Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Feb 11;8(6):878–885. doi: 10.1016/S0952-7915(96)80019-7

Virus-induced autoimmune disease

Matthias G von Herrath 1, Michael BA Oldstone 1
PMCID: PMC7134972  PMID: 8994870

Abstract

The braking of tolerance or unresponsiveness to self-antigens, involving the activation of autoreactive lymphocytes, is a critical event leading to autoimmune diseases. The precise mechanisms by which this can occur are mostly unknown. Viruses have been implicated in this process, among other etiological factors, such as genetic predisposition and cytokine activity. Several ways have been proposed by which a viral infection might break tolerance to self and trigger an autoreactive cascade that ultimately leads to the destruction of a specific cell type or an entire organ. The process termed ‘molecular mimicry’ and the use of transgenic models in which viral and host genes can be manipulated to analyze their effects in causing autoimmunity have been particular focuses for research. For example, there is a transgenic murine model of virus-induced autoimmune disease, in which a known viral gene is selectively expressed as a self-antigen in β cells of the pancreas. In these mice, insulin-dependent diabetes develops after either a viral infection, the release of a cytokine such as IFN-γ, or the expression of the costimulatory molecule B7.1 in the islets of Langerhans. Recent studies using this model have contributed to the understanding of the pathogenesis of virus-induced autoimmune disease and have furthered the design and testing of novel immunotherapeutic approaches.

Abbreviations: APC antigen-presenting cell, CMV cytomegalovirus, CTL cytotoxic T lymphocyte, GP glycoprotein, IDDM insulin-independent diabetes type II, IFN interferon, IL interleukin, LCMV lymphocytic choriomeningitis virus, MBP myelin basic protein, MS multiple sclerosis, NP nucleoprotein, RIP rat insulin promoter, TCR T cell receptor

References

  • 1.Bach J-F. Predictive medicine in autoimmune diseases: from the identification of genetic predisposition and environmental influence to precocious immunotherapy. Clin Immunol Immunopath. 1994;72:156–161. doi: 10.1006/clin.1994.1122. [DOI] [PubMed] [Google Scholar]
  • 2.Theophilopoulos A. The basis of autoimmunity: part II, genetic predisposition. Immunol Today. 1995;16:150–159. doi: 10.1016/0167-5699(95)80133-2. [DOI] [PubMed] [Google Scholar]
  • 3.Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell. 1996;85:291–297. doi: 10.1016/s0092-8674(00)81106-x. [DOI] [PubMed] [Google Scholar]
  • 4.Ebers G, Bulman D, Sadovnik A, Paty D, Warren S, Hader W, Murray T, Seland T, Duquette P, Grey T. A population based study of multiple sclerosis in twins. N Engl J Med. 1987;315:1638–1642. doi: 10.1056/NEJM198612253152603. [DOI] [PubMed] [Google Scholar]
  • 5.Miller S, Karpus WJ. The immune pathogenesis and regulation of T-cell mediated demyelinating diseases. Immunol Today. 1994;15:358–362. doi: 10.1016/0167-5699(94)90173-2. [DOI] [PubMed] [Google Scholar]
  • 6.Schatz D, Krischer J, Horne G, Riley W, Spillar R, Silverstein J, Winter W, Muir A, Derovanesian D, Shah S. Islet cell antibodies predict insulin-dependent diabetes in United States school age children as powerfully as in uneffected relatives. J Clin Invest. 1994;93:2403–2407. doi: 10.1172/JCI117247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Aichele P, Kyburz D, Ohashi P, Odermatt P, Zinkernagel RM, Hengartner H, Pircher HP. Peptide induced T-cell tolerance to prevent autoimmune diabetes in a tg mouse model. Proc Natl Acad Sci USA. 1994;91:444–448. doi: 10.1073/pnas.91.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Weiner HL, Friedman A, Miller A, Khoury SJ, Al-Sabbagh A, Santos L, Sayegh M, Nussenblatt RB, Trentham DE, Hafler DA. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol. 1994;12:809–837. doi: 10.1146/annurev.iy.12.040194.004113. [DOI] [PubMed] [Google Scholar]
  • 9.Tisch R, McDevitt H. Antigen specific immunotherapy: is it a real possibility to combat T-cell medicated autoimmunity? Proc Natl Acad Sci USA. 1994;91:437–438. doi: 10.1073/pnas.91.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Merriman TR, Todd JA. Genetics of autoimmune disease. Curr Opin Immunol. 1995;7:786–792. doi: 10.1016/0952-7915(95)80049-2. [DOI] [PubMed] [Google Scholar]
  • 11.Panitch HS. Influence of infection on exacerbations of multiple sclerosis. Ann Neurol. 1994;36:S25–28. doi: 10.1002/ana.410360709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Andersen O, Lygner PE, Bergstrom T, Andersson M, Vahine A. Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol. 1993;240:417–422. doi: 10.1007/BF00867354. [DOI] [PubMed] [Google Scholar]
  • 13.Utz U, Biddison WE, McFarlane HF, McFarlin DE, Flerlage M, Martin R. Skewed T-cell receptor repertoire in genetically identical twins correlates with MS. Nature. 1993;364:243–247. doi: 10.1038/364243a0. [DOI] [PubMed] [Google Scholar]
  • 14.Green A. The role of genetic factors in development of IDDM. Curr Top Microbiol Immunol. 1990;164:3–17. doi: 10.1007/978-3-642-75741-9_1. [DOI] [PubMed] [Google Scholar]
  • 15.Berdanier CD. Diet, autoimmunity, and insulin-dependent diabetes mellitus: a controversy. PSEBM. 1995;209:223–230. doi: 10.3181/00379727-209-43897c. [DOI] [PubMed] [Google Scholar]
  • 16.Dahlquist G, Frisk G, Ivarsson SA, Svanberg L, Forsgren M, Diderholm H. Indication that maternal coxsackle B virus infection during pregnancy is a risk factor for childhood-onset IDDM. Diabetologia. 1995;38:1371–1373. doi: 10.1007/BF00401772. [DOI] [PubMed] [Google Scholar]
  • 17.Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL, Garber RL, Chang M. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci USA. 1995;92:7440–7444. doi: 10.1073/pnas.92.16.7440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Vento S, Guella L, Mirandola F, Cainelli F, Di Perri G, Solbiati M, Ferraro T, Concia EX. Epstein-Barr virus as a trigger for autoimmune hepatitis in susceptible individuals. Lancet. 1995;346:608–609. doi: 10.1016/s0140-6736(95)91438-2. [DOI] [PubMed] [Google Scholar]
  • 19.Oldstone MBA. Molecular mimicry as a mechanism for the cause and as a probe uncovering etiologic agent(s) of autoimmune disease. Curr Top Microbiol Immunol. 1989;145:127–135. doi: 10.1007/978-3-642-74594-2_11. [DOI] [PubMed] [Google Scholar]
  • 20.Conrad B, Weidmann E, Trucco G, Rudert WA, Behboo R, Ricordi C, Rodriguez-Rilo H, Ginegold D, Trucco M. Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature. 1994;371:351–355. doi: 10.1038/371351a0. [DOI] [PubMed] [Google Scholar]
  • 21.Baum H, Davies H, Peakman M. Molecular mimicry in the MHC: hidden clues to autoimmunity? Immunol Today. 1996;17:64–71. doi: 10.1016/0167-5699(96)80581-0. of special interest. [DOI] [PubMed] [Google Scholar]; In this article, Baum present a novel hypothesis for how molecular mimicry may be implicated in the development of autoimmune diseases. They postulate that self-MHC peptides presented in the thymus can determine which mimicking peptides elicit an immune response and in this way define the potential for autoimmune disease.
  • 22.Oldstone MBA. Molecular mimicry and autoimmune disease. Cell. 1987;50:819–820. doi: 10.1016/0092-8674(87)90507-1. [DOI] [PubMed] [Google Scholar]
  • 23.Garza KM, Tung KS. Frequency of molecular mimicry among T cell peptides as the basis for autoimmune disease and autoantibody induction. J Immunol. 1995;155:5444–5448. [PubMed] [Google Scholar]
  • 24.Silvestris F, Williams RC, Jr, Dammacco F. Autoreactivity in HIV-1 infection: the role of molecular mimicry. Clin Immunol Immunopathol. 1995;75:197–205. doi: 10.1006/clin.1995.1072. [DOI] [PubMed] [Google Scholar]
  • 25.Wucherpfennig KW, Strominger JL. Molecular mimicry in T-cell mediated autoimmunity: Viral peptides activate human T-cell clones specific for myelin basic protein. Cell. 1995;80:695–705. doi: 10.1016/0092-8674(95)90348-8. of outstanding interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; This study shows that MBP-reactive T-cell clones isolated from patients with MS can cross-react with a variety of infectious agents, thus implicating ‘molecular mimicry’ directly in the pathogenesis of MS.
  • 26.Wucherpfennig KW, Yu B, Bhol K, Monos DS, Argyris E, Karr RW, Ahmed AR, Strominger JL. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci USA. 1995;92:11935–11939. doi: 10.1073/pnas.92.25.11935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Sprent J, Webb S. Intrathymic and extrathymic deletion of T-cells. Curr Opin Immunol. 1995;7:196–205. doi: 10.1016/0952-7915(95)80004-2. [DOI] [PubMed] [Google Scholar]
  • 28.Ashton-Richardt PA, Bandeira A, Delaney J, Van Kaer L, Pircher HP, Zinkemagel RM, Tonegawa S. Evidence for a differential avidity model of T-cell selection in the thymus. Cell. 1994;76:651–663. doi: 10.1016/0092-8674(94)90505-3. [DOI] [PubMed] [Google Scholar]
  • 29.Genain C, Lee-Parritz D, Nguyen M, Massacesi L, Joshi N, Ferrante R, Hoffman K, Moseley K, Letvin N, Hauser S. In healthy primates, circulating autoreactive T-cells mediate autoimmune disease. J Clin Invest. 1994;94:1339–1345. doi: 10.1172/JCI117454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Moudgil KD, Sercarz EE. The T cell repertoire against cryptic self determinants and its involvement in autoimmunity and cancer. Clin Immunol Immunopath. 1994;74:283–289. doi: 10.1006/clin.1994.1200. [DOI] [PubMed] [Google Scholar]
  • 31.Heath WR, Karamalis F, Donoghue J, Miller JF. Autoimmunity caused by ignorant CD8+ T cells is transient and depends on avidity. J Immunol. 1995;155:2339–2349. [PubMed] [Google Scholar]
  • 32.Oldstone MBA, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell. 1991;65:319–331. doi: 10.1016/0092-8674(91)90165-u. [DOI] [PubMed] [Google Scholar]
  • 33.Ohashi P, Oehen S, Buerki K, Pircher H, Ohashi C, Odermatt B, Malissen B, Zinkemagel R, Hengartner H. Ablation of tolerance and induction of diabetes by virus infection in viral antigen transgenic mice. Cell. 1991;65:305–317. doi: 10.1016/0092-8674(91)90164-t. [DOI] [PubMed] [Google Scholar]
  • 34.Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type 1 interferon in vivo. Science. 1996;272:1947–1950. doi: 10.1126/science.272.5270.1947. of outstanding interest. [DOI] [PubMed] [Google Scholar]; This article demonstrates that viral infections and IFN secretion can lead to activation of memory cells, which could be implicated in the maintenance of memory as well as induction of autoreactive lymphocytes.
  • 35.Bhardwaj V, Kumar V, Geysen HM, Sercarz EE. Degenerate recognition of a dissimilar antigenic peptide by myelin basic protein-reactive T cells. J Immunol. 1993;151:5000–5010. [PubMed] [Google Scholar]
  • 36.Selin L, Nahill S, Welsh R. Cross-reactivities in memory CTL recognition of heterologous viruses. J Exp Med. 1994;179:1933–1943. doi: 10.1084/jem.179.6.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, MacLaren NK. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest. 1994;94:2125–2129. doi: 10.1172/JCI117567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Albani S, Keystone J, Nelson J, Ollier W, LaCava A, Montemayor A, Weber C, Montecucco A, Martini D, Carson D. Positive selection in autoimmunity: abnormal immune response to a bacterial DNAJ antigenic determinant in patients with early RA. Nat Med. 1995;1:448–452. doi: 10.1038/nm0595-448. [DOI] [PubMed] [Google Scholar]
  • 39.Tuckova L, Tlaskalova M, Farre K, Krashka P, Rossmann P, Kolinska J, Kocna P. Molecular mimicry as a possible cause of autoimmune reactions in celiac diease? Clin Immunol Immunopath. 1995;74:170–176. doi: 10.1006/clin.1995.1025. [DOI] [PubMed] [Google Scholar]
  • 40.Notkins AL, Yoon JW. Virus induced diabetes mellitus. In: Notkins A, Oldstone M, editors. Springer Verlag; New York: 1984. pp. 241–247. (Concepts in Viral Pathogenesis). [Google Scholar]
  • 41.Shrinivasappa J, Saegusa J, Prabhakar B, Gentry M, Buchmeier M, Wiktor T, Koprowski H, Olstone M, Notkins A. Molecular mimicry: frequency of reactivity of monocional antiviral antibodies with normal tissues. J Virol. 1986;57:397–401. doi: 10.1128/jvi.57.1.397-401.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sorbel RA. The pathology of multiple sclerosis. J Virol. 1995;13:1–21. [PubMed] [Google Scholar]
  • 43.Hollsberg P, Hafler DA. What is the pathogenesis of human T-cell lymphotropic virus type I-associated myelopathy/tropical spastic peraparesis? Ann Neurol. 1995;37:143–145. doi: 10.1002/ana.410370203. [DOI] [PubMed] [Google Scholar]
  • 44.Banki K, Colombo E, Sia F, Halladay D, Mattson DH, Tatum AH, Massa PT, Phillips PE, Perl A. Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis. J Exp Med. 1994;180:1649–1663. doi: 10.1084/jem.180.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Wagner B, Vierhapper H, Hofmann H. Prevalence of hepatitis C virus infection in Hashimoto's thyroiditis. BMJ. 1996;312:640–641. doi: 10.1136/bmj.312.7031.640b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Lawson CM, O'Donoghue HL, Reed WD. Mouse cytomegalovirus infection induces antibodies which cross-react with virus and cardiac myosin: a model for the study of molecular mimicry in the pathogenesis of viral myocarditis. Immunology. 1992;75:513–519. [PMC free article] [PubMed] [Google Scholar]
  • 47.Di Marzo Veronese F, Arnott D, Bamaba V, Loftus DJ, Sakaguchi K, Thompson CB, Salemi S, Mastroianni C, Sette A, Shabanowitz J. Autoreactive cytotoxic T lymphocytes in human immunodeficiency virus type 1-infected subjects. J Exp Med. 1996;183:2509–2516. doi: 10.1084/jem.183.6.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Talbot JP, Paquette JS, Ouellet F, Antel JP. T cells cross-reactive to myelin basic protein and human respiratory coronavirus 229E in multiple sclerosis patients. Neurology. 1995;45:1383–1384. doi: 10.1002/ana.410390213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Talbot JP, Paquette JS, Ciurli C, Antel JP, Ouellet F. Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Ann Neurol. 1996;39:233–240. doi: 10.1002/ana.410390213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Oldstone MBA, Lewicki H, Borrow P, Hudrisier D, Gairin JE. Discriminated selection among viral peptides with the appropriate anchor residues: implications for the size of the cytotoxic T-lymphocyte repertoire and control of viral infection. J Virol. 1995;69:7423–7429. doi: 10.1128/jvi.69.12.7423-7429.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Hudrisier D, Mazarguil H, Laval F, Oldstone MBA, Gairin JE. Selection and presentation of viral antigens by major histocompatibility complex H-2Db molecules are restricted by dominant negative elements at peptide non-anchor residues. J Biol Chem. 1996;271:17829–17836. doi: 10.1074/jbc.271.30.17829. of outstanding interest. [DOI] [PubMed] [Google Scholar]; This study shows that, although there exists a large variety of viral peptides with the correct MHC binding motif, only very few can be presented by APCs. This is a consequence of the influence of nonanchoring residues.
  • 52.Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, Balish E, Hammer RE. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–2364. doi: 10.1084/jem.180.6.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993;72:551–560. doi: 10.1016/0092-8674(93)90074-z. [DOI] [PubMed] [Google Scholar]
  • 54.Morgan D, Liblau R, Scott B, Fleck S, McDevitt HO, Sarfetnick N, Lo D, Sherman L. CD8+ T cell-mediated spontaneous diabetes in neonatal mice. J Immunol. 1996;157:978–984. of special interest. [PubMed] [Google Scholar]; The authors demonstrate that transgenic mice that express influenza hemaglutinin (HA) in their β-cells and are normally tolerant to the transgene, all develop spontaneous diabetes, when the number of autoreactive T cells is increased by mating these mice to TCR transgenic mice bearing a TCR specific for HA.
  • 55.Von Herrath MG, Dockter J, Oldstone MBA. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity. 1994;1:231–242. doi: 10.1016/1074-7613(94)90101-5. [DOI] [PubMed] [Google Scholar]
  • 56.Kagi D, Odermatt B, Ohashi PS, Zinkemagel RM, Hengartner H. Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med. 1996;183:2143–2150. doi: 10.1084/jem.183.5.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Von Herrath MG, Dockter J, Nerenberg M, Gairin JE, Oldstone MBA. Thymic selection and adaptability of cytotoxic T lymphocyte responses in transgenic mice expressing a viral protein in the thymus. J Exp Med. 1994;180:1901–1910. doi: 10.1084/jem.180.5.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Tishon A, Lewicki H, Rall G, Von Herrath MG, Oldstone MBA. An essential role for type 1 interferon-γ in terminating persistent viral infection. Virology. 1995;212:244–250. doi: 10.1006/viro.1995.1477. [DOI] [PubMed] [Google Scholar]
  • 59.Matloubian M, Concepcion RJ, Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol. 1994;68:8056–8063. doi: 10.1128/jvi.68.12.8056-8063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Von Herrath MG, Yokoyama M, Dockter J, Oldstone MBA, Whitton JL. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol. 1996;70:1072–1079. doi: 10.1128/jvi.70.2.1072-1079.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Von Herrath MG, Guerder S, Lewicki H, Flavell R, Oldstone MBA. Coexpression of B7.1 and viral (self) transgenes in pancreatic β-cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity. 1995;3:727–738. doi: 10.1016/1074-7613(95)90062-4. of outstanding interest. [DOI] [PubMed] [Google Scholar]; This article provides evidence from the RIP-LCMV model for the regulatory role of cytokines in the pathogenesis of IDDM. Furthermore, the correlation between numbers of autoreactive lymphocytes and the incidence of virus-induced IDDM is demonstrated.
  • 62.Lau L, Jamieson BD, Somasundaram T, Ahmed R. CTL memory without antigen. Nature. 1994;369:648–652. doi: 10.1038/369648a0. [DOI] [PubMed] [Google Scholar]
  • 63.Guerder S, Picarella DE, Linsley PS, Flavell RA. Costimulator B7-1 confers antigen-presenting-cell function to parenchymal tissue and in conjunction with tumor necrosis factor a leads to autoimmunity in transgenic mice. Proc Natl Acad Sci USA. 1994;91:5138–5142. doi: 10.1073/pnas.91.11.5138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ohashi P, Oehen S, Aichele P, Pircher H, Odermatt B, Herrera P, Higuchi Y, Buerki K, Hengartner H, Zinkemagel RM. Induction of diabetes is influenced by the infectious virus and local expression of MHC class I and TNF-alpha. J Immunol. 1993;150:319–331. [PubMed] [Google Scholar]
  • 65.Charlton B, Lafferty KJ. The Th1/Th2 balance in autoimmunity. Curr Opin Immunol. 1995;7:793–798. doi: 10.1016/0952-7915(95)80050-6. [DOI] [PubMed] [Google Scholar]
  • 66.Lee MS, Von Herrath M, Reiser H, Oldstone MBA, Sarvetnick N. Sensitization to self antigens by in situ expression of interferon-γ. J Clin Invest. 1995;95:486–492. doi: 10.1172/JCI117689. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; This article shows that local inflammation induced by a cytokine such as interferon-γ can lead to the spontaneous activation of autoreactive lymphocytes and autoimmune disease (IDDM).
  • 67.Von Herrath M, Allison J, Miller JFAP, Oldstone MBA. Focal expression of IL-2 does not break unresponsiveness to ‘self’ (viral) antigen expressed in β-cells but enhances development of autoimmune disease (diabetes) after initiation of an anti-self immune response. J Clin Invest. 1995;95:477–485. doi: 10.1172/JCI117688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Myung-Shik L, Von Herrath MG, Sawyer S, Arnush M, Krahl T, Oldstone MBA, Sarvetnick N. TGF-β fails to inhibit allograft rejection in transgenic mice. Transplantation. 1996;7:1–10. doi: 10.1097/00007890-199604150-00022. [DOI] [PubMed] [Google Scholar]
  • 69.Mueller RT, Sarvetnick N. Pancreatic expression of IL-4 abrogates insulitis and diabetes in NOD mice. J Exp Med. 1996 doi: 10.1084/jem.184.3.1093. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; This is the first demonstration that by using localized cytokine expression autoreactivity can be diverted and autoimmunity prevented.
  • 70.Panina-Bordignon P, Lang R, Van Endert PM, Benazzi E, Felix AM, Pastore RM, Spinas GA, Sinigaglia F. Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med. 1995;181:1923–1927. doi: 10.1084/jem.181.5.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993;362:758–761. doi: 10.1038/362758a0. [DOI] [PubMed] [Google Scholar]
  • 72.Von Herrath MG, Dyrberg T, Oldstone MBA. Oral insulin treatment prevents virus-induced IDDM. J Clin Invest. 1996;98:1324–1331. doi: 10.1172/JCI118919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Fruh K, Kwangseog A, Peterson PA. Inhibition of MHC class I antigen presentation by viral proteins. Mol Med. 1996 doi: 10.1007/s001090050082. in press. [DOI] [PubMed] [Google Scholar]

Articles from Current Opinion in Immunology are provided here courtesy of Elsevier

RESOURCES