Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Apr 22;1(6):431–438. doi: 10.1016/0896-6273(88)90174-2

The cell biology of the nerve terminal

Regis B Kelly 1
PMCID: PMC7135562  PMID: 2908445

The content is available as a PDF (1,015.6 KB).

References

  1. Arvan P., Castle J.D. Phasic release of newly synthesized proteins in the unstimulated rat exocrine pancreas. J. Cell Biol. 1987;104:243–252. doi: 10.1083/jcb.104.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bahler M., Greengard P. Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature. 1987;326:704–705. doi: 10.1038/326704a0. [DOI] [PubMed] [Google Scholar]
  3. Bixby J.L., Reichardt L.F. The expression of synaptic vesicle antigens at neuromuscular junctions in vitro. J. Neurosci. 1985;5:3070–3080. doi: 10.1523/JNEUROSCI.05-11-03070.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boller K., Vestweber D., Kemler R. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 1985;100:327–332. doi: 10.1083/jcb.100.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breckenridge L.J., Almers W. Vol. 84. 1987. Final steps in exocytosis observed in a cell with giant secretory granules; pp. 1945–1949. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Breckenridge L.J., Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature. 1987;328:814–817. doi: 10.1038/328814a0. [DOI] [PubMed] [Google Scholar]
  7. Brewer P.A., Lynch K. Stimulation-associated changes in frog neuromuscular junctions. A quantitative ultrastructural comparison of rapid-frozen and chemically fixed nerve terminals. Neuroscience. 1986;17:881–895. doi: 10.1016/0306-4522(86)90052-7. [DOI] [PubMed] [Google Scholar]
  8. Broadwell R.D., Balin B.J. Endocytotic and exocytotic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J. Comp. Neurol. 1985;242:632–650. doi: 10.1002/cne.902420410. [DOI] [PubMed] [Google Scholar]
  9. Buckley K.M., Kelly R.B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J. Cell. Biol. 1985;100:1284–1294. doi: 10.1083/jcb.100.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Buckley K.B., Schweitzer E.S., Miljanich G.P., Clift-O'Grady L., Kushner P., Reichardt L.F., Kelly R.B. A synaptic vesicle antigen is restricted to the functional region of the presynaptic plasma membrane. Proc. Natl. Acad. Sci. USA. 1983;80:7342–7347. doi: 10.1073/pnas.80.23.7342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Buckley K.M., Floor E., Kelly R.B. Cloning and sequence analysis of cDNA encoding p38, a major synaptic vesicle protein. J. Cell Biol. 1987;105:2447–2456. doi: 10.1083/jcb.105.6.2447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Burden S.J. The extracellular matrix and subsynaptic sarcoplasm at nerve-muscle synapses. In: Salpeter M.M., editor. The Vertebrate Neuromuscular Junction. Alan R. Liss, Inc; New York: 1987. pp. 163–186. [Google Scholar]
  13. Burgess T.L., Kelly R.B. Constitutive and regulated secretion of proteins. Annu. Rev. Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  14. Burry R.W. Protein synthesis requirement for the formation of synaptic elements. Brain Res. 1985;344:109–119. doi: 10.1016/0006-8993(85)91194-1. [DOI] [PubMed] [Google Scholar]
  15. Burry R.W., Ho R.H., Matthew W.D. Presynaptic elements formed on polylysine-coated beads contain synaptic vesicle antigens. J. Neurocytol. 1986;00:409–416. doi: 10.1007/BF01611725. [DOI] [PubMed] [Google Scholar]
  16. Carlson S.S., Wight T.N. Nerve terminal anchorage protein 1 is a chondroitin sulfate proteoglycan: biochemical and electron microscopic examination. J. Cell Biol. 1987;105:3075–3086. doi: 10.1083/jcb.105.6.3075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Carlson S.S., Caroni P., Kelly R.B. A nerve terminal anchorage protein from electric organ. J. Cell Biol. 1986;103:509–520. doi: 10.1083/jcb.103.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Caroni P., Carlson S.S., Schweitzer E., Kelly R.B. Presynaptic neurons may contribute a unique glycoprotein to the extracellular matrix at the synapse. Nature. 1985;314:441–443. doi: 10.1038/314441a0. [DOI] [PubMed] [Google Scholar]
  19. Cheek T.R., Burgoyne R.D. Cyclic AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion rom bovine adrenal chromaffin cells. J. Biol. Chem. 1987;262:11663–11666. [PubMed] [Google Scholar]
  20. Cockcroft S., Howell T.W., Gomperts B.D. Two G-proteins act in series to control stimulus-secretion coupling in mast cells: use of neomycin to distinguish between G-proteins controlling polyphosphoinositide phosphodiesterase and exocytosis. J. Cell Biol. 1987;105:2745–2750. doi: 10.1083/jcb.105.6.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cohen R.S., Chung S.K., Pfaff D.W. Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell. Mol. Neurobiol. 1985;5:271–284. doi: 10.1007/BF00711012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Duncan J.R., Kornfeld S. Intracellular movement of two manno-6-phosphate receptors: return to the Golgi apparatus. J. Cell Biol. 1988;106:617–628. doi: 10.1083/jcb.106.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Fournier S., Trifaro J.-M. A similar calmodulin-binding protein expressed in chromaffin, synaptic and neurohypophyseal secretory vesicles. J. Neurochem. 1988;50:27–37. doi: 10.1111/j.1471-4159.1988.tb13225.x. [DOI] [PubMed] [Google Scholar]
  24. Gonatas N.K., Steiber A., Hickey W.F., Herbert S.H., Gonatas J.O. Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. J. Cell Biol. 1984;99:1379–1390. doi: 10.1083/jcb.99.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gumbiner B., Kelly R.B. Two distinct intracellular pathways transport secretory and membrane glycoprotems to the surface of pituitary tumor cells. Cell. 1982;28:51–59. doi: 10.1016/0092-8674(82)90374-9. [DOI] [PubMed] [Google Scholar]
  26. Gumbiner B., Simons K. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J. Cell Biol. 1986;102:457–468. doi: 10.1083/jcb.102.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hagn C., Klein R.L., Fischer-Colbrie R., Douglas B.H., Winkler H. An immunological characterization of five common antigens of chromaffin granules and of large dense-cored vesicles of sympathetic nerve. Neurosci. Lett. 1986;67:295–300. doi: 10.1016/0304-3940(86)90325-3. [DOI] [PubMed] [Google Scholar]
  28. Hillman D.E., Chen S. Compensation in the number of presynaptic dense projections and synaptic vesicles in remaining parallel fibres following cerebellar lesions. J. Neurocytol. 1985;14:673–687. doi: 10.1007/BF01200804. [DOI] [PubMed] [Google Scholar]
  29. Hirano S., Nose A., Hatta K., Kawakami A., Takeichi M. Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J. Cell Biol. 1987;105:2501–2510. doi: 10.1083/jcb.105.6.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hirokawa N., Heuser J.E. Internal and external differentiations ofthe presynaptic membrane at the neuromuscular junction. J. Neurocytol. 1982;11:487–510. doi: 10.1007/BF01257990. [DOI] [PubMed] [Google Scholar]
  31. Holcomb C.L., Hansen W.J., Etcheverry T., Schekman R. Secretory vesicles externalize the major plasma membrane ATPase in yeast. J. Cell Biol. 1988;106:641–648. doi: 10.1083/jcb.106.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hollenbeck P.J., Bray D. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth. J. Cell Biol. 1987;105:2827–2835. doi: 10.1083/jcb.105.6.2827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hynes R.O. Integrins: a family of cell surface receptors. Cell. 1987;48:549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  34. Jahn R., Scheibler W., Ouimet C., Greengard P. Vol. 82. 1985. A 38,000-dalton membrane protein (p38) present in synaptic vesicles; pp. 4137–4141. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kordeli E., Cartaud J., Nghiem H.-.O., Pradel L.-A., Dubreuil C., Paulin D., Changeux J.-P. Evidence for a polarity in the distribution of proteins from the cytoskeleton in Torpedo marmorata electrocytes. J. Cell Biol. 1986;102:748–761. doi: 10.1083/jcb.102.3.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Leube R.E., Kaiser P., Seiter A., Zimbelmann R., Franke W.W., Rehm H., Knaus P., Prior P., Betz H., Reinke H., Beyreuther K., Wiedenmann B. Synaptophysin: molecular organization and mRNA expression as determined from cloned cDNA. EMBO J. 1987;6:3261–3268. doi: 10.1002/j.1460-2075.1987.tb02644.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Linstedt A., Kelly R.B. Overcoming barriers to exocytosis. Trends Neurosci. 1987;10:446–448. [Google Scholar]
  38. Lowe A.W., Madeddu L., Kelly R.B. Endocrine secretory granules and neuronal synaptic vesicles have three integral membrane proteins in common. J. Cell Biol. 1988;106:51–59. doi: 10.1083/jcb.106.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mason C.A. Axon development in mouse cerebellum: embryonic axon forms and expression of synapsin I. Neuroscience. 1986;19:1319–1333. doi: 10.1016/0306-4522(86)90146-6. [DOI] [PubMed] [Google Scholar]
  40. Matsuuchi L., Buckley K.M., Lowe A.W., Kelly R.B. Targeting of secretory vesicles to cytoplasmic domains in AtT-20 and PC-12 cells. J. Cell Biol. 1988;106:239–251. doi: 10.1083/jcb.106.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Matthew W.D., Tsavaler L., Reichardt L.F. Identification of a synaptic vesicle specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 1981;91:257–269. doi: 10.1083/jcb.91.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Meldolesi J., Ceccarelli B. Exocytosis and membrane recycling. Phil. Trans. R. Soc. (Lond.) B. 1981;296:55–65. doi: 10.1098/rstb.1981.0171. [DOI] [PubMed] [Google Scholar]
  43. Navone F., Jahn R., Digioia G., Stukenbrok H., Greengard P., DeCamilli P. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J. Cell Biol. 1986;103:2511–2527. doi: 10.1083/jcb.103.6.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nelson W.J., Veshnock P.J. Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 1987;104:1527–1537. doi: 10.1083/jcb.104.6.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nelson W.J., Veshnock P.J. Ankyrin binding to (Na+ + K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature. 1987;328:533–536. doi: 10.1038/328533a0. [DOI] [PubMed] [Google Scholar]
  46. Neuman B., Wiedermann C.J., Fischer-Colbrie R., Schober M., Sperk G., Winkler H. Biochemical and functional properties of large and small dense-core vesicles in sympathetic nerves of rat and ox vas deferens. Neuroscience. 1984;13:921–931. doi: 10.1016/0306-4522(84)90106-4. [DOI] [PubMed] [Google Scholar]
  47. Nitkin R.M., Smith M.A., Magill C., Fallon J.R., Yao Y-.M.M., Wallace B.G., McMahan U.J. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 1987;105:2471–2478. doi: 10.1083/jcb.105.6.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Obata K., Kojima N., Nishiye H., Inoue H., Shirao T., Fujita S.C., Uchizono K. Four synaptic vesicle-specific proteins: identification by monoclonal antibodies and distribution in the nervous tissue and the adrenal medulla. Brain Res. 1987;404:169–179. doi: 10.1016/0006-8993(87)91368-0. [DOI] [PubMed] [Google Scholar]
  49. Orci L., Ravazzola M., Amherdt M., Perrelet A., Powell S.K., Quinn D.L., Moore H.H. The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and plasma membrane proteins. Cell. 1987;51:1039–1051. doi: 10.1016/0092-8674(87)90590-3. [DOI] [PubMed] [Google Scholar]
  50. Patzak A., Winkler H. Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immuno-labeling. J. Cell Biol. 1986;102:510–515. doi: 10.1083/jcb.102.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Petrucci T.C., Morrow J.S. Synapsin I: an actin-bundling protein under phosphorylation control. J. Cell Biol. 1987;105:1355–1363. doi: 10.1083/jcb.105.3.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Propst J.W., Ko C.-P. Correlations between active zone ultrastructure and synaptic function studied with freezefracture of physiologically identified neuromuscular junctions. J. Neurosci. 1987;7:3654–3664. doi: 10.1523/JNEUROSCI.07-11-03654.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rehm H., Wiedenmann B., Betz H. Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J. 1986;5:535–541. doi: 10.1002/j.1460-2075.1986.tb04243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rhodes C.J., Halban P.A. Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive, pathway. J. Cell Biol. 1987;105:145–153. doi: 10.1083/jcb.105.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rhodes C.H., Stieber A., Gonatas N.K. A quantitative electron microscopic study of the intracellular localization of wheat germ agglutinin in retinal neurons. J. Comp. Neurol. 1986;254:287–296. doi: 10.1002/cne.902540303. [DOI] [PubMed] [Google Scholar]
  56. Schwartz G.J., Al-Awqati Q. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J. Clin. Invest. 1985;75:1638–1644. doi: 10.1172/JCI111871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Sealock R., Paschal B., Beckerle M., Burridge K. Talin is a postsynaptic component of the rat neuromuscular junction. Cell Res. 1985;163:143–150. doi: 10.1016/0014-4827(86)90566-5. [DOI] [PubMed] [Google Scholar]
  58. Siegel J.H., Brownell W.E. Synaptic and Golgi membrane recycling in cochlear hair cells. J. Neurocytol. 1986;15:311–328. doi: 10.1007/BF01611434. [DOI] [PubMed] [Google Scholar]
  59. Stadler H., Kiene M.-L. Synaptic vesicles in electromotoneurones. II. Heterogeneity of populations is expressed in uptake properties; exocytosis and insertion of a core proteoglycan into the extracellular matrix. EMBO J. 1987;6:2217–2221. doi: 10.1002/j.1460-2075.1987.tb02493.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sudhof T., Lottspeich F., Greengard P., Mehl E., Jahn R. A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science. 1987;238:1142–1144. doi: 10.1126/science.3120313. [DOI] [PubMed] [Google Scholar]
  61. Tartakoff A.M., Vassalli P., Detraz M. Comparative studies of intracellular transport of secretory proteins. J. Cell Biol. 1978;76:694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tooze J., Burke B. Accumulation of adrenocorticotropin secretory granules in the midbody of telophase AtT20 cells: evidence that secretory granules move anterogradely along microtubules. J. Cell Biol. 1987;104:1047–1057. doi: 10.1083/jcb.104.4.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Tooze J., Tooze S.A., Fuller S.D. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells. J. Cell Biol. 1987;105:1215–1226. doi: 10.1083/jcb.105.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Torri Tarelli F., Haimann C., Ceccarelli B. Coated vesicles and pits during enhanced quantal release of acetylcholine at the neuromuscular junction. J. Neurocytol. 1987;16:205–214. doi: 10.1007/BF01795304. [DOI] [PubMed] [Google Scholar]
  65. Trojanowski J.Q., Schmidt M.L. Interneuronal transfer of axonally transported protein: studies with HRP and HRP conjugates of wheat germ agglutinin, cholera toxin and B subunit of cholera toxin. Brain Res. 1984;311:366–369. doi: 10.1016/0006-8993(84)90102-1. [DOI] [PubMed] [Google Scholar]
  66. Usukura J., Yamada E. Ultrastructure of the synaptic ribbons in photoreceptor cells of Rana catesbeiana revealed by freeze-etching and freeze-substitution. Cell Tissue Res. 1987;247:483–488. doi: 10.1007/BF00215740. [DOI] [PubMed] [Google Scholar]
  67. Walker J.M., Boustead C.M., Witzemann V. Cytoskeletal proteins at the cholinergic synapse: distribution of desmin, actin, fodrin, neurofilaments and tubulin in Torpedo electric organ. Eur. J. Cell Biol. 1985;38:123–133. [PubMed] [Google Scholar]
  68. Westrum L.E., Gray E.G. Vol. 229. 1986. New observations on the substructure of the active zone of brain synapses and motor endplates; pp. 29–38. (Proc. R. Soc. (Lond.) B). [DOI] [PubMed] [Google Scholar]
  69. White J.M., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Quart. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
  70. Wiedenmann B., Franke W.W. Identification and localization of synaptophysin, an integral membrane glycoprotein of M, 38,000 characteristic of presynaptic vesicles. Cell. 1985;41:1017–1028. doi: 10.1016/s0092-8674(85)80082-9. [DOI] [PubMed] [Google Scholar]
  71. Wiley R.G., Spencer C., Pysh J.J. Time course and frequency of dependence of synaptic vesicle depletion and recovery in electrically stimulated sympathetic ganglia. J. Neurocytol. 1987;16:359–372. doi: 10.1007/BF01611347. [DOI] [PubMed] [Google Scholar]
  72. Winkler H., Sietzen M., Schober M. The life cycle of catecholamine-storing vesicles. Ann. N.Y. Acad. Sci. 1987;493:3–19. doi: 10.1111/j.1749-6632.1987.tb27176.x. [DOI] [PubMed] [Google Scholar]
  73. Zhu P.C., Thureson-Klein A., Klein R.L. Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience. 1986;19:43–54. doi: 10.1016/0306-4522(86)90004-7. [DOI] [PubMed] [Google Scholar]
  74. Zimmerberg J., Curran M., Cohen F.S., Brodwick M. Vol. 84. 1987. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells; pp. 1585–1589. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuron are provided here courtesy of Elsevier

RESOURCES