Abstract
Resident proteins of the exocytic pathway contain at least two types of information in their primary sequence for determining their subcellular location. The first type of information is found at the carboxyl terminus of soluble proteins of the endoplasmic reticulum (ER) and in the cytoplasmic domain of some ER and Golgi membrane proteins. It acts as a retrieval signal, returning proteins that have left the compartment in which they reside. The second type of information has been found in the membrane-spanning domain of several ER and Golgi proteins and, though the mechanism by which it operates is still unclear, it acts as a retention signal, keeping the protein at a particular location within the organelle. The presence of both a retrieval signal and a retention signal in a trans-Golgi network resident protein suggests that more than one mechanism operates to ensure correct localization of resident proteins along the exocytic pathway.
Abbreviations: ER, endoplasmic reticulum; NAGT I, N-acetylglucosaminyltransferase 1; TGN, trans-Golgi network
References
- 1.Pfeffer S.R., Rothman J.E. Biosynthetic Protein Transport and Sorting by the Endoplasmic Reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
- 2.Ahn K., Szczesna S.E., Kemper B. The Amino-Terminal 29 Amino Acids of Cytochrome P450 2C1 Are Sufficient for Retention in the Endoplasmic Reticulum. J Biol Chem. 1993;268:18726–18733. of special interest. [PubMed] [Google Scholar]; The hydrophobic amino terminus of P450 spans the membrane and is both necessary and sufficient to retain reporter molecules in the ER.
- 3.Bangs J.D., Uyetake L., Brickman M.J., Balber A.E., Boothroyd J.C. Molecular Cloning and Cellular Localization of a BiP Homologue in Trypanosoma brucei. Divergent ER Retention Signals in a Lower Eukaryote. J Cell Sci. 1993;105:1101–1113. doi: 10.1242/jcs.105.4.1101. [DOI] [PubMed] [Google Scholar]
- 4.David V., Hochstenbach F., Rajagopalan S., Brenner M.B. Interaction with Newly Synthesized and Retained Proteins in the Endoplasmic Reticulum Suggests a Chaperone Function for Human Integral Membrane Protein IP90 (Calnexin) J Biol Chem. 1993;268:9585–9592. of special interest. [PubMed] [Google Scholar]; Human calnexin has the carboxy-terminal sequence RKPRRE, which may act in a similar manner to the double-lysine motif to retain the protein in the ER.
- 5.Delahunty M.D., Stafford F.J., Yuan L.C., Shaz D., Bonifacino J.S. Uncleaved Signals for Glycosylphosphatidylinositol Anchoring Cause Retention of Precursor Proteins in the Endoplasmic Reticulum. J Biol Chem. 1993;268:12017–12027. of special interest. [PubMed] [Google Scholar]; In the absence of transfer to glycosylphosphatidylinositol, the protein is retained in the ER by a carboxy-terminal membrane anchor that appears to work by oligomerization.
- 6.Hobman T.C., Woodward L., Farquhar M.G. The Rubella Virus E2 and E1 Spike Glycoproteins Are Targeted to the Golgi Complex. J Cell Biol. 1993;121:269–281. doi: 10.1083/jcb.121.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Huang K.M., Snider M.D. Glycoprotein Recycling to the Galactosyltransferase Compartment of the Golgi Complex. J Biol Chem. 1993;268:9302–9310. [PubMed] [Google Scholar]
- 8.Lankford S.P., Cosson P., Bonifacino J.S., Klausner R.D. Transmembrane Domain Length Affects Charge-Mediated Retention and Degradation of Proteins within the Endoplasmic Reticulum. J Biol Chem. 1993;268:4814–4820. of special interest. [PubMed] [Google Scholar]; An acidic residue in the membrane-spanning domain can result in retention in the ER and degradation, but only if the length of the spanning domain is correct.
- 9.Solimena M., Aggujaro D., Muntzel C., Dirkx R., Butler M., De Camilli P., Hayday A. 1st Edn. Vol. 90. 1993. Association of GAD-65, but Not of GAD-67, with the Golgi Complex of Transfected Chinese Hamster Ovary Cells Mediated by the N-Terminal Region; pp. 3073–3077. (Proc Natl Acad Sci USA). of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; One of the isoforms of cytoplasmic glutamic acid decarboxylase (GAD-65), has an amino-terminal Golgi-targeting signal that may be palmitoylated.
- 10.Pelham H.R. Control of Protein Exit from the Endoplasmic Reticulum. Annu Rev Cell Biol. 1989;5:1–23. doi: 10.1146/annurev.cb.05.110189.000245. [DOI] [PubMed] [Google Scholar]
- 11.Rothman J.E. The Golgi Apparatus: Two Organelles in Tandem. Science. 1981;213:1212–1219. doi: 10.1126/science.7268428. [DOI] [PubMed] [Google Scholar]
- 12.Lewis M.J., Sweet D.J., Pelham H.R. The ERD2 Gene Determines the Specificity of the Luminal ER Protein Retention System. Cell. 1990;61:1359–1363. doi: 10.1016/0092-8674(90)90699-f. [DOI] [PubMed] [Google Scholar]
- 13.Semenza J.C., Hardwick K.G., Dean N., Pelham H.R.B. ERD2, a Yeast Gene Required for the Receptor Mediated Retrieval of Luminal ER Proteins from the Secretory Pathaway. Cell. 1990;61:1349–1357. doi: 10.1016/0092-8674(90)90698-e. [DOI] [PubMed] [Google Scholar]
- 14.Lewis M.J., Pelham H.R. A Human Homologue of the Yeast HDEL Receptor. Nature. 1990;348:162–163. doi: 10.1038/348162a0. [DOI] [PubMed] [Google Scholar]
- 15.Tang B.L., Wong S.H., Qi X.L., Low S.H., Hong W. Molecular Cloning, Characterization, Subcellular Localization and Dynamics of p23, the Mammalian KDEL Receptor. J Cell Biol. 1993;120:325–328. doi: 10.1083/jcb.120.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Lewis M.J., Pelham H.R. Ligand-Induced Redistribution of a Human KDEL Receptor from the Golgi Complex to the Endoplasmic Reticulum. Cell. 1992;68:353–364. doi: 10.1016/0092-8674(92)90476-s. [DOI] [PubMed] [Google Scholar]
- 17.Wilson D.W., Lewis M.J., Pelham H.R. pH-Dependent Binding of KDEL to Its Receptor in Vitro. J Biol Chem. 1993;268:7465–7468. of special interest. [PubMed] [Google Scholar]; Suggests that sorting of lumenal ER proteins is aided by pH differences between compartments.
- 18.Townsley F.M., Wilson D., Pelham H.R. Mutational Analysis of the Human KDEL Receptor: Distinct Structural Requirements for Golgi Retention, Ligand Binding and Retrograde Transport. EMBO J. 1993;12:2821–2829. doi: 10.1002/j.1460-2075.1993.tb05943.x. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Suggests that receptor movement is regulated by changes in conformation and by intermolecular interactions in the membrane.
- 19.Nilsson T., Jackson M., Peterson P.A. Short Cytoplasmic Sequences Serve as Retention Signals for Transmembrane Proteins in the Endoplasmic Reticulum. Cell. 1989;58:707–718. doi: 10.1016/0092-8674(89)90105-0. [DOI] [PubMed] [Google Scholar]
- 20.Jackson M.R., Nilsson T., Peterson P.A. Identification of a Consensus Motif for Retention of Transmembrane Proteins in the Endoplasmic Reticulum. EMBO J. 1990;9:3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Scutze M.P., Peterson P.A., Jackson M.R. An N-Terminal Double-Arginine Motif Maintains Type II Membrane Proteins in the Endoplasmic Reticulum. EMBO J. 1994;13:1696–1705. doi: 10.1002/j.1460-2075.1994.tb06434.x. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Arginine residues can act as a retrieval signal for ER membrane proteins
- 22.Jackson M.R., Nilsson T., Peterson P.A. Retrieval of Transmembrane Proteins to the Endoplasmic Reticulum. J Cell Biol. 1993;121:317–333. doi: 10.1083/jcb.121.2.317. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Shows that the double-lysine motif is a retrieval signal, and that retrieval efficiency is dependent on the sequence context of the motif.
- 23.Dahllöf B., Wallins M., Kvist S. The Endoplasmic Reticulum Retention Signal of the E3/19K Protein of Adenovirus-2 Is Microtubule Binding. J Biol Chem. 1991;266:1804–1808. [PubMed] [Google Scholar]
- 24.Cosson P., Letourner F. Coatomer Interaction with Dilysine Endoplasmic Reticulum Retention Motifs. Science. 1994;263:1629–1631. doi: 10.1126/science.8128252. of special interest. [DOI] [PubMed] [Google Scholar]; Shows a specific interaction between the dilysine motif and coatomer.
- 25.Schindler R., Itin C., Zerial M., Lottspeich F., Hauri H.P. ERGIC-53, a Membrane-Protein of the ER-Golgi Intermediate Compartment, Carries an ER Retention Motif. Eur J Cell Biol. 1993;61:1–9. [PubMed] [Google Scholar]
- 26.Schweizer A., Rohrer J., Jenö P., DeMaio A., Buchman T.G., Hauri H.P. A Reversibly Palmitoylated Resident Protein (p63) of an ER-Golgi Intermediate Compartment Is Related to a Circulatory Shock Resuscitation Protein. J Cell Sci. 1993;104:685–694. doi: 10.1242/jcs.104.3.685. [DOI] [PubMed] [Google Scholar]
- 27.Schweizer A., Peter F., Van P.N., Soling H.D., Hauri H.P. A Luminal Calcium-Binding Protein with a KDEL Endoplasmic Reticulum Retention Motif in the ER-Golgi Intermediate Compartment. Eur J Cell Biol. 1993;60:366–370. [PubMed] [Google Scholar]
- 28.Krijnse-Locker J., Ericsson M., Rottier P.J., Griffiths G. Characterization of the Budding Compartment of Mouse Hepatitis Virus: Evidence that Transport from the RER to the Golgi Complex Requires Only One Vesicular Transport Step. J Cell Biol. 1994;124:55–70. doi: 10.1083/jcb.124.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Brands R., Snider M.D., Hino Y., Park S.S., Gelboin H.V., Rothman J.E. Retention of Membrane Proteins by the Endoplasmic Reticulum. J Cell Biol. 1985;101:1724–1732. doi: 10.1083/jcb.101.5.1724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Machamer C.E. Targeting and Retention of Golgi Membrane Proteins. Curr Opin Cell Biol. 1993;5:606–612. doi: 10.1016/0955-0674(93)90129-E. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Nilsson T., Slusarewicz P., Hoe M.H., Warren G. Kin Recognition: A Model for the Retention of Golgi Enzymes. FEBS Lett. 1993;330:1–4. doi: 10.1016/0014-5793(93)80906-b. of special interest. [DOI] [PubMed] [Google Scholar]; Presents a simple model for a retention mechanism in the Golgi based on kin recognition.
- 32.Smith S., Blobel G. The First Membrane Spanning Region of the Lamin B receptor Is Sufficient for Sorting to the Inner Nuclear Membrane. J Cell Biol. 1993;120:631–637. doi: 10.1083/jcb.120.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Nilsson T., Lucocq J.M., Mackay D., Warren G. The Membrane Spanning Domain of β-1,4-Galactosyltransferase Specifies trans-Golgi Localization. EMBO J. 1991;10:3567–3575. doi: 10.1002/j.1460-2075.1991.tb04923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Munro S. Sequences Within and Adjacent to the Transmembrane Segment of α-2,6-Sialyltransferase Specify Golgi Retention. EMBO J. 1991;10:3577–3588. doi: 10.1002/j.1460-2075.1991.tb04924.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Swift A.M., Machamer C.E. A Golgi Retention Signal in a Membrane-Spanning Domain of Coronavirus E1 Protein. J Cell Biol. 1991;115:19–30. doi: 10.1083/jcb.115.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Weisz O.A., Swift A.M., Machamer C.E. Oligomerization of a Membrane Protein Correlates with its Retention in the Golgi Complex. J Cell Biol. 1993;122:1185–1196. doi: 10.1083/jcb.122.6.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Machmer C.E., Grim M.G., Esquela A., Chung S.W., Rolls M., Ryan K., Swift A.M. Retention of a cis Golgi Protein Requires Polar Residues on One Face of a Predicted Alpha-Helix in the Transmembrane Domain. Mol Biol Cell. 1993;4:695–704. doi: 10.1091/mbc.4.7.695. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Identifies uncharged polar residues critical for retention in the Golgi.
- 38.Slusarewicz P., Nilsson T., Hui N., Watson R., Warren G. Isolation of a Matrix that Binds medial Golgi Enzymes. J Cell Biol. 1994;124:405–413. doi: 10.1083/jcb.124.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Nilsson T., Hoe M.H., Slusarewicz P., Rabouille C., Watson R., Hunte F., Watzele G., Berger E.G., Warren G. Kin Recognition between medial Golgi Enzymes in HeLa Cells. EMBO J. 1994;13:562–574. doi: 10.1002/j.1460-2075.1994.tb06294.x. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Provides strong evidence for kin recognition between medial enzymes and a role for them in Golgi organization.
- 40.Dahdal R.Y., Colley K.J. Specific Sequences in the Signal Anchor of the β-Galactoside α-2,6-Sialylransferase Are Not Essential for Golgi Localization. J Biol Chem. 1993;268:26310–26319. [PubMed] [Google Scholar]
- 41.Masibay A.S., Balaji P.V., Boeggeman E.E., Qasba P.K. Mutational Analysis of the Golgi Retention Signal of Bovine β-1,4-Galactosyltransferase. J Biol Chem. 1993;268:9908–9916. of special interest. [PubMed] [Google Scholar]; The length and hydrophobicity of the transmembrane domain is important for Golgi retention.
- 42.Bretscher M.S., Munro S. Cholesterol and the Golgi Apparatus. Science. 1993;261:1280–1281. doi: 10.1126/science.8362242. [DOI] [PubMed] [Google Scholar]
- 43.Orci L., Montesano R., Meda P., Malaisse-Lagae F., Brown D., Perrelet A., Vassalli P. 1st Edn. Vol. 78. 1981. Heterogeneous Distribution of Filipin-Cholesterol Complexes across the Cistermae of the Golgi Apparatus; pp. 293–297. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Lucocq J.M., Berger E.G., Warren G. Mitotic Golgi Fragments in Hela Cells and their Role in the Reassembly Pathway. J Cell Biol. 1989;109:463–474. doi: 10.1083/jcb.109.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Misteli T., Warren G. COP-Coated Vesicles Are Involved in the Mitotic Fragmentation of Golgi Stacks in a Cell-Free System. J Cell Biol. 1994;125:269–282. doi: 10.1083/jcb.125.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Warren G. Membrane Partitioning during Cell Division. Annu Rev Biochem. 1993;62:323–348. doi: 10.1146/annurev.bi.62.070193.001543. [DOI] [PubMed] [Google Scholar]
- 47.Bos K., Wraight C., Stanley K.K. TGN38 Is Maintained in the trans-Golgi Network by a Tyrosine-Containing Motif in the Cytoplasmic Domain. EMBO J. 1993;12:2219–2228. doi: 10.1002/j.1460-2075.1993.tb05870.x. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; A tyrosine in the cytoplasmic tail mediates retrieval of TGN38.
- 48.Humphrey J.S., Peters P.J., Yuan L.C., Bonifacino J.S. Localization of TGN38 to the trans-Golgi Network: Involvement of a Cytoplasmic Tyrosine-Containing Sequence. J Cell Biol. 1993;120:1123–1135. doi: 10.1083/jcb.120.5.1123. of special interest. See [47⊎] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Wong S.H., Hong W. The SXYQRL Sequence in the Cytoplasmic Domain of TGN38 Plays a Major Role in trans-Golgi Network Localization. J Biol Chem. 1993;268:22853–22862. See [47⊎] [PubMed] [Google Scholar]
- 50.Molloy S.S., Thomas L., Vanslyke J.K., Stenberg P.E., Thomas G. Intracellular Trafficking and Activation of the Furin Proprotein Convertase — Localization to the TGN and Recycling from the Cell-Surface. EMBO J. 1994;13:18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Nothwehr S.F., Roberts C.J., Stevens T.H. Membrane Protein Retention in the Yeast Golgi Apparatus: Dipeptidyl Aminopeptidase A Is Retained by a Cytoplasmic Signal Containing Aromatic Residues. J Cell Biol. 1993;121:1197–1209. doi: 10.1083/jcb.121.6.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Ponnambalam S., Rabouille C., Luzio P., Nilsson T., Warren G. The TGN38 Glycoprotein Contains Two Non-Overlapping Signals that Mediate Localization to the trans-Golgi Network. J Cell Biol. 1994;125:253–268. doi: 10.1083/jcb.125.2.253. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; The TM domain and the cytoplasmic tail independently localize TGN38 to the TGN.