Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Jan 2;39(3):177–187. doi: 10.1016/0198-8859(94)90258-5

Analysis of overlapping T- and B-Cell antigenic sites on rubella virus E1 envelope protein influence of HLA-DR4 polymorphism on T-cell clonal recognition

Dawei Ou a, Leslie Ann Mitchell a,b,, Margaret Ho a, Diane Décarie a, Aubrey J Tingle a,b, Gerald T Nepom c, Martial Lacroix d, Maan Zrein d
PMCID: PMC7135096  PMID: 7517931

Abstract

A CTL antigenic site located between residues 273 and 291 of the E1 envelope protein of RV was identified by 51Cr-release assays employing SPs. Two E1-specific CTL clones were examined for immune recognition of RV wild-type and attenuated vaccine strains and recombinant E1 protein. The exact sequence (273–284) recognized by both clones was delineated by using truncated and overlapping SPs covering these residues. The defined T-cell site overlapped almost completely with a virus neutralizing antibody-binding site previously identified with mouse monoclonal and human antibodies. A series of single aa-substituted SP analogues of E1(273–284) was used to define residues critical for T-cell recognition. Using EBV-Bl displaying different HLA-DR haplotypes and -DR4 subtypes as targets to determine MHC class II restriction elements, immune recognition by both T-cell clones was shown to be associated with HLA-DR4. Three HLA-DR4 subtypes (DR4Dw 13A, DR4Dw13B, and DR4KT2) sharing a common residue, glutamic acid at position 74 in their β 1 chains, were able to present SP E1(273–284) to the T-cell clones.

Abbreviations: aa amino acid, Ag antigen, CTL cytotoxic T lymphocyte, EBV-BL Epstein—Barr virus-transformed B-cell line, FFU focus-forming units, HCL HLA homozygous EBV-BL, HLA human leukocyte antigen, mAb murine monoclonal antibody, MHC major histocompatibility complex, PBMNC peripheral blood mononuclear cell, PCR polymerase chain reaction, RAA RV-associated arthritis, rB1BV recombinant RV E1 protein, rIL2 recombinant interleukin 2, RV rubella virus, SP synthetic peptide, TcR T-cell receptor

References

  • 1.Sandra W.B., Stetler H.C., Preblud S.R., Williams N.N., Orenstein W.A., Bart K.J., Hinman A.R., Herrman K.L. Fetal risk associated with rubella vaccine: an update. Rev Infect Dis. 1985;7:S95. doi: 10.1093/clinids/7.supplement_1.s95. [DOI] [PubMed] [Google Scholar]
  • 2.Perfins F.T. Licensed vaccines. Rev Infect Dis. 1985;7:573. doi: 10.1093/clinids/7.supplement_1.s73. [DOI] [PubMed] [Google Scholar]
  • 3.Chantler J.K., Ford D.K., Tingle A.J. Persistent rubella infection and rubella-associated arthritis. Lancer. 1982;1:1323. doi: 10.1016/s0140-6736(82)92398-4. [DOI] [PubMed] [Google Scholar]
  • 4.Fraser J.R.E., Cunningham A.L., Hayes K., Leach R., Lunt R. Rubella arthritis in adults: isolation of virus, cytology and other aspects of synovial reaction. Clin Exp Rheumatol. 1983;1:287. [PubMed] [Google Scholar]
  • 5.Chantler J.K., DaRoza D.M., Bonnie M.E., Reid G.D., Ford D.K. Sequential studies on synovial lymphocyte stimulation by rubella antigen, and rubella virus isolation in an adult with persistent arthritis [Case report] Ann Rheum Dis. 1985;44:564. doi: 10.1136/ard.44.8.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Milich D.R. Synthetic T and B cell recognition sites: implications for vaccine development. Adv Immunol. 1988;45:195. doi: 10.1016/s0065-2776(08)60694-x. [DOI] [PubMed] [Google Scholar]
  • 7.Fayolle C., Deriaud E., Leclerc C. In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J Immunol. 1991;147:4069. [PubMed] [Google Scholar]
  • 8.Korner H., Schliephake A., Winter J., Zimprich F., Lassmann H., Sedgwick J., Siddell S., Wege H. Nucleocapsid or spike protein-specific CD4+ T lymphocytes protect against coronavirus-induced encephalomyelitis in the absence of CD8+ T cells. J Immunol. 1991;147:2317. [PubMed] [Google Scholar]
  • 9.Berzofsky J.A. Immunodominance of T-cell epitopes: applications to vaccine design. In: Lerner R.A., Ginsberg H., Chanock R.M., Brown F., editors. Vaccines 89: Modern Approaches to New Vaccines Including Prevention of AIDS. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1989. [Google Scholar]
  • 10.Milich D.R., McLachlin A., Thornton G.B., Hughes J.L. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature. 1987;329:547. doi: 10.1038/329547a0. [DOI] [PubMed] [Google Scholar]
  • 11.Clarke D.M., Loo T.W., Hui I., Chong P., Gillam S. Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic messenger RNA encoding the structural proteins E1, E2, and C. Nucleic Acids Res. 1987;15:3041. doi: 10.1093/nar/15.7.3041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Oker-Blom C., Kalkkinen N., Kaariainen L., Pettersson R.F. Rubella virus contain one capsid protein and three envelope glycoprotein, E1, E2a, and E2b. J Virol. 1983;46:964. doi: 10.1128/jvi.46.3.964-973.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chaye H., Chong P., Tripet B., Brush B., Gillam S. Localization of the virus neutralizing and hemagglutinin epitopes of E1 glycoprotein of rubella virus. Virology. 1992;189:483. doi: 10.1016/0042-6822(92)90572-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chaye H., Ou D., Gillam S. Human T and B cell epitopes of E1 glycoprotein of rubella virus. J Clin Immunol. 1993;13:93. doi: 10.1007/BF00919265. [DOI] [PubMed] [Google Scholar]
  • 15.Lozzi L., Rustici M., Corti M., Cusi M.G., Valensin P.E., Bracci L., Santucci A., Soldani P., Spreafico A., Neri P. Structure of rubella E1 glycoprotein epitopes established by multiple peptide synthesis. Arch Virol. 1990;110:271. doi: 10.1007/BF01311295. [DOI] [PubMed] [Google Scholar]
  • 16.Mitchell L.A., Zhang T., Ho M., Décarie D., Tingle A.J., Zrein M., Lacroix M. Characterization of rubella virus-specific antibody responses by using a new synthetic peptide-based enzyme-linked immunosorbent assay. J Clin Microbiol. 1992;30:1841. doi: 10.1128/jcm.30.7.1841-1847.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Terry G.M., Ho-Terry L., Londesborough P., Rees K.R. Localization of rubella E1 epitopes. Arch Virol. 1988;98:189. doi: 10.1007/BF01322168. [DOI] [PubMed] [Google Scholar]
  • 18.Wolinsky J.S., Sukholutsky E., Moore W.T., Lovett A., McCarthy M., Adame B. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain. J Virol. 1993;67:961. doi: 10.1128/jvi.67.2.961-968.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.McCarthy M., Lovett A., Kerman R.H., Overstreet A., Wolinsky J.S. Immunodominant T-cell epitopes of rubella virus structural proteins defined by synthetic peptides. J Virol. 1993;67:673. doi: 10.1128/jvi.67.2.673-681.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ou D., Chong P., Tingle A.J., Gillam S. Mapping T-cell epitope of rubella virus structural proteins E1, E2 and C recognized by T-cells lines and clones derived from infected and immunized populations. J Med Virol. 1993;40:175. doi: 10.1002/jmv.1890400302. [DOI] [PubMed] [Google Scholar]
  • 21.Mitchell L.A., Décarie D., Tingle A.J., Zrein M., Lacroix M. Identification of immunoreactive regions of rubella virus E1 and E2 envelope proteins by using synthetic peptides. Virus Res. 1993;29:33. doi: 10.1016/0168-1702(93)90124-6. [DOI] [PubMed] [Google Scholar]
  • 22.Celis E., Ou D., Otvos L., Jr. Recognition of hepatitis B surface antigen by human T lymphocytes: proliferative and cytotoxic responses to major antigenic determinant defined by synthetic peptides. J Immunol. 1988;140:1808. [PubMed] [Google Scholar]
  • 23.Ou D., Chong P., Choi Y., McVeigh P., Jefferies W.A., Koloitis G., Tingle A.J., Gillam S. Identification of epitopes on E2 protein of rubella virus, as recognized by human CD4+ cytotoxic T-cell clones. J Virol. 1992;66:6788. doi: 10.1128/jvi.66.11.6788-6793.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Ou D., Chong P., Tripet B., Gillam S. Analysis of T- and B-cell epitopes of capsid protein of rubella virus by using synthetic peptide. J Virol. 1992;66:1674. doi: 10.1128/jvi.66.3.1674-1681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ou D., Chong P., McVeigh P., Jefferies W.A., Gillam S. Characterization of the specificity and genetic restriction of human CD4+ cytotoxic T cell clones reactive to capsid antigen of rubella virus. Virology. 1992;191:680. doi: 10.1016/0042-6822(92)90243-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Nepom B.S., Nepom G.T., Mickelson E., Antonelli P., Hansen J.A. 5th ed. Vol. 80. 1983. Electrophoretic analysis of human HLA-DR antigens from HLA-DR4 homozygous cell lines: correlation between β-chain diversity and HLA-D; p. 6962. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Kwok W.W., Lotshaw C., Milner E.C.B., Knitter-Jack N., Nepom G.T. 5th ed. Vol. 86. 1989. Mutational analysis of the HLA-DQ3.2 insulin-dependent diabetes mellitus susceptibility gene; p. 1027. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Marsh S.G.E., Bodmer J.G. HLA class II nucleotide sequences. Hum Immunol. 1992;35:1. doi: 10.1016/0198-8859(92)90090-a. [DOI] [PubMed] [Google Scholar]
  • 29.Nakhasi H.L., Thomas D., Zheng D., Liu T.-Y. Nucleotide sequence of capsid, E2 and E1 protein genes of rubella virus vaccine strain RA27/3. Nucleic Acids Res. 1989;17:4393. doi: 10.1093/nar/17.11.4393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Zheng D., Dickens L., Liu T.-Y., Nakhasi H.L. Nucleotide sequence of the 24S subgenomic messenger RNA of a vaccine strain (HPV77) of rubella virus: comparison with a wild-type strain (M33) Gene. 1989;82:343. doi: 10.1016/0378-1119(89)90061-9. [DOI] [PubMed] [Google Scholar]
  • 31.Hioe C.E., Dybdahl-Sissoko N., Philpott M., Hinshaw V.S. Overlapping cytotoxic T-lymphocytes and B-cell antigen sites on the influenza virus H5 hemagglutinin. J Virol. 1990;64:6246. doi: 10.1128/jvi.64.12.6246-6251.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Rothbard J.B., Taylor W.R. A sequence pattern common to T cell epitopes. EMBO J. 1988;7:93. doi: 10.1002/j.1460-2075.1988.tb02787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Rothbard J.B., Gefter M.L. Interactions between immunogenic peptides and MHC proteins. Annu Rev Immunol. 1991;9:527. doi: 10.1146/annurev.iy.09.040191.002523. [DOI] [PubMed] [Google Scholar]
  • 34.De Lisi C., Berzofsky J.A. 5th ed. Vol. 82. 1985. T-cell antigenic sites tend to be amphipathic structures; p. 7048. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Gregersen P.K., Shen M., Song Q.-L., Merryman P., Degar S., Seki T., Maccari J., Goldberg D., Murphy H., Schwenzer J., Wang C.Y., Winchester R.J., Nepom G.T., Silver J. 5th ed. Vol. 83. 1986. Molecular diversity of HLA-DR4 haplotypes; p. 2642. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Mickelson E.M., Masewicz S., Smith A., Petersdorf E., Nepom G.T., Martin P.J., Hansen J.A. T-cell clones identify three distinct epitopes associated with HLA-Dw14. Hum Immunol. 1991;32:229. doi: 10.1016/0198-8859(91)90060-m. [DOI] [PubMed] [Google Scholar]
  • 37.Rees A.D.M., Lombardi G., Scoging A., Barber L., Mitchell D., Lamb J., Lechler R. Functional evidence for the recognition of endogenous peptides by autoreactive T cell clones. Int Immunol. 1989;1:624. doi: 10.1093/intimm/1.6.624. [DOI] [PubMed] [Google Scholar]
  • 38.Carreno B.M., Turner R.V., Biddison W.E., Coligan J.E. Overlapping epitopes that are recognized by CD8+ HLA class I-restricted and CD4+ class II-restricted cytotoxic T lymphocytes are contained within an influenza nucleoprotein peptide. J Immunol. 1992;148:894. [PubMed] [Google Scholar]
  • 39.Hill C.M., Hayball J.D., Allison A.A., Rothbard J.B. Conformational and structural characteristics of peptide binding to HLA-DR molecules. J Immunol. 1991;147:189. [PubMed] [Google Scholar]
  • 40.O'Sullivan D., Sidney J., del Guercio M.F., Colon S.M., Sette A. Truncation analysis of several DR binding epitopes. J Immunol. 1991;146:1240. [PubMed] [Google Scholar]
  • 41.O'Sullivan D., Arrhenius T., Sidney J., del Guercio M.F., Albertson M., Wall M., Oseroff C., Southwood S., Colon S.M., Gaeta F.C.A., Sette A. On the interaction of promiscuous antigenic peptides with different DR alleles: identification of common structural motifs. J Immunol. 1991;147:2663. [PubMed] [Google Scholar]
  • 42.Nepom G.T., Ehrlich H. MHC class II molecules and autoimmunity. Annu Rev Immunol. 1991;9:493. doi: 10.1146/annurev.iy.09.040191.002425. [DOI] [PubMed] [Google Scholar]
  • 43.Maksymowych W.P., Gabriel C.A., Luyrink L. Polymorphism in a T-cell receptor variable gene is associated with susceptibility to a juvenile arthritis subset. Immunogenetics. 1992;35:257. doi: 10.1007/BF00166831. [DOI] [PubMed] [Google Scholar]
  • 44.Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985;314:537. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]

Articles from Human Immunology are provided here courtesy of Elsevier

RESOURCES