Summary
Porcine peripheral blood mononuclear cells, which secrete IFNα in response to a coronavirus, transmissible gastroenteritis virus, were detected by a filter immunoplaque assay (ELISPOT). IFNα-producing cells (IPC), which are present at a low frequency in the blood, could be enriched up to 100-fold by sequential depletion of plastic-adherent cells and cell fractionation on metrizamide density gradients. IPC were present in the non-adherent low-density cell subpopulation. Cell selection experiments using antibody (Ab)-coated immunomagnetic beads revealed that porcine IPC could be positively selected by anti-CD4 or -SLA-class-II Ab, but not by anti-CD2 or -CD8 Ab. The estimated IFN yield per IPC was found to increase when IPC were assayed at higher concentrations. These data suggest that IPC represent a unique and distinct cell population in the blood, which could secrete higher amounts of IFN following its accumulation at a site of viral infection.
Keywords: Coronavirus, Leukocyte, Interferon alpha, Transmissible gastroenteritis virus, IPC, ELISPOT, Immunobeads, PBMC, mAb
fr
L'enrichissement en leucocytes sanguins producteurs d'interféron après induction par un coronavirus accroît la quantité d'interféron produite par cellule
Les cellules mononucléées du sang périphérique du porc qui sécrètent l'IFNα après induction par le coronavirus de la gastroentérite transmissible, sont détectables par une technique immunoenzymatique sur filtre (ELISPOT). Ces cellules sont très peu fréquentes dans le sang mais ont pu être enrichies par déplétion des cellules adhérentes au plastique suivie d'une séparation cellulaire sur gradient de métrizamide. Les cellules sécrétrices d'IFNα ont été enrichies dans la fraction de faible densité des cellules non adhérentes. Des expériences de sélection des cellules à l'aide de billes magnétiques recouvertes d'anticorps ont montré que ces cellules étaient positivement sélectionnées par des anticorps anti-CD4 ou anti-SLA-classe-II mais non par des anticorps anti-CD2 ou -CD8. La production estimée d'IFN par cellule sécrétrice a augmenté dans les diverses situations où ces cellules se trouvaient être plus concentrées. Ces résultats suggèrent que les cellules sécrétrices d'IFNα représentent une sous-population cellulaire particulière des cellules sanguines, dont la capacité à produire l'IFN pourrait être accrue du fait de leur accumulation aux sites d'infection virale.
Motsclés: Leucocyte, Coronavirus, Interféron alpha, Virus de la gastroentérite transmissible, Cellules productrices d'interféron, ELISPOT, Billes immunomagnétiques, PBMC, Anticorps monoclonaux
References
- Capobianchi M.R., Facchini J., Di Marco P., Antonelli G., Dianzani F. Vol. 178. 1985. Induction of alpha interferon by membrane interaction between viral surface and peripheral blood mononuclear cells; pp. 551–556. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
- Capobianchi M.R., Ankel H., Ameglio F., Paganelli R., Pizzoli P., Dianzani F. Recombinant glycoprotein 120 of human immunodeficiency virus is a potent interferon inducer. AIDS Res. Hum. Retroviruses. 1992;8:575–579. doi: 10.1089/aid.1992.8.575. [DOI] [PubMed] [Google Scholar]
- Cederblad B., Alm G.V. Infrequent but efficient interferon-α-producing human mononuclear leukocytes induced by herpes simplex virus in vitro studied by immuno-plaque and limiting dilution assays. J. Interferon Res. 1990;10:65–73. doi: 10.1089/jir.1990.10.65. [DOI] [PubMed] [Google Scholar]
- Cederblad B., Alm G.V. Interferons and the colony-stimulating factors IL-3 and GM-CSF enhance the IFN-α response in human blood leucocytes induced by herpes simplex virus. Scand. J. Immunol. 1991;34:549–555. doi: 10.1111/j.1365-3083.1991.tb01578.x. [DOI] [PubMed] [Google Scholar]
- Charley B., Laude H. Induction of alpha interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. J. Virol. 1988;62:8–11. doi: 10.1128/jvi.62.1.8-11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charley B., Lavenant L. Characterization of blood mononuclear cells producting IFNα following induction by coronavirus-infected cells (porcine transmissible gastroenteritis virus) Res. Immunol. 1990;141:141–151. doi: 10.1016/0923-2494(90)90133-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charley B., Lavenant L., Delmas B. Glycosylation is required for coronavirus TGEV to induce an efficient production of IFNα by blood mononuclear cells. Scand. J. Immunol. 1991;33:435–440. doi: 10.1111/j.1365-3083.1991.tb01792.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charley B., Laude H. Interactions viruslymphocytes pour la production d'interféron-α. Ann. Rech. Vet. 1992;23:318–322. [PubMed] [Google Scholar]
- Chehimi J., Starr S.E., Kawashima H., Miller D.S., Trinchieri G., Perussia B., Bandyopadhyay S. Dendritic cells and IFN-α-producing cells are two functionally distinct non-B, non-monocytic HLADR+ cell subsets in human peripheral blood. Immunology. 1989;68:486–490. [PMC free article] [PubMed] [Google Scholar]
- Feldman M., Fitzgerald-Bocarsly P. Sequential enrichment and immunocytochemical visualization of human interferon-α-producing cells. J. Interferon Res. 1990;10:435–446. doi: 10.1089/jir.1990.10.435. [DOI] [PubMed] [Google Scholar]
- Fitzgerald-Bocarsly P., Feldman M., Mendelsohn M., Curl S., Lopez C. Human mononuclear cells which produce interferon-alpha during NK (HSV-FS) assays are HLA-DR-positive cells distinct from cytolytic natural killer effectors. J. Leukocyte Biol. 1988;43:323–334. doi: 10.1002/jlb.43.4.323. [DOI] [PubMed] [Google Scholar]
- Gobl A.E., Funa K., Alm G.V. Different induction patterns of mRNA for IFN-α and -β in human mononuclear leukocytes after in vitro stimulation with herpes simplex virus-infected fibroblasts and Sendai virus. J. Immunol. 1988;140:3605–3609. [PubMed] [Google Scholar]
- Ito Y., Aoki H., Kimura Y., Takano M., Shimokata K., Maeno K. Natural interferon-producing cells in mice. Infect. Immun. 1981;31:519–523. doi: 10.1128/iai.31.2.519-523.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito Y., Nishiyama Y., Shimokata K., Takeyama H., Kunii A. Active component of HVJ (Sendai virus) for interferon induction in mice. Nature (Lond.) 1978;274:801–802. doi: 10.1038/274801a0. [DOI] [PubMed] [Google Scholar]
- Knight S.C., Farrant J., Bryant A., Edwards A.J., Burman S., Lever A., Clarke J., Webster A.D.B. Non-adherent, low-density cells from human peripheral blood contain dendritic cells and monocytes, both with veiled morphology. Immunology. 1986;57:595–603. [PMC free article] [PubMed] [Google Scholar]
- Kurane I., Meager A., Ennis F.A. Induction of interferon alpha and gamma from human lymphocytes by Dengue virus-infected cells. J. gen. Virol. 1986;67:1653–1661. doi: 10.1099/0022-1317-67-8-1653. [DOI] [PubMed] [Google Scholar]
- L'Haridon R., Bourget P., Lefèvre F., La Bonnardière C. Production of a hybridoma library to recombinant porcine alpha I interferon: a very sensitive assay (ISBBA) allows the detection of a large number of clones. Hybridoma. 1991;10:35–47. doi: 10.1089/hyb.1991.10.35. [DOI] [PubMed] [Google Scholar]
- La Bonnardière C., Laude H. High interferon titer in newborn pig intestine during experimentally induced viral enteritis. Infect. Immun. 1981;32:28–31. doi: 10.1128/iai.32.1.28-31.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laude H., Gelfi J., Lavenant L., Charley B. Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by coronavirus TGEV. J. Virol. 1992;66:743–749. doi: 10.1128/jvi.66.2.743-749.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebon P. Inhibition of Herpes Simplex virus type 1-induced interferon synthesis by monoclonal antibodies against viral glycoprotein D and by lysosomotropic drugs. J. gen. Virol. 1985;66:2781–2786. doi: 10.1099/0022-1317-66-12-2781. [DOI] [PubMed] [Google Scholar]
- Lebon P., Commoy-Chevalier M.J., Robert-Galliot B., Chany C. Different mechanisms for α and β interferon induction. Virology. 1982;119:504–507. doi: 10.1016/0042-6822(82)90109-x. [DOI] [PubMed] [Google Scholar]
- Lefèvre F., L'Haridon R., Borras-Cuesta F., La Bonnardière C. Production, purification and biological properties of an Escherichia coli-derived recombinant porcine alpha interferon. J. gen. Virol. 1990;71:1057–1063. doi: 10.1099/0022-1317-71-5-1057. [DOI] [PubMed] [Google Scholar]
- Lunney J.K., Pescovitz M.D. Phenotypic and functional characterization of pig lymphocyte populations. Vet. Immunol. Immunopathol. 1987;17:135–144. doi: 10.1016/0165-2427(87)90134-6. [DOI] [PubMed] [Google Scholar]
- Sandberg K., Gobl A.E., Funa K., Alm G.V. Characterization of the blood mononuclear leucocytes producting alpha interferon after stimulation with herpes simplex virus in vitro, by means of combined immunohistochemical staining and in situ RNA-RNA hybridization. Scand. J. Immunol. 1989;29:651–658. doi: 10.1111/j.1365-3083.1989.tb01169.x. [DOI] [PubMed] [Google Scholar]
- Sandberg K., Matsson P., Alm G.V. A distinct population of non-phagocytic and low level CD4+ null lymphocytes produce IFN-α after stimulation by herpes simplex virus-infected cells. J. Immunol. 1990;145:1015–1020. [PubMed] [Google Scholar]
- Stewart W.E., Gosser L.B., Lockhart R.Z. Priming: a non-antiviral function of interferon. J. Virol. 1971;7:792–801. doi: 10.1128/jvi.7.6.792-801.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]