Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 5;141(4):411–425. doi: 10.1016/0923-2516(90)90042-H

Sequence and analysis of BECV F15 matrix protein

E Savoysky (1), P Boireau (3), C Finance (1), J Laporte (2)
PMCID: PMC7135481  PMID: 1706882

Abstract

Clones from the bovine enteric coronavirus (F15) cDNA library were cloned in pBR322 and sequenced by the method of Sanger and Coulson. This led to the identification of a sequence of 1,300 bases which contained a single open reading frame of 690 bases yielding a protein having properties of the matrix protein (M). It was comprised of 230 amino acids with a molecular weight of 26,376 Da. It was hydrophobic and had a net charge of +8 at neutral pH. Analysis of its secondary structure could not establish a simple transmembrane arrangement of the amino acids. Comparison of its nucleotide sequence with that of BECV Mebus strain showed only a two-base change resulting in a 100% homology between the two amino acid sequences. Furthermore, a very conserved structure of M appeared on comparison with the Dayoff optimal alignment of MHV-A59, MHV-JHM, TGEV, IBV Beaudette and IBV 6/82M amino acid sequences. As the two strains of BECV, F15 and Mebus present some antigenic differences, this led us to reconsider the role of M in viral antigen specificity. A hypothesis is that, as it seems to possess the necessary information on its transmembrane region, it is an ideal candidate for the viral budding process.

Keywords: Coronavirus, Matrix, Protein, Sequencing; Strain BECV F15, Analysis

References

  1. Amersham . Amersh. Internat. Plc; 1984. M13 cloning and sequencing handbook; p. 54. (Doc. Amersham). [Google Scholar]
  2. Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Sequence and topology of a model intracellular membrane protein, E1, glycoprotein from a coronavirus. Nature (Lond.) 1984;308:751–753. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binns M.M., Boursnell M.E.G., Tomley F.M., Brown T.D.K. Nucleotide sequence encoding the membrane protein of the IBV strain 6/82. Nucl. Acids Res. 1986;14:5558. [PMC free article] [PubMed] [Google Scholar]
  4. Birnboim M.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 1979;7:1513–1520. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boireau P., Crucière C., Laporte J. Sequence and analysis of bovine enteric coronavirus F15 genome. — II. Sequence of the gene coding for the glycoprotein S E2; analysis of the predicted structure of the protein. J. gen. Virol. 1990;71:487–492. doi: 10.1099/0022-1317-71-2-487. [DOI] [PubMed] [Google Scholar]
  6. Boursnell M.E.G., Brown T.D.K., Binns M.M. Sequence of the membrane protein gene from avian coronavirus IBV. Virus Res. 1984;1:303–314. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cavanagh D., Davis P.J. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J. gen. Virol. 1988;69:621–629. doi: 10.1099/0022-1317-69-3-621. [DOI] [PubMed] [Google Scholar]
  8. Corpet J. Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 1988;16:10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crucière C., Laporte J. Sequence and analysis of bovine enteritic coronavirus F15 genome. — I. Sequence of the gene coding for the nucleocapsid protein; analysis of the predicted protein. Ann. Inst. Pasteur/Virol. 1988;139:123–138. doi: 10.1016/S0769-2617(88)80012-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deininger P.L. Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Analyt. Biochem. 1983;129:216–223. doi: 10.1016/0003-2697(83)90072-6. [DOI] [PubMed] [Google Scholar]
  11. Gouet P., Contrepois H.C., Dubourguier Y., Riou R., Scherrer R., Laporte J., Vautherot J.F., Cohen J., L'Haridon R. The experimental production of diarrhoea in axenic and gnotobiotic calves with enteropathogenic E. coli, rotavirus, coronavirus and in combinated infections of rotavirus and E. coli. Ann. Rech. Vet. 1978;9:433–440. [PubMed] [Google Scholar]
  12. Hanahan D. In: Glover D.M., editor. vol. 1. IRL Press; Oxford, Washington: 1985. pp. 109–135. (Techniques for transformation of E. coli, in “DNA cloning: a practical approach”). [Google Scholar]
  13. Haymerle H., Herz J., Bressan G.M., Frank R., Stanley K.K. Efficient construction of cDNA librairies in plasmid expression vector using an adaptator strategy. Nucl. Acids Res. 1986;14:8615–8624. doi: 10.1093/nar/14.21.8615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hediger M.A. High resolution preparative gel electrophoresis of DNA fragments and plasmid DNA using a continuous elution apparatus. Analyt. Biochem. 1986;159:280–286. doi: 10.1016/0003-2697(86)90344-1. [DOI] [PubMed] [Google Scholar]
  15. Holmes K.V., Boyle J.F., Williams R.K., Stephensen C.B., Robbins S.G., Bauer E.C., Duchala C.S., Frana M.F., Weismiler D.G., Compton S., McGowan J.J., Sturman L.S. Positive strand RNA viruses. Alan R. Liss, Inc; New York: 1986. Processing of coronavirus proteins and assembly of virion; pp. 339–349. [Google Scholar]
  16. Karpe P.A., Tung F.Y.T., Hogue B.G., Brian D.A., Woods R.D., Wesley R. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology. 1988;165:356–367. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. King B., Brian D.A. Bovine coronavirus structural proteins. J. Virol. 1982;42:700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles. Microbiol. Rev. 1983;47:1–45. doi: 10.1128/mr.47.1.1-45.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lai M.M.C., Baric R.S., Brayton P.R., Stohlman S.A. Vol. 81. 1984. Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus; pp. 3626–3630. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laporte J., Bobulesco P., Rossi F. Une lignée particulièrement sensible à la réplication du coronavirus entéritique bovin: les cellules HTR18. C.R. Acad. Sci. (Paris) (sér. D) 1980;290:623–626. [PubMed] [Google Scholar]
  21. Laporte J., Bobulesco P. Polypeptide structure of bovine enteritic coronavirus: comparison between a wild strain purified from faeces and a HRT18 cell adapted strain. In: Ter Meulen V., editor. Vol. 14. Plenum Press; New York: 1981. pp. 181–184. (Biochemistry and biology of coronaviruses). [DOI] [PubMed] [Google Scholar]
  22. Lapps W., Hogue B.G., Brian D.A. Sequence analysis of bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laude H., Rasschaert D., Huet J.C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. gen. Virol. 1987;68:1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
  24. Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., Van der Zeijst B.A.M., Horzinek M.C., Spaan W.J.M. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsine cleavage site. Virology. 1987;161:179–187. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; New York: 1982. Molecular cloning: a laboratory manual. [Google Scholar]
  26. Mebus C.A., Stair E.L., Rhodes M.B., Twiehaus M.J. Pathology of neonatal calf diarrhea induced by a coronavirus-like agent. Vet. Path. 1973;10:45–64. doi: 10.1177/030098587301000105. [DOI] [PubMed] [Google Scholar]
  27. Niemann H., Geyer R., Klenk H.D., Linder D., Stirm S., Wirth M. The carbohydrates of mouse hepatitis virus MHV-A59: structures of the O-glycosidically linked oligosaccharides of glycoprotein E1. EMBO J. 1984;3:665–670. doi: 10.1002/j.1460-2075.1984.tb01864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pfleiderer M., Skinner M.A., Siddell S.G. Coronavirus MHV-JHM: nucleotide sequence of the mRNA that encodes the membrane protein. Nucl. Acids Res. 1986;14:6338–6339. doi: 10.1093/nar/14.15.6338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Queen C., Korn L.J. A comprehensive sequence analysis program for the IBM personal computer. Nucl. Acids Res. 1984;12:581–599. doi: 10.1093/nar/12.1part2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ralph W., Smith T.F. A modified Chou and Fasman protein structure algorithm. CABIOS. 1987;3:211–216. doi: 10.1093/bioinformatics/3.3.211. [DOI] [PubMed] [Google Scholar]
  31. Rottier P.J., Amstrong J., Meyer D.J. Signal recognition particle-dependent insertion of coronavirus E1, an intracellular membrane glycoprotein. J. biol. Chem. 1985;260:4648–4652. doi: 10.1016/S0021-9258(18)89119-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rottier P.J., Rose J.K. Coronavirus E1 glycoprotein expressed from cDNA localized in the Golgi region. J. Virol. 1987;61:2042–2045. doi: 10.1128/jvi.61.6.2042-2045.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A.R. Vol. 74. 1977. DNA sequencing with chain termination inhibitors; pp. 5463–5467. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Siddell St., Wege H., Ter Meulen V. The structure and replication of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:131–163. doi: 10.1007/978-3-642-68528-6_4. [DOI] [PubMed] [Google Scholar]
  35. Spaan W., Cavanagh D., Horzinek M.C. Review article. Coronaviruses: structure and genome expression. J. gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  36. Sturman L.S., Holmes K.V. The molecular biology of coronaviruses. In: Lauffer M.A., Maramorosch K., editors. Vol. 28. Academic Press; London, New York: 1983. pp. 35–112. (Advances in virus research). [Google Scholar]
  37. Vautherot J.F., Laporte J. Utilisation of monoclonal antibodies for antigenic characterization of coronaviruses. Ann. Rech. Vet. 1983;14:437–444. [PubMed] [Google Scholar]
  38. Vautherot J.F., Laporte J., Madelaine M.F., Bobulesco P., Roseto A. Antigenic and polypeptide structure of bovine enteritic coronavirus as defined by monoclonal antibodies. In: Rottier P.J.M., editor. Molecular Biology and Pathogenesis of Coronaviruses. Plenum Press; New York: 1984. pp. 117–132. [DOI] [PubMed] [Google Scholar]

Articles from Research in Virology are provided here courtesy of Elsevier

RESOURCES