II. Role of natural effector marrow cells in transfer of resistance. J. Immunol. 1980;124:418–423. [PubMed] [Google Scholar]
  • 33.Welsh R.M. Do natural killer cells play a role in virus infections. Antiviral Res. 1981;1:5–12. [Google Scholar]
  • 34.Yasukawa M., Kobayashi Y. Inhibition of herpes simplex virus replication in vitro by human cytotoxic T-cell clones and natural killer cell clones. J. gen. Virol. 1985;66:2225–2229. doi: 10.1099/0022-1317-66-10-2225. [DOI] [PubMed] [Google Scholar]

Articles from Annales De L'Institut Pasteur. Virology are provided here courtesy of Elsevier

RESOURCES