Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Aug 26;3(5):523–532. doi: 10.1016/0958-1669(92)90081-S

Examples of expression systems based on animal RNA viruses: Alphaviruses and influenza virus

Charles M Rice 1
PMCID: PMC7134803  PMID: 1369402

Abstract

Successful recovery of RNA viruses and functional RNA replicons from cDNA has greatly facilitated molecular genetic analyses of viral proteins and cis-regulatory elements. This technology allows the use of RNA virus replication machinery to express heterologous sequences. Both positive-strand and negative-strand animal RNA viruses have been engineered to produce chimeric viruses expressing protective epitopes from other pathogens and for transient expression of heterologous sequences.

Abbreviations: CAT, chloramphericol acetyl transferase; CTL, cytotoxic T lymphocyte; DEAE, diethylaminoethyl; DI, defective interfering; RNP, ribonucleoprotein particle; SFV, Semliki Forest virus

References

References and recommended reading

  • 1.Bredenbeek PJ, Rice CM. Animal RNA Virus Expression Systems. Sem Virol. 1992;3:297–310. [Google Scholar]
  • 2.Ahlquist P, French R, Janda M, Loesch-Fries LS. Vol. 81. 1984. Multi-component RNA Plant Virus Infection Derived from Cloned Viral cDNA; pp. 7066–7070. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ball LA. Cellular Expression of a Functional Nodavirus RNA Replicon from Vaccinia Virus Vectors. J Virol. 1992;66:2335–2345. doi: 10.1128/jvi.66.4.2335-2345.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Pattnaik AK, Ball LA, Legrone AW, Wertz GW. Infectious Defective Interfering Particles of VSV from Transcripts of a cDNA Clone. Cell. 1992;69:1011–1020. doi: 10.1016/0092-8674(92)90619-n. of special interest. [DOI] [PubMed] [Google Scholar]; This report describes the first successful recovery of a replication-competent rhabdovirus RNA transcript from cDNA and the expression of heterologous RNA sequences using this viral replication machinery.
  • 5.Almond JW, Burke KL. Poliovirus as a Vector for the Presentation of Foreign Antigens. Semin Virol. 1990;1:11–20. [Google Scholar]
  • 6.Choi WS, Pal-Ghosh R, Morrow CD. Expression of Human Immunodeficiency Virus Type 1 (HIV-1) Gag, Pol, Env Proteins from Chimeric HIV-1-Poliovirus Minireplicons. J Virol. 1991;65:2875–2883. doi: 10.1128/jvi.65.6.2875-2883.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Schlesinger S, Schlesinger MJ, editors. The Togaviridae and Flaviridae. Plenum Press; New York: 1986. [Google Scholar]
  • 8.Strauss JH, Strauss EG. Alphavirus Proteinases. Sem Virol. 1990;1:347–356. [Google Scholar]
  • 9.Strauss EG, Strauss JH. Structure and Replication of the Alphavirus Genome. In: Schlesinger S, Schlesinger MJ, editors. The Togaviridae and Flaviviridae. Plenum Press; New York: 1986. pp. 35–90. [Google Scholar]
  • 10.Niesters HGM, Strauss JH. Defined Mutations in the 5′ Nontranslated Sequence of Sindbis Virus RNA. J Virol. 1990;64:4162–4168. doi: 10.1128/jvi.64.9.4162-4168.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Niesters HGM, Strauss JH. Mutagenesis of the Conserved 51 Nucleotide Region of Sindbis Virus. J Virol. 1990;64:1639–1647. doi: 10.1128/jvi.64.4.1639-1647.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Kuhn RJ, Hong Z, Strauss JH. Mutagenesis of 3′ Non-translated Region of Sindbis Virus RNA. J Virol. 1990;64:1465–1476. doi: 10.1128/jvi.64.4.1465-1476.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Levis R, Weiss BG, Tsiang M, Huang H, Schlesinger S. Deletion Mapping of Sindbis Virus DI RNAs Derived from cDNAs Defines the Sequences Essential for Replication and Packaging. Cell. 1986;44:137–145. doi: 10.1016/0092-8674(86)90492-7. [DOI] [PubMed] [Google Scholar]
  • 14.Weiss B, Nitschko H, Ghattas I, Wright R, Schlesinger S. Evidence for Specificity in the Encapsidation of Sindbis Virus RNAs. J Virol. 1989;63:5310–5318. doi: 10.1128/jvi.63.12.5310-5318.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Grakoui A, Levis R, Raju R, Huang HV, Rice CM. A Cisacting Mutation in the Sindbis Virus Junction Region which Affects Subgenomic RNA Synthesis. J Virol. 1989;63:5216–5227. doi: 10.1128/jvi.63.12.5216-5227.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Levis R, Schlesinger S, Huang HV. Promoter for Sindbis Virus RNA-dependent Subgenomic RNA Transcription. J Virol. 1990;64:1726–1733. doi: 10.1128/jvi.64.4.1726-1733.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hahn CS, Hahn YS, Braciale TJ, Rice CM. Vol. 89. 1992. Infectious Sindhis Virus Transient Expression Vectors for Studying Antigen Processing and Presentation; pp. 2679–2683. (Proc Natl Acad Sci USA). of outstanding interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Describes the construction of replication and packaging competent Sindbis vectors containing two subgenomic mRNA promoters and their use for endogenous expression of minigenes encoding T-cell epitopes.
  • 18.Raju R, Huang HV. Analysis of Sindbis Virus Promoter Recognition In Vivo, Using Novel Vectors with Two Subgenomic mRNA Promoters. J Virol. 1991;65:2501–2510. doi: 10.1128/jvi.65.5.2501-2510.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Rice CM, Levis R, Strauss JH, Huang HV. Production of Infectious RNA Transcripts from Sindbis Virus cDNA Clones: Mapping of Lethal Mutations, Rescue of a Temperature-sensitive Marker, and In Vitro Mutagenesis to Generate Defined Mutants. J Virol. 1987;61:3809–3819. doi: 10.1128/jvi.61.12.3809-3819.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Huang HV, Rice CM, Xiong C, Schlesinger S. RNA Viruses as Gene Expression Vectors. Virus Genes. 1989;3:85–91. doi: 10.1007/BF00301989. [DOI] [PubMed] [Google Scholar]
  • 21.Xiong C, Levis R, Shen P, Schlesinger S, Rice C, Huang HV. Sindbis virus: an Efficient, Broad Host Range Vector for Gene Expression in Animal Cells. Science. 1989;243:1188–1191. doi: 10.1126/science.2922607. [DOI] [PubMed] [Google Scholar]
  • 22.Kuhn RJ, Niesters HGM, Hong Z, Strauss JH. Infectious RNA Transcripts from Ross River Virus cDNA Clones and the Construction and Characterization of Defined Chimeras with Sindbis Virus. Virology. 1991;182:430–441. doi: 10.1016/0042-6822(91)90584-x. [DOI] [PubMed] [Google Scholar]
  • 23.Liljeström P, Lusa S, Huylebroeck D, Garoff H. In Vitro Mutagenesis of a Full-length cDNA Clone of Semliki Forest Virus: the Small 6,000-Molecular-weight Membrane Protein Modulates Virus Release. J Virol. 1991;65:4107–4113. doi: 10.1128/jvi.65.8.4107-4113.1991. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; This report describes the construction of a full-length cDNA clone of SFV capable of yielding infectious in vitro transcribed RNA and conditions for efficient transfection of BHK-21 cells by electroporation.
  • 24.Davis NL, Powell N, Greenwald GF, Willis LV, Johnson BJB, Smith JF, Johnston RE. Attenuating Mutations in the E2 Glycoprotein Gene of Venezuelan Equine Encephalitis: Construction of Single and Multiple Mutants in a Full-Length Clone. Virology. 1991;183:20–31. doi: 10.1016/0042-6822(91)90114-q. of special interest. [DOI] [PubMed] [Google Scholar]; A landmark paper describing work towards engineering a candidate live-attenuated alphavirus vaccine strain.
  • 25.Hahn YS, Strauss EG, Strauss JH. Mapping of RNAtemperature-sensitive Mutants of Sindbis Virus: Assignment of Complementation Groups A, B, and G to Non-structural Proteins. J Virol. 1989;63:3142–3150. doi: 10.1128/jvi.63.7.3142-3150.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Hahn YS, Grakoui A, Rice CM, Strauss EG, Strauss JH. Mapping of RNA-temperature-sensitive Mutants of Sindbis Virus: Complementation Group F Mutants have Lesions in nsP4. J Virol. 1989;63:1194–1202. doi: 10.1128/jvi.63.3.1194-1202.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Hertz JM, Huang HV. Utilization of Heterologous Alphavirus Junction Sequences as Promoters by Sindbis virus. J Virol. 1992;66:857–864. doi: 10.1128/jvi.66.2.857-864.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Levis R, Huang H, Schlesinger S. Vol. 84. 1987. Engineered Defective Interfering RNAs of Sindbis Virus Express Bacterial Chloramphenicol Acetyltransferase in Avian Cells; pp. 4811–4815. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Takamatsu N, Ishikawa M, Meshi T, Okada Y. Expression of Bacterial Chloramphenicol Acetyltransferase Gene in Tobacco Plants Mediated by TMV-RNA. EMBOJ. 1987;6:307–311. doi: 10.1002/j.1460-2075.1987.tb04755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.French R, Janda M, Ahlquist P. Bacterial Gene Inserted in an Engineered RNA Virus: Efficient Expression in Monocotyledonous Plant Cells. Science. 1986;231:1294–1297. doi: 10.1126/science.231.4743.1294. [DOI] [PubMed] [Google Scholar]
  • 31.Liljeström P, Garoff H. A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon. Biotechnology. 1991;9:1356–1361. doi: 10.1038/nbt1291-1356. of outstanding interest. [DOI] [PubMed] [Google Scholar]; Describes the SFV expression system and the successful recovery of helper-free packaged replicons that can be used for high level ‘one-way’ expression of heterologous proteins in a variety of cell types.
  • 32.Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Vol. 84. 1987. Lipofection: A Highly Efficient, Lipid-mediated DNA-transfection Procedure; pp. 7413–7417. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Geigenmuller-Gnirke U, Weiss B, Wright R, Schlesinger S. Vol. 88. 1991. Complementation Between Sindbis Viral RNAs Produces Infectious Particles with a Bipartite Genome; pp. 3253–3257. (Proc Natl Acad Sci USA). of outstanding interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Describes a Sindbis-based expression strategy in which both the RNA replicon and helper RNA can be packaged.
  • 34.Weiss BG, Schlesinger S. Recombination Between Sindbis Virus RNAs. J Virol. 1991;65:4017–4025. doi: 10.1128/jvi.65.8.4017-4025.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Piper RC, Tai C, Slot JW, Hahn CS, Rice CM, Huang HV, James DE. The Efficient Intracellular Sequestration of the Insulin-regulatable Glucose Transporter (GLUT-4) is Conferred by the N Terminus. J Cell Biol. 1992;117:729–743. doi: 10.1083/jcb.117.4.729. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Double subgenomic Sindbis virus vectors [17••] as utilized for cell biological studies.
  • 36.Wengler G. Effects of Alphaviruses on Host Cell Macro-molecular Synthesis. In: Schlesinger RW, editor. The Togaviruses: Biology, Structure, Replication. Academic Press; New York: 1980. pp. 459–472. [Google Scholar]
  • 37.London SD, Schmaljohn AL, Dalrymple JM, Rice CM. Vol. 89. 1991. Infectious Enveloped RNA Virus Antigenic Chimeras; pp. 207–211. (Proc Natl Acad Sci USA). of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; This report describes a general method for constructing antigenic chimeras of RNA viruses using random insertional mutagenesis followed by selection of viable viral recombinants.
  • 38.Baltimore D. Expression of Animal Virus Genomes. Bacteriol Rev. 1971;35:235–241. doi: 10.1128/br.35.3.235-241.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Park KH, Huang T, Correia FF, Krystal M. Vol. 88. 1991. Rescue of a Foreign Gene by Sendai Virus; pp. 5537–5541. (Proc Natl Acad Sci USA). of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Describes the engineering of recombinant RNAs capable of replication by Sendai virus.
  • 40.Luytjes W, Krystal M, Enami M, Parvin JD, Palese P. Amplification, Expression, and Packaging of a Foreign Gene by Influenza Virus. Cell. 1989;59:1107–1113. doi: 10.1016/0092-8674(89)90766-6. [DOI] [PubMed] [Google Scholar]
  • 41.Yamanaka K, Ogasawara N, Yoshikawa H, Ishihama A, Nagata K. Vol. 88. 1991. In Vivo Analysis of the Promoter Structure of the Influenza Virus RNA Genome Using a Transfection System with an Engineered RNA; pp. 5369–5373. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Roner MR, Sutphin LA, Joklik WK. Reovirus RNA is Infectious. Virology. 1990;179:845–852. doi: 10.1016/0042-6822(90)90153-i. [DOI] [PubMed] [Google Scholar]
  • 43.Krug RM, Alonso-Caplen FV, Julkunen I, Katze MG. Expression and Replication of the Influenza Virus Genome. In: Krug RM, editor. The Influenza Viruses. Plenum Press; New York: 1989. pp. 89–152. [Google Scholar]
  • 44.Luo G, Luytjes W, Enami M, Palese P. The Polyadenylation Signal of Influenza Virus RNA Involves a Stretch of Uridines Followed by the RNA Duplex of the Panhandle Structure. J Virol. 1991;65:2861–2867. doi: 10.1128/jvi.65.6.2861-2867.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Enami M, Palese P. High Efficiency Formation of Influenza Virus Transfectants. J Virol. 1991;65:2711–2713. doi: 10.1128/jvi.65.5.2711-2713.1991. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Coupled transcription and RNP assembly leading to improved recovery of influenza virus tranfectants, as compared to the methodology described in [40].
  • 46.Muster T, Subbarao EK, Enami M, Murphy BR, Palese P. Vol. 88. 1991. An Influenza A Virus Containing Influenza B Virus 5′ and 3′ Noncoding Regions on the Neuraminidase Gene is Attenuated in Mice; pp. 5177–5181. (Proc Natl Acad Sci USA). of outstanding interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Demonstrates the potential of engineering novel live-attenuated influenza strains via recombinant DNA manipulations (see also [40,41,45•]).
  • 47.Li S, Schulman JL, Moran T, Bona C, Palese P. Influenza A Virus Transfectants with Chimeric Hemagglutinins Containing Epitopes from Different Subtypes. J Virol. 1992;66:399–404. doi: 10.1128/jvi.66.1.399-404.1992. of outstanding interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Shows that recovery of functional influenza A segments from cDNA allows construction of influenza strains carrying protective epitopes from the other influenza subtypes. Future extensions of this approach may include epitopes from heterologous pathogens.
  • 48.Enami M, Sharma G, Benham C, Palese P. An Influenza Virus Containing Nine Different RNA Segments. Virology. 1991;185:291–298. doi: 10.1016/0042-6822(91)90776-8. of outstanding interest. [DOI] [PubMed] [Google Scholar]; These studies are relevant to the construction of stable influenza strains expressing longer heterologous sequences. Experiments show that the influenza packaging machinery allows packaging of an additional RNA segment, with reasonably high efficiency.
  • 49.Thach RE, editor. Translationally Regulated Genes in Higher Eukaryotes. Vol. 44. 1991. (Enzyme). [PubMed] [Google Scholar]
  • 50.Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR Sequences Renders Cells Resistant to Human Immunodeficiency Virus Replication. Cell. 1990;63:601–608. doi: 10.1016/0092-8674(90)90455-n. [DOI] [PubMed] [Google Scholar]

Articles from Current Opinion in Biotechnology are provided here courtesy of Elsevier

RESOURCES