Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2000 Jan 19;2(1):1–15. doi: 10.1016/0929-1393(94)00039-A

Pathogens in livestock waste, their potential for movement through soil and environmental pollution

Jane L Mawdsley a,, Richard D Bardgett a, Roger J Merry a, Brian F Pain b, Michael K Theodorou a
PMCID: PMC7135449  PMID: 32288277

Abstract

Livestock wastes contain many pathogenic microorganisms including bacteria, viruses and protozoa. Following the application of these wastes to land the potential exists for environmental contamination. Plants, soil and ultimately water courses which may subsequently be used as catchments for public water supplies may all be affected. Research attention is now being focused on this possibility, especially in the case of protozoan pathogens which may be the most important as they are often resistant to current methods used in public water treatment. In this review we highlight some of the many factors that are likely to influence the degree of pollution by their effect on both the vertical and horizontal transport of microorganisms through soil. Soil pH, temperature, the presence of plants, microbial surface properties, type of waste, soil type and soil water content and flow may all affect the rate and extent of vertical transport, with the latter two generally considered to be the most important. Lateral movement is a particular problem in soils with impermeable substrata or in waterlogged conditions and in these cases the major factors affecting movement include rainfall rate, topography of the land and the rate at which microorganisms partition into the runoff.

Keywords: Livestock waste, Movement, Pathogens, Pollution, Soil

References

  1. Adam R.D. The biology of Giardia spp. Microbiol. Rev. 1991;55:706–732. doi: 10.1128/mr.55.4.706-732.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angus K.W. Cryptosporidiosis in Ruminants. In: Dubey J.P., Speer C.A., Fayer R., editors. Cryptosporidiosis of Man and Animals. CRC Press; Boca Raton, FL: 1990. pp. 83–103. [Google Scholar]
  3. Barcina I., Gonzalez J.M., Iriberri J., Egea L. Survival strategies of Escherichia coli and Enterococcus faecalis in illuminated fresh and marine systems. J. Appl. Bacteriall. 1990;68:189–198. doi: 10.1111/j.1365-2672.1990.tb02565.x. [DOI] [PubMed] [Google Scholar]
  4. Bashan Y. Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in soil. J. Gen. Microbiol. 1986;132:3407–3414. [Google Scholar]
  5. Bashan Y., Levanony H., Whitmoyer R.E. Root surface colonization of non-cereal crop plants by pleomorphic Azospi-rillum brasilense. J. Gen. Microbiol. 1991;137:187–196. [Google Scholar]
  6. Baxter-Potter W.R., Gilliland M.W. Bacterial pollution in runoff from agricultural lands. J. Environ. Qual. 1988;17:27–33. [Google Scholar]
  7. Bentjen S.A., Fredrickson J.K., van Voris P., Li S.W. Intact soil microcosms for evaluating the fate and ecological impact of the release of genetically engineered microorganisms. Appl. Environ. Microbiol. 1989;55:198–202. doi: 10.1128/aem.55.1.198-202.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bitton G. Adsorption of viruses onto surfaces in soil and water. Water Res. 1975;9:473–484. [Google Scholar]
  9. Bitton G., Lahav N., Henis Y. Movement and retention of Klebsiella aerogenes in soil columns. Plant Soil. 1974;40:373–380. [Google Scholar]
  10. Bitton G., Davidson J.M., Farrah S.R. On the value of soil columns for assessing the transport pattern of viruses through soils: a critical outlook. Water Air Soil Pollut. 1979;12:449–457. [Google Scholar]
  11. Bolton H., Fredrickson J.K., Bentjen S.A., Workman D.J., Li S.W., Thomas J.M. Field calibration of soil-core microcosms: Fate of a genetically altered rhizobacterium. Microb. Ecol. 1991;21:163–173. doi: 10.1007/BF02539151. [DOI] [PubMed] [Google Scholar]
  12. Burge W.G., Enkiri N.K. Virus adsorption by five soils. J. Environ. Qual. 1978;7:73–76. [Google Scholar]
  13. Burns R.G. Experimental models in the study of soil microbiology. In: Wimpenny J.W.T., editor. Vol II. CRC Press; Boca Raton, FL: 1988. pp. 51–98. (CRC Handbook of Laboratory Model Systems for Microbial Ecosystems). [Google Scholar]
  14. Burrows M.R., Rankin J.D. A further examination of the survival of pathogenic bacteria in cattle slurry. Br. Vet. J. 1970;126:32–34. [PubMed] [Google Scholar]
  15. Campbell A.T., Robertson L.J., Smith H.V. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl. Environ. Microbiol. 1992;58:3488–3493. doi: 10.1128/aem.58.11.3488-3493.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Carlson G.F., Woodward F.E., Wentworth D.F., Sproul O.J. Virus inactivation on clay particles in natural waters. J. Water Pollut. Control. 1968;40:R89–R106. [PubMed] [Google Scholar]
  17. Casemore D.P. Cryptosporidium and Giardia. In: Caul E.O., editor. Immunofluorescence, Antigen Detection Techniques in Diagnostic Microbiology. Public Health Laboratory Service; London: 1992. pp. 163–184. [Google Scholar]
  18. Catlow H.Y., Glenn A.R., Dilworth M.J. The use of transposon induced non-motile mutants in assessing the significance of motility of Rhizobium leguminosarum biovar trifolii for movement in soils. Soil Biol. Biochem. 1990;22:331–336. [Google Scholar]
  19. Clegg F.G., Chiejina S.N., Duncan A.L., Kay R.N., Wray C. Outbreaks of Salmonella newport infection in dairy herds and their relationship to management and contamination of the environment. Vet. Rec. 1983;112:580–584. doi: 10.1136/vr.112.25.580. [DOI] [PubMed] [Google Scholar]
  20. Clinton N.A., Weaver R.W., Zibilske L.M., Hidalgo R.J. Incidence of Salmonellae in feedlot manure. J. Environ. Qual. 1979;8:480–481. [Google Scholar]
  21. Couillard D., Li J.F. Assessment of manure-application effects upon the run-off water quality by algal assays and chemical analyses. Environ. Pollut. 1993;80:273–279. doi: 10.1016/0269-7491(93)90048-s. [DOI] [PubMed] [Google Scholar]
  22. Culley J.L.B., Phillips P.A. Bacteriological quality of surface and subsurface runoff from manured sandy clay loam soil. J. Environ. Qual. 1982;11:155–158. [Google Scholar]
  23. Current W.L. Cryptosporidium: Its biology and potential for environmental transmission. CRC Crit. Rev. Environ. Control. 1987;17:21–51. [Google Scholar]
  24. De Mot R., Joos H., van Gool A., Vanderleyden J. Colonization of wheat roots by Pseudomonas fluorescens: scanning electron microscopy and biochemical analysis. In: Keister D.L., Cregan P.B., editors. The Rhizospbere and Plant Growth. Kluwer; Netherlands: 1991. p. 116. [Google Scholar]
  25. De Regnier D.P., Cole L., Schupp D.G., Erlandsen S.L. Viability of Giardia cysts suspended in lake, river and tap water. Appl. Environ. Microbiol. 1989;55:1223–1229. doi: 10.1128/aem.55.5.1223-1229.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Deng M.Y., Cliver D.O. Degradation of Giardia lamblia cysts in mixed human and swine wastes. Appl. Environ. Microbiol. 1992;58:2368–2374. doi: 10.1128/aem.58.8.2368-2374.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dizer H., Nasser A., Lopez J.M. Penetration of different human pathogenic viruses into sand columns percolated with distilled water, groundwater, or wastewater. Appl. Environ. Microbiol. 1984;47:409–415. doi: 10.1128/aem.47.2.409-415.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Doran J.W., Linn D.M. Bacteriological quality of runoff water from pastureland. Appl. Environ. Microbiol. 1979;37:985–991. doi: 10.1128/aem.37.5.985-991.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Duboise S.M., Moore B.E., Sagik B.P. Poliovirus survival and movement in a sandy forest soil. Appl. Environ. Microbiol. 1976;31:536–543. doi: 10.1128/aem.31.4.536-543.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Dunigan E.P., Dick R.P. Nutrient and coliform losses in runoff from fertilized and sewage sludge treated soil. J. Environ. Qual. 1980;9:243–250. [Google Scholar]
  31. Elliott L.F., Ellis J.R. Bacterial and viral pathogens associated with land application of organic wastes. J. Environ. Qual. 1977;6:245–251. [Google Scholar]
  32. Evans M.R., Owens J.D. Factors affecting the concentration of faecal bacteria in land-drainage water. J. Gen. Microbiol. 1972;71:477–485. doi: 10.1099/00221287-71-3-477. [DOI] [PubMed] [Google Scholar]
  33. Fernandez-Alvarez R.M., Carballo-Cuervo S., de la Rosa-Jorge M.C., Rodriguez-de Lecea J. The influence of agricultural runoff on bacterial populations in a river. J. Appl. Bacteriol. 1991;70:437–442. doi: 10.1111/j.1365-2672.1991.tb02961.x. [DOI] [PubMed] [Google Scholar]
  34. Finch G.R., Black E.X., Gyurek L., Belosevic M. Ozone inactivation of Cryptosporidium parvum in demand free phosphate buffer determined by in vitro excystation and animal infectivity. Appl. Environ. Microbiol. 1993;59:4203–4210. doi: 10.1128/aem.59.12.4203-4210.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Finch G.R., Black E.X., Labatiuk C.W., Gyurek L., Belosevic M. Comparison of Giardia lamblia and Giardia muris cyst inactivation by ozone. Appl. Environ. Microbiol. 1993;59:3674–3680. doi: 10.1128/aem.59.11.3674-3680.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Findlay C.R. The persistence of Salmonella dublin in slurry in tanks and on pasture. Vet. Rec. 1972;91:233–235. doi: 10.1136/vr.91.10.233. [DOI] [PubMed] [Google Scholar]
  37. Flint K.P. The long term survival of Escherichia coli in river water. J. Appl. Bacteriol. 1987;63:261–270. doi: 10.1111/j.1365-2672.1987.tb04945.x. [DOI] [PubMed] [Google Scholar]
  38. Frankenberger W.T., Jr. Fate of wastewater constituents in soil and groundwater: pathogens. In: Pettygrove G.S., Asano T., editors. Lewis Publishers; CA: 1986. pp. 1–25. (Irrigation with Reclaimed Municipal Wastewater- A Guidance Manual). [Google Scholar]
  39. Gamliel A., Katan J. Chemotaxis of fluorescent pseudomonads towards seed exudates and germinating seeds in solarized soil. Phytopathology. 1992;82:328–332. [Google Scholar]
  40. Gannon J.T., Manilal V.B., Alexander M. Relationship between cell surface properties and transport of bacteria through soil. Appl. Environ. Microbiol. 1991;57:190–193. doi: 10.1128/aem.57.1.190-193.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Griffin D.M. Water Potential Relations in Soil Microbiology. Soil Sci. Soc. Am; Madison, WI: 1981. Water potential as a selective factor in the microbial ecology of soils; pp. 141–151. (Soil Sci. Soc. Am. Spec. Publ. No. 9). [Google Scholar]
  42. Griffin D.M., Quail G. Movement of bacteria in moist, particulate systems. Aust. J. Biol. Sci. 1968;21:579–582. doi: 10.1071/bi9680579. [DOI] [PubMed] [Google Scholar]
  43. Grimason A.M., Smith H.V., Smith P.G., Jackson M.E., Girdwood R.W.A. Waterborne cryptosporidiosis and environmental health. Environ. Health. 1990;1990:228–233. [Google Scholar]
  44. Goyal S.M., Gerba C.P. Comparative adsorption of human enteroviruses, Simian Rotavirus, and selected bacteriophages to soils. Appl. Environ. Microbiol. 1979;38:241–247. doi: 10.1128/aem.38.2.241-247.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Havelaar A.H. General epidemiology of salmonella. In: Blockn J.C., Havelaar A.H., L'Hermite P., editors. Epidemiological Studies of Risks Associated with the Agricultural Use of Sewage Sludge: Knowledge and Needs. Elsevier Applied Science; London: 1986. pp. 15–20. [Google Scholar]
  46. Henry D.P. Microbial principles in the utilization of animal waste from intensive animal production. In: Woolcock J.B., editor. Microbiology of Animals and Animal Products. Elsevier; Amsterdam: 1991. pp. 233–248. (World Animal Science A6). [Google Scholar]
  47. Hinton M., Bale M.J. Vol. 70. 1991. Bacterial pathogens in domesticated animals and their environment; pp. 81S–90S. (J. Appl. Bacteriol. Symp. Suppl.). [PubMed] [Google Scholar]
  48. Hooper R.S. The recovery of Salmonella dublin from rivers in Angelsea. Vet. Rec. 1970;87:583–586. doi: 10.1136/vr.87.19.583. [DOI] [PubMed] [Google Scholar]
  49. Howie W.J., Cook R.J., Weller D.M. Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology. 1987;77:286–292. [Google Scholar]
  50. Hozore E., Alexander M. Bacterial characteristics important to rhizosphere competence. Soil Biol. Biochem. 1991;23:717–723. [Google Scholar]
  51. Hurst C.J., Gerba C.P., Cech I. Effects of environmental variables and soil characteristics on virus survival in soil. Appl. Environ. Microbiol. 1980;40:1067–1079. doi: 10.1128/aem.40.6.1067-1079.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Huysman F., Verstraete W. Water facilitated transport of bacteria in unsaturated soil columns: influence of cell surface hydrophobicity and soil properties. Soil Biol. Biochem. 1993;25:83–90. [Google Scholar]
  53. Huysman F., Verstraete W. Water facilitated transport of bacteria in unsaturated soil columns: influence of inoculation and irrigation methods. Soil Biol. Biochem. 1993;25:91–97. [Google Scholar]
  54. Huysman F., Verstraete W. Effect of cell surface characteristics on the adhesion of bacteria to soil particles. Biol. Fertil. Soil. 1993;16:21–26. [Google Scholar]
  55. Issa S., Simmonds L.P., Wood M. Passive movement of chickpea and bean rhizobia through soils. Soil Biol. Biochem. 1993;25:959–965. [Google Scholar]
  56. Jawson M.D., Elliott L.F., Saxton K.E., Fortier D.H. The effect of cattle grazing on indicator bacteria in runoff from a Pacific Northwest Watershed. J. Environ. Qual. 1982;11:621–627. [Google Scholar]
  57. Jones P.W. Disease hazards associated with slurry disposal. Br. Vet. J. 1980;136:529–541. doi: 10.1016/s0007-1935(17)32131-0. [DOI] [PubMed] [Google Scholar]
  58. Jones P.W. Waste and animal health. Public Health Eng. 1982;10:35–39. [Google Scholar]
  59. Jones P.W., Smith G.S., Bew J. The effect of the microflora in cattle slurry on the survival of Salmonella dublin. Br. Vet. J. 1977;133:1–8. [PubMed] [Google Scholar]
  60. Kapikian A.Z., Chanock R.M. Rotaviruses. In: Field M.D., Knipe D.M., Chanock R.M., Melnick J.L., Roizman B., Shope R.E., editors. Virology. Raven Press; New York: 1985. pp. 863–906. [Google Scholar]
  61. Kearney T.E., Larkin M.J., Levett P.N. The effect of slurry storage and anaerobic digestion on survival of pathogenic bacteria. J. Appl. Bacteriol. 1993;74:86–93. doi: 10.1111/j.1365-2672.1993.tb03000.x. [DOI] [PubMed] [Google Scholar]
  62. Kearney T.E., Larkin M.J., Frost J.P., Levett P.N. Survival of pathogenic bacteria during mesophilic anaerobic digestion of animal waste. J. Appl. Bacteriol. 1993;75:215–219. doi: 10.1111/j.1365-2672.1993.tb02768.x. [DOI] [PubMed] [Google Scholar]
  63. Kemp J.S., Paterson E., Gammack S.M., Cresser M.S., Killham K. Leaching of genetically modified Pseudomonas fluorescens through organic soils: Influence of temperature, soil pH, and roots. Biol. Fertil. Soil. 1992;13:218–224. [Google Scholar]
  64. Khaleel R., Reddy R., Overcash M.R. Transport of potential pollutants in runoff water from land areas receiving animal waste: a review. Water Res. 1980;14:421–436. [Google Scholar]
  65. Kibbey H.J., Hagedorn C., McCoy E.L. Use of faecal streptococci as indicators of pollution in soil. Appl. Environ. Microbiol. 1978;35:711–717. doi: 10.1128/aem.35.4.711-717.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Korhonen L.K., Martikainen P.J. Survival of Escherichia coli and Campylobacter jejuni in untreated and filtered lake water. J. Appl. Bacteriol. 1991;71:379–382. doi: 10.1111/j.1365-2672.1991.tb03804.x. [DOI] [PubMed] [Google Scholar]
  67. Labeda D.P., Kang-Chien L., Casida L.E., Jr. Colonization of soil by Arthrobaeter and Pseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy. Appl. Environ. Microbiol. 1976;31:551–561. doi: 10.1128/aem.31.4.551-561.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Lance J.C., Gerba C.P. Poliovirus movement during high rate land filtration of sewage water. J. Environ. Qual. 1980;9:31–34. [Google Scholar]
  69. Lance J.C., Gerba C.P., Wang D.S. Comparative movement of different Enteroviruses in soil columns. J. Environ. Qual. 1982;11:347–351. [Google Scholar]
  70. Larsen H.E., Munch B. Pathogenic bacteria in extraanimal environments. Ugerskrift fur Jordbrug Selected Res. Rev. 1986;1986:57–66. [Google Scholar]
  71. Lim C.H., Flint K.P. The effects of nutrients on the survival of Escherichia coli in lake water. J. Appl. Bacterial. 1989;66:559–569. doi: 10.1111/j.1365-2672.1989.tb04578.x. [DOI] [PubMed] [Google Scholar]
  72. Linton A.H., Hinton M.H. The ecology of antibiotic resistant bacteria in animals and their environment. In: Woodbine M., editor. Anti microbial s and Agriculture. Butterworths; London: 1984. pp. 533–549. [Google Scholar]
  73. Lo S.H., Sproul O.J. Polio-virus adsorption from water onto silicate minerals. Water Res. 1977;11:653–658. [Google Scholar]
  74. Madsen E.L., Alexander M. Transport of Rhizohium and Pseudomonas through soil. Soil Sci. Soc. Am. J. 1982;46:557–560. [Google Scholar]
  75. MAFF Code of good agricultural practice for the protection of water. MAFF Environment Matters 1992. 1992 [Google Scholar]
  76. MAFF Code of good agricultural practice for the protection of air. MAFF Environment Matters 1992. 1992 [Google Scholar]
  77. Mawdsley J.L., Burns R.G. Root colonization by a Flavobacterium sp. and the influence of percolating water. Soil Biol. Biochem. 1994;26:861–870. [Google Scholar]
  78. McCoy E.L., Hagedorn C. Quantitatively tracing bacterial transport in saturated soil systems. Water Air Soil Pollut. 1979;11:467–479. [Google Scholar]
  79. Moore J.A. Predicting the fate and movement of bacteria in agricultural runoff. In: Dodd V.A, Grace D.M., editors. Proc. 11th Int. Cong. Agricultural Engineering; Balkema, Rotterdam; 1989. pp. 311–317. [Google Scholar]
  80. Munch B., Larsen H.E., Aalbaek B. Experimental studies on the survival of pathogenic and indicator bacteria in aerated and non-aerated cattle and pig slurry. Biol. Wastes. 1987;22:49–65. [Google Scholar]
  81. National Rivers Authority The influence of agriculture on the quality of natural waters in England and Wales. The report of the National Rivers Authority, Water Quality Series No. 6. 1992 [Google Scholar]
  82. Opperman M.H., McBain L., Wood M. Movement of cattle slurry through soil by Eisenia foetida (Savigny) Soil Biol. Biochem. 1987;19:741–745. [Google Scholar]
  83. Pancorbo O.C., Evanshen B.G., Campbell W.F., Lambert S., Curtis S.K., Woolley T.W. Infectivity and antigenicity reduction rates of human Rotavirus strain Wa in fresh waters. Appl. Environ. Microbiol. 1987;53:1803–1811. doi: 10.1128/aem.53.8.1803-1811.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Paterson E., Kemp J.S., Gammack S.M., Fitzpatrick E.A., Cresser M.S., Mullins C.E., Killham K. Leaching of genetically-modified Pseudomonas fluorescens through intact soil microcosms - Influence of soil type. Biol. Fertil. Soil. 1993;15:308–314. [Google Scholar]
  85. Patni N.K., Toxopeus H.R., Jui P.Y. Bacterial quality of runoff from manured and non-manured cropland. Trans. ASAE. 1985;28:1871–1877. [Google Scholar]
  86. Patni N.K., Toxopeus R., Tennant A.D., Hore F.R. Bacterial quality of tile drainage water from manured and fertilized cropland. Water Res. 1984;18:127–132. [Google Scholar]
  87. Pedersen J.C., Hendriksen N.B. Effect of passage through the intestinal tract of detritivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria. Biol. Fertil. Soil. 1993;16:227–232. [Google Scholar]
  88. Postma J., van Veen J.A., Walter S. Influence of different initial soil moisture contents on the distribution and population dynamics of introduced Rhizobiurn leguminosarum biovar trifolii. Soil Biol. Biochem. 1989;21:437–442. [Google Scholar]
  89. Rahe T.M., Hagedorn C., McCoy E.L., Kling G.F. Transport of antibiotic-resistant Escherichia coli through western Oregon hillslope soils under conditions of saturated flow. J. Environ. Qual. 1978;7:487–494. [Google Scholar]
  90. Rankin J.D., Taylor R.J. A study of some disease hazards which could be associated with the system of applying cattle slurry on pastures. Vet. Rec. 1969;85:587–591. doi: 10.1136/vr.85.21.578. [DOI] [PubMed] [Google Scholar]
  91. Reddy K.R., Khaleel R., Overcash M.R. Behaviour and transport of microbial pathogens and indicator organisms in soils treated with organic wastes. J. Environ. Qual. 1981;10:255–266. [Google Scholar]
  92. Rees Y.J. University of Reading; 1990. A comparison of leachate contamination following application of cattle slurry and dairy washings to soil: a laboratory study. (M.Sc. Thesis). [Google Scholar]
  93. Reynolds D.J., Morgan J.H., Chanter N., Jones P.W., Bridger J.C., Debney T.G., Bunch K.J. Microbiology of calf diarrhoea in southern Britain. Vet. Rec. 1986;119:34–39. doi: 10.1136/vr.119.2.34. [DOI] [PubMed] [Google Scholar]
  94. Robert B., Collard A., Coppe P., Ginter A., Antoine H. Epidemiologie de la cryptosporidiose bovine dans une ferme belge; essai de prevention a I'aide de colostrum. Ann. Med. Vet. 1991;135:441–446. [Google Scholar]
  95. Robertson L.J., Smith H.V. Cryptosporidium and Cryptosporidiosis. Current perspective and present technologies. Eur. Microbiol. 1992;1:20–29. [Google Scholar]
  96. Robertson L.J., Smith H.V., Ongerth J.E. Cryptosporidium and Cryptosporidiosis. Part III: Development of water treatment technologies to remove and inactivate oocysts. Microbiol. Eur. 1994;2:18–26. [Google Scholar]
  97. Rose J.B., Darbin H., Gerba C.P. Correlations of the protozoa, Cryptosporidium and Giardia, with water quality variables in a watershed. Water Sci. Technol. 1988;20:271–276. [Google Scholar]
  98. Rose J.B., de Leon R., Gerba C.P. Giardia and virus monitoring of sewage effluent in the state of Arizona. Water Sci. Technol. 1989;21:43–47. [Google Scholar]
  99. Ruddick S.M., Williams S.T. Studies on the ecology of actinomycetes in soil. V. Some factors influencing the dispersal and adsorption of spores in soil. Soil Biol. Biochem. 1972;4:93–103. [Google Scholar]
  100. Smith H.V. Cryptosporidium and Water: A Review. J. Inst. Water Environ. Manage. 1992;1992:443–451. [Google Scholar]
  101. Smith H.V., Robertson L.J., Campbell A.T. Cryptosporidium and Cryptosporidiosis. Part 11: Future technologies and state-of-the-art research in laboratory detection. Eur. Microbiol. 1993;2:22–29. [Google Scholar]
  102. Smith K.A., Unwin R.J. Proceedings Number 221. The Fertiliser Society; London: 1983. Fertiliser value of organic manures in the U.K. p. 31. [Google Scholar]
  103. Smith M.S., Thomas G.W., White R.E., Ritonga D. Transport of Escherichia coli through intact and disturbed soil columns. J. Environ. Qual. 1985;14:87–91. [Google Scholar]
  104. Stenstrom T.A. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl. Environ. Microbiol. 1989;55:142–147. doi: 10.1128/aem.55.1.142-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Stewart D.J. The survival of Salmonella typhimurium in soils under natural climatic conditions. The Research and Experimental Record of the Ministry of Agriculture, Northern Ireland. 1961;11:53–56. [Google Scholar]
  106. Stotzky G. Activity, ecology and population dynamics of micro-organisms in soil. CRC Crit. Rev. Microbiol. 1972;2:59–137. doi: 10.3109/10408417209108383. [DOI] [PubMed] [Google Scholar]
  107. Tan Y., Bond W.J., Rovira A.D., Brisbaine P.G., Griffin D.M. Movement through soil of a biological control agent, Pseudomonas fluorescens. Soil Biol. Biochem. 1991;23:821–825. [Google Scholar]
  108. Taylor R.J., Burrows M.R. The survival of Escherichia coli and Salmonella dublin in slurry on pasture and the infectivity of S. dublin for grazing calves. Br. Vet. J. 1971;127:536–543. doi: 10.1016/s0007-1935(17)37287-1. [DOI] [PubMed] [Google Scholar]
  109. Thomas G.W., Phillips R.E. Consequences of water movement in macropores. J. Environ. Qual. 1979;8:149–152. [Google Scholar]
  110. Thornley S., Bos A.W. Effects of livestock wastes and agricultural drainage on water quality: An Ontario case study. J. Soil Water Conserv. 1985;40:172–175. [Google Scholar]
  111. Trevors J.T., van Elsas J.D., van Overbeek L.S., Starodub M.E. Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl. Environ. Microbiol. 1990;56:401–408. doi: 10.1128/aem.56.2.401-408.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Turpin P.E., Maycroft K.A., Rowlands C.L., Wellington E.M.H. Viable but non-culturable salmonellas in soil. J. Appl. Bacteriol. 1993;74:421–427. doi: 10.1111/j.1365-2672.1993.tb05149.x. [DOI] [PubMed] [Google Scholar]
  113. Ungar B.L.P. Cryptosporidiosis in humans (Homo sapiens) In: Dubey J.P., Speer C.A., Fayer R., editors. Cryptosporidiosis of man and animals. CRC Press; Boca Raton, FL: 1990. pp. 59–82. [Google Scholar]
  114. Van Elsas J.D., Trevors J.T., van Overbeek L.S. Influence of soil properties on the vertical movement of geneticallymarked Pseudomonas fluorescens through large soil microcosms. Biol. Fertil. Soil. 1991;10:249–255. [Google Scholar]
  115. Vesey G., Slade J.S., Fricker C.R. Taking the eye strain out of environmental Cryptosporidium analysis. Lett. Appl. Microbiol. 1991;13:62–65. [Google Scholar]
  116. Vesey G., Slade I.S., Byrne M., Shepherd K., Dennis P.J., Fricker C.R. Routine monitoring of Cryptosporidium oocysts in water using flow cytometry. J. Appl. Bacteriol. 1993;75:87–90. doi: 10.1111/j.1365-2672.1993.tb03413.x. [DOI] [PubMed] [Google Scholar]
  117. Villacorta I., Ares-Mazas E., Lorenzo M.J. Cryptosporidium parvum in cattle, sheep and pigs in Galicia. Vet. Parasitol. 1991;38:249–252. doi: 10.1016/0304-4017(91)90134-h. [DOI] [PubMed] [Google Scholar]
  118. Walker S.E., Mostaghimi S., Dillaha T.A., Woeste F.E. Modelling animal waste management practices: impacts on bacteria levels in runoff from agricultural lands. Trans. ASAE. 1990;33:807–817. [Google Scholar]
  119. Ward R.L., Knowlton R., Stober J., Jakubowski W., Mills T., Graham P., Camann D.E. Effect of wastewater spray irrigation on Rotavirus infection rates in an exposed population. Water Res. 1989;23:1503–1509. [Google Scholar]
  120. Wekerle J. Agricultural use of sewage sludge as a vector for transmission of viral disease. In: Block J.C., Havelaar A.H., L'Hermite P., editors. Epidemiological Studies of Risks Associated with the Agricultural Use of Sewage Sludge: Knowledge and Needs. Elsevier Applied Science; London: 1986. pp. 106–121. [Google Scholar]
  121. Wessendorf J., Lingens F. Effect of culture and soil conditions on survival of Pseudomonas fluorescens R1 in soil. Appl. Microbiol. Biotechnol. 1989;31:97–102. [Google Scholar]
  122. West P.A. Human pathogenic viruses and parasites: emerging pathogens in the water cycle. J. Appl. Bacteriol. Sym. Suppl. 1991;70:107S–114S. [PubMed] [Google Scholar]
  123. White R.E. The influence of macropores on the transport of dissolved and suspended matter through soil. Adv. Soil Sci. 1985;3:95–120. [Google Scholar]
  124. Williams B.M. The survival of pathogens in slurry and the animal health risks from disposal to land. ADAS Quarterly Rev. 1979;32:59–68. [Google Scholar]
  125. WHO . WHO; Geneva: 1979. Human Viruses In Water, Wastewater and Soil. (Report of a WHO Scientific Group, Technical Report Series 639). [PubMed] [Google Scholar]
  126. Wollum A.G., Cassel D.K. Transport of microorganisms in sand columns. Soil Sci. Soc. Am. J. 1978;42:72–76. [Google Scholar]
  127. Wong P.T., Griffin D.M. Bacterial movement at high matric potentials I. In artificial and natural soils. Soil Biol. Biochem. 1976;8:215–218. [Google Scholar]
  128. Worrall V., Roughley R.J. Vertical movement of Rhizobium leguminosarum biovar trifolii in soil as influenced by soil water potential and water flow. Soil Biol. Biochem. 1991;23:485–486. [Google Scholar]
  129. Wray C. Survival and spread of pathogenic bacteria of veterinary importance within the environment. Vet. Bull. 1975;45:543–550. [Google Scholar]
  130. Yeager J.G., O'Brian R.T. Enterovirus inactivation in soil. Appl. Environ. Microbiol. 1979;38:694–701. doi: 10.1128/aem.38.4.694-701.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Young R.A., Huntrods T., Anderson W. Effectiveness of vegetated buffer strips in controlling pollution from feedlot runoff. J. Environ. Qual. 1980;9:483–487. [Google Scholar]
  132. Zibilske L.M., Weaver R.W. Effect of environmental factors on survival of Salmonella typhimurium in soil. J. Environ. Qual. 1978;7:593–597. [Google Scholar]

Articles from Applied Soil Ecology are provided here courtesy of Elsevier

RESOURCES