Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 15;3(1):9–20. doi: 10.1016/0882-4010(87)90033-7

Experimental demyelination induced by coronavirus JHM (MHV-4): molecular identification of a viral determinant of paralytic disease

JO Fleming 1,, MD Trousdale 2,3,4, J Bradbury 1, SA Stohlman 1,3, LP Weiner 1,3
PMCID: PMC7134751  PMID: 2848172

Abstract

The molecular basis for demyelination induced by the neurotropic murine coronavirus JHM (JHMV or MHV4) is unknown. We have attempted to explore this issue by using neutralizing monoclonal antibodies specific for the major JHMV glycoprotein (E2) to select sets of neutralization resistant (NR) antigenic variant viruses. Monoclonal antibodies J.7.2 and J.2.2 bind to topographically distinct sites on E2. NR variants selected with J.7.2, like parental JHMV, predominantly cause a fatal encephalitis when given intracerebrally to mice, while J.2.2-selected NR variants cause a subacute disease characterized by paralysis and severe demyelination. We report here that consecutive selection with both J.2.2 and J.7.2 monoclonal antibodies results in NR variants which are markedly attenuated in both encephalitic potential and ability to induce demyelination. Analysis of the different variants suggests that the subregion of E2 bound by monoclonal antibody J.7.2 may be a critical viral determinant of paralysis and demyelination in this model system.

Keywords: coronaviruses, demyelination, neurovirulence, antigenic variants, monoclonal anti-bodies, JHM (MHV-4)

Footnotes

This work was supported by Public Health Service Grants NS18146, NS07149, NS00795, EYO2957, and EYO03040 from the National Institutes of Health.

References

  • 1.Weiner LP. Pathogenesis of demyelination induced by a mouse hepatitis virus (JHM virus) Arch Neurol. 1973;28:298–303. doi: 10.1001/archneur.1973.00490230034003. [DOI] [PubMed] [Google Scholar]
  • 2.Lampert PW, Sims JK, Kniazeff AJ. Mechanism of demyelination in JHM virus encephalomyelitis. Electron microscopic studies. Acta Neuropathologica. 1973;24:76–85. doi: 10.1007/BF00691421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Sorensen O, Perry D, Dales S. In vivo and in vitro models of demyelinating diseases. III. JHM virus infection of rats. Arch Neurol. 1980;37:478–484. doi: 10.1001/archneur.1980.00500570026003. [DOI] [PubMed] [Google Scholar]
  • 4.Stohlman SA, Weiner LP. Chronic central nervous system demyelination in mice after JHM virus infection. Neurology. 1981;31:38–44. doi: 10.1212/wnl.31.1.38. [DOI] [PubMed] [Google Scholar]
  • 5.Wege H, Siddell S, ter Meulen V. The biology and pathogenesis of coronaviruses. Curr Top Microbiol Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  • 6.Martin JR, Nathanson N. Animal models of virus-induced demyelination. Prog Neuropathol. 1979;4:27–50. [Google Scholar]
  • 7.Dal Canto MC, Rabinowitz SG. Experimental models of virus-induced demyelination of the central nervous system. Ann Neurol. 1982;11:109–127. doi: 10.1002/ana.410110202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Fleming JO. 1st edn. Vol. 60. 1985. Animal models of multiple sclerosis; pp. 490–492. (Mayo Clin Proc). [DOI] [PubMed] [Google Scholar]
  • 9.Hirano N, Goto N, Makino S, Fujiwara K. Persistent infection with mouse hepatitis virus, JHM strain, in DBT cell culture. Adv Exp Med Biol. 1981;142:301–308. doi: 10.1007/978-1-4757-0456-3_24. [DOI] [PubMed] [Google Scholar]
  • 10.Knobler RL, Lampert PW, Oldstone MBA. Virus persistence and recurring demyelination produced by a temperature-sensitive mutant of MHV-4. Nature. 1982;298:279–280. doi: 10.1038/298279a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Stohlman SA, Brayton PR, Fleming JO, Weiner LP, Lai MMC. Murine coronaviruses: isolation and characterization of two plaque morphology variants of the JHM neurotropic strain. J Gen Virol. 1982;63:265–275. doi: 10.1099/0022-1317-63-2-265. [DOI] [PubMed] [Google Scholar]
  • 12.Fleming JO, Trousdale MD, El-Zaatari FAK, Stohlman SA, Weiner LP. Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J Virol. 1986;58:869–875. doi: 10.1128/jvi.58.3.869-875.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Dalziel RG, Lampert PW, Talbot PJ, Buchmeier MJ. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J Virol. 1986;59:463–471. doi: 10.1128/jvi.59.2.463-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Laver WG. The use of monoclonal antibodies to investigate antigenic drift in influenza virus. In: Hurrell JGR, editor. Monoclonal hybridoma antibodies: techniques and applications. CRC Press; Boca Raton: 1982. pp. 104–117. [Google Scholar]
  • 15.Laver WG, Air GM, Webster RG, Markoff LJ. Amino acid sequence changes in antigenic variants of type A influenza N2 neuraminidase. Virology. 1982;122:450–460. doi: 10.1016/0042-6822(82)90244-6. [DOI] [PubMed] [Google Scholar]
  • 16.Evans DMA, Minor PD, Schild GC, Almond JW. Critical role of an eight-amino sequence of VP1 in neutralization of poliovirus type 3. Nature. 1983;304:459–462. doi: 10.1038/304459a0. [DOI] [PubMed] [Google Scholar]
  • 17.Knossow M, Daniels RS, Douglas AR, Skehel JJ, Wiley DC. Three-dimensional structure of an antigenic mutant of the influenza virus haemagglutinin. Nature. 1984;311:678–680. doi: 10.1038/311678a0. [DOI] [PubMed] [Google Scholar]
  • 18.Seif IP, Coulon P, Rollin PE, Flamand A. Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol. 1985;53:926–934. doi: 10.1128/jvi.53.3.926-934.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kaye KM, Spriggs DR, Bassel-Duby R, Fields BN, Tyler KL. Genetic basis for altered pathogenesis of an immune-selected antigenic variant of reovirus type 3 (Dearing) J Virol. 1986;59:90–97. doi: 10.1128/jvi.59.1.90-97.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Prabhakar BS, Notkins AL. Antigenic variants of viruses and their relevance to clinical disease. In: Notkins AL, Oldstone MBA, editors. Concepts in viral pathogenesis. Springer-Verlag; New York: 1984. pp. 158–162. [Google Scholar]
  • 21.Collins AR, Knobler RL, Powell H, Buchmeier MJ. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Siddell S, Wege H, ter Meulen V. The structure and replication of coronaviruses. Curr Top Microbiol Immunol. 1982;99:131–163. doi: 10.1007/978-3-642-68528-6_4. [DOI] [PubMed] [Google Scholar]
  • 23.Fleming JO, Stohlman SA, Harmon RC, Lai MMC, Frelinger JA, Weiner LP. Antigenic relationships of murine coronaviruses: analysis using monoclonal antibodies to JHM (MHV-4) virus. Virology. 1983;131:296–307. doi: 10.1016/0042-6822(83)90498-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sturman LS, Holmes KV. Proteolytic cleavage of peplomeric glycoprotein E2 of MHV yields two 90k subunits and activates cell fusion. Adv Exp Med Biol. 1984;173:25–35. doi: 10.1007/978-1-4615-9373-7_3. [DOI] [PubMed] [Google Scholar]
  • 25.Dietzschold B, Wiktor TJ, Trojanowski JQ, Macfarlan RI, Wunner WH, Torres-Anjel MJ, Koprowski H. Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J Virol. 1985;56:12–18. doi: 10.1128/jvi.56.1.12-18.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Gonzalez-Scarano F, Janssen RS, Najjar JA, Pobjecky N, Nathanson N. An avirulent G1 glycoprotein variant of La Crosse bunyavirus with defective fusion function. J Virol. 1985;54:757–763. doi: 10.1128/jvi.54.3.757-763.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Löve AR, Rydbeck R, Kristensson K, Örvell C, Norrby E. Hemagglutinin-neuraminidase glycoprotein as a determinant of pathogenicity in mumps virus hamster encephalitis: analysis of mutants selected with monoclonal antibodies. J Virol. 1985;53:67–74. doi: 10.1128/jvi.53.1.67-74.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Erlich SS, Fleming JO. JHM virus infection: a model of viral-induced demyelinating disease. In: Adachi M, Hirano A, Aronson SM, editors. The pathology of the myelinated axon. Igaku-Shoin Medical Publishers; Tokyo: 1985. pp. 276–307. [Google Scholar]
  • 29.Lai MMC, Baric RS, Makino S, Keck JG, Egbert J, Leibowitz JL, Stohlman SA. Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Nakajima S, Kendal AP. Antigenic drift in influenza A/USSR/90/77 (H1N1) variants selected in vitro with monoclonal antibodies. Virology. 1981;113:656–662. doi: 10.1016/0042-6822(81)90194-x. [DOI] [PubMed] [Google Scholar]
  • 31.Boere WAM, Harmsen T, Vinje J, Benaissa-Trouw BJ, Kraaijeveld CA, Snippe H. Identification of distinct antigenic determinants on Semliki Forest virus by using monoclonal antibodies with different antiviral activities. J Virol. 1984;52:575–582. doi: 10.1128/jvi.52.2.575-582.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Vandepol SB, Lefrancois L, Holland JJ. Sequences of the major antibody binding epitopes of the Indiana serotype of vesicular stomatitis virus. Virology. 1986;148:312–325. doi: 10.1016/0042-6822(86)90328-4. [DOI] [PubMed] [Google Scholar]
  • 33.Heinz FX, Mandl C, Berger R, Tuma W, Kunz C. Antibody-induced conformational changes result in enhanced avidity of antibodies to different antigenic sites on the tick-borne encephalitis virus glycoprotein. Virology. 1984;133:25–34. doi: 10.1016/0042-6822(84)90422-7. [DOI] [PubMed] [Google Scholar]
  • 34.Stohlman SA, Fleming JO, Patton CD, Lai MMC. Synthesis and subcellular localization of the murine coronavirus nucleocapsid protein. Virology. 1983;130:527–532. doi: 10.1016/0042-6822(83)90106-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Harmon RC, Stein N, Frelinger JA. Monoclonal antibodies reactive with H-2 determinants. Immunogenetics. 1983;18:541–545. doi: 10.1007/BF00364395. [DOI] [PubMed] [Google Scholar]
  • 36.Brown A, McFarlin D, Raine CS. Chronic neuropathology of relapsing experimental allergic encephalomyelitis in the mouse. Lab Invest. 1982;46:171–185. [PubMed] [Google Scholar]

Articles from Microbial Pathogenesis are provided here courtesy of Elsevier

RESOURCES