Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Oct 29;18(3):211–221. doi: 10.1016/S0882-4010(95)90058-6

Mouse hepatitis virus A59-induced demyelination can occur in the absence of CD8+ T cells

James L Gombold 1,†,*, Robyn M Sutherland 1,, Ehud Lavi 2, Yvonne Paterson 1, Susan R Weiss 1
PMCID: PMC7134808  PMID: 7565015

Abstract

Mouse hepatitis virus causes a chronic demyelinating disease in C57BL/6 mice. While early studies suggested demyelination is due to direct cytolytic effects of virus on oligodendrocytes, there is increasing evidence for the involvement of the immune system in the mechanism of demyelination. In this study we have asked whether demyelination can occur in the absence of functional MHC class I expression and CD8+ T cells. We infected transgenic mice lacking expression of β2 microglobulin (β2M−/− mice) with MHV-A59. In β2M−/− mice, virus was much more lethal than in either of the parental strains used to produce the mice; furthermore, while clearance from the CNS did occur in β2M−/− mice, it was slower than in C57BL/6 mice. This is consistent with the importance of CD8+ cells in viral clearance. Because of the increased sensitivity of the β2M−/− mice to infection, only low levels of virus could be used to evaluate chronic disease. Even at these low levels, demyelination did occur in some animals. To compare infection in β2M−/− and C57BL/6 mice we used a higher dose of an attenuated variant of MHV-A59, C12. The attenuated variant induced less demyelination in C57BL/6 mice compared to wild type A59, but the levels observed were not significantly different from those seen in β2M−/− mice. Thus, MHV-induced demyelination can occur in some animals in the absence of MHC class I and CD8+ cells.

References

  • 1.Dubois-Dalcq M, Doller EH, Haspel MV, Holmes KV. Cell tropism and expression of mouse hepatitis virus (MHV) in mouse spinal cord cultures. Virology. 1982;119:317–331. doi: 10.1016/0042-6822(82)90092-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Lavi E, Suzumura A, Hirayama M, Highkin MK, Dambach DM, Silberberg DH, Weiss SR. Coronavirus mouse hepatitis virus (MHV)-A59 causes a persistent, productive infection in primary glial cell cultures. Microb Pathogen. 1987;3:79–86. doi: 10.1016/0882-4010(87)90066-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Lavi E, Highkih MK, Fishman PS, Weiss SR. Limbic encephalitis after inhalation of a murine coroanvirus. Lab Invest. 1988;58:31–36. [PubMed] [Google Scholar]
  • 4.Perlman S, Jacobsen G, Afifi A. Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves. Virology. 1989;170:556–560. doi: 10.1016/0042-6822(89)90446-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Sorensen O, Dales S. In vivo and in vitro models of demyelinating disease: JHM virus in the rat central nervous system localized by in situ cDNA hybridization and immunofluorescent microscopy. J Virol. 1985;56:434–438. doi: 10.1128/jvi.56.2.434-438.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Sussman MA, Shubin RA, Kyuwa S, Stohlman SA. T cell-mediated clearance of mouse hepatitis virus strain JHM from the central nervous system. J Virol. 1989;63:3051–3056. doi: 10.1128/jvi.63.7.3051-3056.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Williamson JSP, Stohlman SA. Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J Virol. 1990;64:4589–4592. doi: 10.1128/jvi.64.9.4589-4592.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Stohlman SA, Kyuwa S, Polo JM, Drady D, Lai MMC, Bergmann CC. Characterization of mouse hepatitis virus-specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM virus. J Virol. 1993;67:7050–7059. doi: 10.1128/jvi.67.12.7050-7059.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Virelizier JL, Dayan AD, Allision AC. Neuropathological effects of persistent infection of mice by mouse hepatitis virus. Infect Immun. 1975;12:1127–1140. doi: 10.1128/iai.12.5.1127-1140.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Knobler RL, Lampert PW, Oldstone MBA. Virus persistence and recurring demyelination produced by a temperature-sensitive mutant of MHV-4. Nature. 1982;298:279–280. doi: 10.1038/298279a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lavi E, Gilden DH, Highkin MK, Weiss SR. Persistence of mouse hepatitis virus A59 RNA in a slow virus demyelinating infection in mice as detected by in situ hybridization. J Virol. 1984;51:563–566. doi: 10.1128/jvi.51.2.563-566.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Lampert PW, Sims JK, Kniazeff AJ. Mechanism of demyelination in JHM virus encephalomyelitis. Acta Neuropathol. 1973;24:76–85. doi: 10.1007/BF00691421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Weiner LP. Pathogenesis of demyelination induced by mouse hepatitis virus (JHM) Arch Neurol. 1973;28:298–303. doi: 10.1001/archneur.1973.00490230034003. [DOI] [PubMed] [Google Scholar]
  • 14.Wang F-1, Stohlman SA, Fleming JO. Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J Neuroimmunol. 1990;30:31–41. doi: 10.1016/0165-5728(90)90050-W. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Watanabe R, Wege H, ter Meulen V. Adoptive transfer of EAE-like lesions by BMP-stimulated lymphocytes from rats with coronavirus-induced demyelinating encephalomyelitis. Nature. 1983;305:150–153. doi: 10.1038/305150a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kyuwa S, Yamaguchi K, Toyoda Y, Fujiwara K. Induction of self-reactive T cells after murine coronavirus infection. J Virol. 1991;65:1789–1795. doi: 10.1128/jvi.65.4.1789-1795.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zimprich F, Winter J, Wege H, Lassmann H. Coronavirus-induced primary demyelination: Indications for the involvement of a humoral immune response. Neuropath Appl Neurobiol. 1991;17:469–484. doi: 10.1111/j.1365-2990.1991.tb00750.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Suzumura A, Lavi E, Weiss SR, Silberberg DH. Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science. 1986;232:991–993. doi: 10.1126/science.3010460. [DOI] [PubMed] [Google Scholar]
  • 19.Gombold JL, Weiss SR. Mouse hepatitis virus A59 increases steady-state levels of MHC mRNAs in primary glial cell cultures and in the murine central nervous system. Microb Pathogen. 1992;13:493–505. doi: 10.1016/0882-4010(92)90015-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Massa PT, Dorries R, ter Meulen V. Virus particles induce la antigen expression on astrocytes. Nature. 1986;320:543–546. doi: 10.1038/320543a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Koller BH, Marrack P, Kappler JW, Smithies O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science. 1990;248:1227–1230. doi: 10.1126/science.2112266. [DOI] [PubMed] [Google Scholar]
  • 22.Gombold JL, Hingley ST, Weiss SR. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. J Virol. 1993;67:4504–4512. doi: 10.1128/jvi.67.8.4504-4512.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hingley ST, Gombold JL, Lavi E, Weiss SR. MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virolgy. 1994;67:1–10. doi: 10.1006/viro.1994.1156. [DOI] [PubMed] [Google Scholar]
  • 24.Erlich SS, Fleming JO, Stohlman SA, Weiner LP. Experimental neuropathology of chronic demyelination induced by a JHM virus variant (DS) Arch Neurol. 1987;44:839–842. doi: 10.1001/archneur.1987.00520200043016. [DOI] [PubMed] [Google Scholar]
  • 25.Lavi E, Gilden DH, Wroblewska Z, Rorke LB, Weiss SR. Experimental demyelination produced by the A59 strain of mouse hepatitis virus. Neurology. 1984;34:597–603. doi: 10.1212/wnl.34.5.597. [DOI] [PubMed] [Google Scholar]
  • 26.Fleming JO, F-I Wang, Trousdale MD, Hinton DR, Stohlman SA. Interaction of immune and central nervous systems: Contribution of anti-viral Thy-1+ cells to demyelination induced by coronavirus JHM. Reg Immunol. 1993;5:37–43. [PubMed] [Google Scholar]
  • 27.Hou S, Doherty PC, Zijlstra M, Jaenisch R, Katz JM. Delayed clearance of Sendai virus in mice lacking class I MHC-restricted CD8+ T cells. J Immunol. 1992;149:1319–1325. [PubMed] [Google Scholar]
  • 28.Eichelberger M, Allan W, Zijlstra M, Jaenisch R, Doherty PC. Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med. 1991;174:875–880. doi: 10.1084/jem.174.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Muller D, Koller BH, Whitton JL, LaPan KE, Brigman KK, Frelinger JA. LCMV-specific, class II-restricted cytotoxic T cells in β2-microglobulin-deficient mice. Science. 1992;255:1576–1578. doi: 10.1126/science.1347959. [DOI] [PubMed] [Google Scholar]
  • 30.Fiette L, Aubert C, Brahic M, Pena Rossi C. Theiler's virus infection of β2 microglobulin deficient mice. J Virol. 1993;67:589–592. doi: 10.1128/jvi.67.1.589-592.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Rodriguez M, Dunkel AJ, Theimann RL, Leibowitz JL, Zijlstra M, Jaenisch R. Abrogation of resistance to Theiler's virus-induced demyelination in H-2b mice deficient in β2 microglobulin. J Immunol. 1993;151:266–276. [PubMed] [Google Scholar]
  • 32.Apasov SG, Sitkovsky MV. Vol. 90. 1993. Highly lytic CD8+, ab T-cell receptor cytotoxic T cells with major histocompatibility complex (MHC) class I antigen-directed cytotoxicity in β2-microglobulin, MHC class I-deficient mice; pp. 2837–2841. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Lamouse-Smith E, Clements VK, Ostrand-Rosenberg S. β2M−/− knockout mice contain low levels of CD8+ cytotoxic T lymphocytes that mediate specific tumor rejection. J Immunol. 1993;151:6283–6290. [PubMed] [Google Scholar]
  • 34.Glas R, Ohlen C, Hoalund P, Karre K. The CD8+ T cell in repertoire in β2-microglobulin deficient mice is biased towards reactivity against self-major hisocompatibility class I. J Exp Med. 1994;179:661–672. doi: 10.1084/jem.179.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Bix M, Raulet D. Functionally conformed free class I heavy chains exist on the surface of β2 microglobulin negative cells. J Exp Med. 1992;176:829–834. doi: 10.1084/jem.176.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ryser JE, Macdonald HR. Limiting dilution analysis of alloantigen-reactive T lymphocytes. I. Comparison of precursor frequencies for proliferative and cytolyti responses. J Immunol. 1979;122:1691–1996. [PubMed] [Google Scholar]
  • 37.Vitiello A, Potter TA, Sherman LA. The role of β2-microglobulin in peptide binding by class I MHC molecules. Science. 1990;250:1423–1426. doi: 10.1126/science.2124002. [DOI] [PubMed] [Google Scholar]
  • 38.Rock KL, Bamble S, Rothstein L, Gramm C, Benacerraf B. Dissociation of β2-microglobulin leads to the accumulation of a substantial pool of inactive class I MHC heavy chains on the cell surface. Cell. 1991;65:611–620. doi: 10.1016/0092-8674(91)90093-e. [DOI] [PubMed] [Google Scholar]
  • 39.Hogquist KA, Gavin MA, Bevan MJ. Positive selection of CD8+ T cells induced by major histocompatibility complex binding peptides in fetal thymic organ culture. J Immunol. 1993;177:1469–1474. doi: 10.1084/jem.177.5.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Rotzschke O, Falk K, Faath S, Rammensee HG. On the nature of peptides involved in T cell alloreactivity. J Exp Med. 1991;174:1059–1071. doi: 10.1084/jem.174.5.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Ramig RF. Isolation and genetic characterization of temperature sensitive mutants of simian rotavirus SA11. Virology. 1982;120:93–135. doi: 10.1016/0042-6822(82)90009-5. [DOI] [PubMed] [Google Scholar]

Articles from Microbial Pathogenesis are provided here courtesy of Elsevier

RESOURCES