Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Oct 26;148(4):247–256. doi: 10.1016/S0923-2494(97)80866-8

In vivo study of interferon-alpha-secreting cells in pig foetal lymphohaematopoietic organs following in utero TGEV coronavirus injection

L’injection in utero de Coronavirus VGET induit la sécrétion d’interféron alpha dans les organes lymphohématopoïétiques de fœtus de porc

I Šplíchal (1),(*), Z Řeháková (1), M Šinkora (1), J Šinkora (1), I Trebichavský (1), H Laude (2), B Charley (2)
PMCID: PMC7135581  PMID: 9300531

Summary

Non-infectious UV-inactivated transmissible gastroenteritis virus (TGEV) was previously shown to induce interferon alpha (IFIMα) secretion following in vitro incubation with blood mononuclear cells. In this study, pig foetuses at different stages of gestation were injected in utero with (a) partially UV-inactivated wild TGEV or (b) fully UV-inactivated wild or dm49-4 mutant TGEV Coronavirus. Nucleated cells from foetal liver, bone marrow, spleen and blood were isolated 10 or 20 h after injection and assayed ex vivo for IFNα secretion by ELISPOT and ELISA techniques. The administration of TGEV induced IFNα-secreting cells in foetal lymphohaematopoietic organs at mid-gestation. In contrast, IFNα was not detected in control sham-operated foetuses. A specific point mutation in the amino acid sequence of the viral membrane glycoprotein M of TGEV mutant dm49-4 was associated with lower or absent IFNα in utero inducibility by mutant virus as compared with wild virus. Row cytometry analysis did not show differences in leukocyte surface marker expression between control and TGEV- or between dm49-4 and wild virus-treated foetus cells, with the exception of a reduction in percentages of polymorphonuclear cells in TGEV-treated lymphohaematopoietic tissues, which is probably due to IFNα secretion. The present data provided in vivo evidence of IFNα secretion at the cell level in foetal lymphohaematopoietic organs. Such IFNα-secreting cells in lymphohaematopoietic tissues may be the source of IFNα detected during foetal infections.

Keywords: Coronavirus, Transmissible gastroenteritis virus, IFNα, ELISA, ELISPOT, Foetus, Pig

References

  1. Artursson K. Studies on the interferon-α/β system of pigs. Ph.D. thesis, Uppsala. 1993 [Google Scholar]
  2. Capobianchi M.R., Facchini J., Di Marco P., Antonelli G., Dianzani F. Induction of alpha interferon by membrane interaction between viral surface and peripheral blood mononuclear cells. Proc. Soc. Exp. Biol. Med. 1985;178:551–556. doi: 10.3181/00379727-178-42041. [DOI] [PubMed] [Google Scholar]
  3. Cederblad B., Alm G. Infrequent but efficient interferon-α-producing human mononuclear leuko-cytes induced by herpes simplex virus in vitro studied by immunoplaque and limiting dilution assays. J. Interferon Res. 1990;10:65–73. doi: 10.1089/jir.1990.10.65. [DOI] [PubMed] [Google Scholar]
  4. Charley B., Laude H. Induction of alpha interferon by transmissible gastroenteritis Coronavirus: role of transmembrane glycoprotein El. J. Virol. 1988;62:8–11. doi: 10.1128/jvi.62.1.8-11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Charley B., Lavenant L. Characterization of blood mononuclear cells producing IFNα following induction by coronavirus-infected cells (porcine transmissible gastroenteris virus) Res. Immunol. 1990;141:141–151. doi: 10.1016/0923-2494(90)90133-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charley B., Nowacki W., Vaiman M. Frequency of interferon-α-secreting leukocytes in irradiated and bone-marrow-grafted pigs. Vet. Res. 1995;26:292–299. [PubMed] [Google Scholar]
  7. Cukrowska B., Šinkora J., Řeháková Z., Šinkora M., Šplíchal I., Tučková L., Avrameas S., Saalmüller A., Barot-Ciorbaru R., Tlaskalová-Hogenová H. Isotype and antibody specificity of spontaneously formed immunoglobulins in pig fetuses and germ-free piglets: production by CD5− B cells. Immunology. 1996;88:611–617. doi: 10.1046/j.1365-2567.1996.d01-699.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Arce H.D., Artursson K., L’Haridon R., Perers A., Bonnardière C., Alm G.V. A sensitive immunoassay for porcine interferon-α Vet. Immunol. Immunopathol. 1992;30:319–327. doi: 10.1016/0165-2427(92)90102-v. [DOI] [PubMed] [Google Scholar]
  9. Dudley D.J., Hunter C., Mitchell M.D., Varner M.W. Elevations of amniotic fluid macrophage inflammatory protein-1 alpha concentrations in women during term and preterm labor. Obstet. Gynecol. 1996;87:94–98. doi: 10.1016/0029-7844(95)00366-5. [DOI] [PubMed] [Google Scholar]
  10. Eloranta M.L., Sandberg K., Aim G.V. The interferon-α/β responses of mice to herpes simplex virus studied at the blood and tissue level in vitro and in vivo. Scand. J. Immunol. 1996;43:355–360. doi: 10.1046/j.1365-3083.1996.d01-62.x. [DOI] [PubMed] [Google Scholar]
  11. Fitzgerald-Bocarsly P. Human natural interferon-α-producing cells. Pharmacol. Ther. 1993;60:39–62. doi: 10.1016/0163-7258(93)90021-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graven M.G., Witkin S.S., Haluska G.J., Edwards J.L., Cook M.J., Novy M.M.J. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am. J. Obstet. Gynecol. 1994;171:1660–1667. doi: 10.1016/0002-9378(94)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Kovářů F., Stožický V., Kruml J., Dlabač V., Donát J., Novotná J. Experimental surgery in the foetal period of mammals. Acta. Vet. Brno. 1971;S3:1–68. [Google Scholar]
  14. La Bonnardière C., Laude H. High interferon titer in newborn pig intestine during experimentally induced viral enteritis. Infect. Immun. 1981;32:28–31. doi: 10.1128/iai.32.1.28-31.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laude H., Gelfi J., Lavenant L., Charley B. Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the Coronavirus transmissible gastroenteritis virus. J. Virol. 1992;66:743–749. doi: 10.1128/jvi.66.2.743-749.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lebon P. Inhibition of herpes simplex virus type 1-induced interferon synthesis by monoclonal antibodies against viral glycoprotein D and by lysosomotropic drugs. J. Gen. Virol. 1985;6:2781–2785. doi: 10.1099/0022-1317-66-12-2781. [DOI] [PubMed] [Google Scholar]
  17. Lebon P., Commoy-Chevalier M.J., Robert-Galliot B., Chany C. Different mechanisms for α and β interferon induction. Virology. 1982;119:504–507. doi: 10.1016/0042-6822(82)90109-x. [DOI] [PubMed] [Google Scholar]
  18. Lebon P., Daffos F., Checoury A., Grangeot-Keros L., Forestier F., Toublanc J.E. Presence of an acid-labile alpha-interferon in sera from fetuses and children with congenital rubella. J. Clin. Microbiol. 1985;21:775–778. doi: 10.1128/jcm.21.5.775-778.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lebon P., Girard S., Thépot F., Chany Ch. The presence of a-interferon in human amniotic fluid. J. Gen. Virol. 1982;59:393–396. doi: 10.1099/0022-1317-59-2-393. [DOI] [PubMed] [Google Scholar]
  20. Nowacki W., Charley B. Enrichment of coron-avirus-induced interferon-producing blood leukocytes increases the interferon yield per cell: a study with pig leukocytes. Res. Immunol. 1993;144:111–120. doi: 10.1016/0923-2494(93)80066-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Riffault S., Eloranta M.-L., Carrat Ch., Sandberg K., Charley B., Alm G. Herpes simplex virus induces appearance of interferon-α/β producing cells and partially interferon-α/β dependent accumulation of leukocytes in murine regional lymph nodes. J. Interferon Cytok. Res. 1996;16:1007–1014. doi: 10.1089/jir.1996.16.1007. [DOI] [PubMed] [Google Scholar]
  22. Roberts N.J., Douglas R.G., Simons R.M., Diamond M.E. Virus induced interferon production by human macrophages. J. Immunol. 1979;123:365–369. [PubMed] [Google Scholar]
  23. Romero R., Gomez R., Galasso M., Munoz H., Acosta L., Yoon B.H., Svinarich D., Cotton D.B. Macrophage inflammatory protein-1 alpha in term and preterm parturition: effect of microbial invasion of the amniotic cavity. Am. J. Reprod. Immunol. 1994;32:108–113. doi: 10.1111/j.1600-0897.1994.tb01101.x. [DOI] [PubMed] [Google Scholar]
  24. Saksela E., Virtanen I., Hovi T., Secher D.S., Cantell K. Monocyte is the main producer of human alpha interferons following Sendai virus induction. Prog. Med. Virol. 1984;30:78–86. [PubMed] [Google Scholar]
  25. Sandberg K., Matsson P., Alm G.V. A distinct population of nonphagocytic and CD4+ null lymphocytes produce interferon-α after stimulation by herpes simplex virus-infected cells. J. Immunol. 1990;145:1015–1020. [PubMed] [Google Scholar]
  26. Šplíchal I., Bonneau M., Charley B. Ontogeny of interferon alpha secreting cells in the porcine fetal hematopoietic organs. Immunol. Lett. 1994;43:203–208. doi: 10.1016/0165-2478(94)90224-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Šterzl J., Kovářů F. Development of lymphatic tissue and immunocompetency in pig foetus and germ-free piglets. Acta. Vet. Brno. 1977;46(suppl. 3):13–53. [Google Scholar]
  28. Šterzl J., Rejnek J., Trávníček J. Impermeability of pig placenta for antibodies. Folia Microbiol. 1966;11:7–10. doi: 10.1007/BF02877148. [DOI] [PubMed] [Google Scholar]
  29. Svensson H., Johannisson A., Nikkila T., Alm G.V., Cederblad B. The cell surface phenotype of human natural interferon-α producing cells as determined by flow cytometry. Scand. J. Immunol. 1996;44:164–172. doi: 10.1046/j.1365-3083.1996.d01-289.x. [DOI] [PubMed] [Google Scholar]

Articles from Research in Immunology are provided here courtesy of Elsevier

RESOURCES