Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2009 Jul 11;105(6):439–450. doi: 10.1016/S0929-6646(09)60183-2

Hematological and Biochemical Factors Predicting SARS Fatality in Taiwan

Hsiao-Ling Chang a,b, Kow-Tong Chen c, Shu-Kuan Lai a, Hung-Wei Kuo a, Ih-Jen Su d, Ruey S Lin e, Fung-Chang Sung b,e,f,*
PMCID: PMC7135597  PMID: 16801031

Abstract

Background/Purpose

Severe acute respiratory syndrome (SARS) has a high fatality rate worldwide. We examined the epidemiologic and clinical factors associated with death for all laboratory-confirmed SARS patients in Taiwan.

Methods

Using initial data in medical records reported by hospitals to the Center for Disease Control in Taiwan, we analyzed whether hematological, biochemical and arterial blood gas measures could predict fatality in 346 SARS patients.

Results

Both fatalities (n = 73; 21.1%) and survivors had elevated plasma concentration of initial C-reactive protein (CRP), but the mean CRP concentration was higher in fatalities (47.7 ± 43.3 mg/L) than in survivors (24.6 ± 28.2 mg/L). Initial lymphocyte counts were low in both fatalities (814 ± 378/μL) and survivors (1019 ± 480/μL). After controlling for age and sex, multiple logistic regression analysis showed that hematological factors significantly associated with fatality included initial neutrophil count > 7000/μL (odds ratio [OR] = 6.4), initial CRP concentration > 47.5 mg/L (OR = 5.8) and lactic acid dehydrogenase (LDH) > 593.5 IU/L (OR = 4.2). Factors significantly associated with initial CRP concentration > 47.5 mg/L included dyspnea (OR = 4.3), red blood cell count < 4.1 × 106/μL (OR = 4.3) and serum aspartate amino-transferase > 57 IU/L (OR = 3.1).

Conclusion

Initial neutrophil count, CRP and LDH levels are important predictors of mortality from SARS. [J Formos Med Assoc 2006;105(6):439-450]

Key Words: C-reactive protein, dyspnea, fatality, lactic acid dehydrogenase, lymphopenia, severe acute respiratory syndrome

References

  • 1.World Health Organization. Summary table of areas that experienced local transmission of SARS during the outbreak period from 1 November 2002 to 31 July 2003. Available at: http://www.who.int/csr/sars/areas/areas2003_11_21/en/ [Accessed: November 21, 2003.]
  • 2.Twu SJ, Chen TJ, Chen CJ. Control measures for severe acute respiratory syndrome (SARS) in Taiwan. Emerg Infect Dis. 2003;9:718–720. doi: 10.3201/eid0906.030283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Centers for Disease Control and Prevention Use of quarantine to prevent transmission of severe acute respiratory syndrome-Taiwan, 2003. MMWR. 2003;52:680–683. [PubMed] [Google Scholar]
  • 4.World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 7 August 2003. Available at: http://www.who.int/csr/sars/country/en/country2003_08_15.pdf [Accessed:4. August 15, 2003]
  • 5.Chan JW, Ng CK, Chan YH. Short-term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS) Thorax. 2003;58:686–689. doi: 10.1136/thorax.58.8.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lew TW, Kwek TK, Tai D. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290:374–380. doi: 10.1001/jama.290.3.374. [DOI] [PubMed] [Google Scholar]
  • 7.Booth CM, Matukas LM, Tomlinson GA. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289:2801–2809. doi: 10.1001/jama.289.21.JOC30885. [DOI] [PubMed] [Google Scholar]
  • 8.Peiris JS, Lai ST, Poon LL. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325. doi: 10.1016/S0140-6736(03)13077-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Donnelly CA, Ghani AC, Leung GM. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet. 2003;361:1761–1766. doi: 10.1016/S0140-6736(03)13410-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Peiris JS, Chu CM, Cheng VC. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767–1772. doi: 10.1016/S0140-6736(03)13412-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Hsu LY, Lee CC, Green JA. Severe acute respiratory syndrome (SARS) in Singapore: clinical features of index patient and initial contacts. Emerg Infect Dis. 2003;9:713–717. doi: 10.3201/eid0906.030264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Singh K, Hsu LY, Villacian JS. Severe acute respiratory syndrome: lessons from Singapore. Emerg Infect Dis. 2003;9:1294–1298. doi: 10.3201/eid0910.030388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Tsang OT, Chau TN, Choi KW. Coronavirus-positive nasopharyngeal aspirate as predictor for severe acute respiratory syndrome mortality. Emerg Infect Dis. 2003;9:1381–1387. doi: 10.3201/eid0911.030400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Tsang KW, Ho PL, Ooi GC. A cluster of cases of severe respiratory syndrome in Hong Kong. N Engl J Med. 2003;348:1977–1985. doi: 10.1056/NEJMoa030666. [DOI] [PubMed] [Google Scholar]
  • 15.Poutanen SM, Low DE, Henry B. Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003;348:1995–2005. doi: 10.1056/NEJMoa030634. [DOI] [PubMed] [Google Scholar]
  • 16.Lee N, Hui D, Wu A. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348:1986–1994. doi: 10.1056/NEJMoa030685. [DOI] [PubMed] [Google Scholar]
  • 17.Chan-Yeung M, Yu WC. Outbreak of severe acute respiratory syndrome in Hong Kong special administrative region: case report. BMJ. 2003;326:850–852. doi: 10.1136/bmj.326.7394.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Rainer TH, Cameron PA, Smit DV. Evaluation of WHO criteria for identifying patients with severe acute respiratory syndrome out of hospital: prospective observational study. BMJ. 2003;326:1354–1358. doi: 10.1136/bmj.326.7403.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Fowler RA, Lapinsky SE, Hallett D. Critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290:367–373. doi: 10.1001/jama.290.3.367. [DOI] [PubMed] [Google Scholar]
  • 20.Tsui PT, Kwok ML, Yuen H. Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Emerg Infect Dis. 2003;9:1064–1069. doi: 10.3201/eid0909.030362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Wang RSM, Wu A, To KF. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 2003;326:1358–1362. doi: 10.1136/bmj.326.7403.1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wang JT, Sheng WH, Fang CT. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg Infect Dis. 2004;10:818–824. doi: 10.3201/eid1005.030640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.World Health Organization. Case definitions for surveillance of severe acute respiratory syndrome (SARS). Available at: http://www.who.int/csr/sars/casedefinition/en/ [Accessed: May 30, 2003]
  • 24.World Health Organization. Alert, verification and public health management of SARS in the post-outbreak period. Available at: http://www.who.int/csr/sars/postoutbreak/en/print.html [Accessed: August 14, 2003]
  • 25.Fischbach F. A Manual of Laboratory and Diagnostic Tests. 7th edition. Lippincott Williams & Wilkins; Philadelphia, Pa: 2004. [Google Scholar]
  • 26.World Health Organization. WHO issues consensus document on the epidemiology of SARS. Available at: http://www.who.int/csr/sars/archive/epiconsensus/en/print.html [Accessed: October 17, 2003] [PubMed]
  • 27.Antinori A, Maiuro G, Pallavicini F. Prognostic factors of early fatal outcome and long-term survival in patients with Pneumocystis carinii pneumonia and acquired immunodeficiency syndrome. Eur J Epidemiol. 1993;9:183–189. doi: 10.1007/BF00158789. [DOI] [PubMed] [Google Scholar]
  • 28.Montaner JS, Hawley PH, Ronco JJ. Multisystem organ failure predicts mortality of ICU patients with acute respiratory failure secondary to AIDS-related PCP. Chest. 1992;102:1823–1828. doi: 10.1378/chest.102.6.1823. [DOI] [PubMed] [Google Scholar]
  • 29.Quist J, Hill AR. Serum lactate dehydrogenase (LDH) in Pneumocystis carinii pneumonia, tuberculosis and bacterial pneumonia. Chest. 1995;108:415–418. doi: 10.1378/chest.108.2.415. [DOI] [PubMed] [Google Scholar]
  • 30.Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science. 1996;272:50–53. doi: 10.1126/science.272.5258.50. [DOI] [PubMed] [Google Scholar]
  • 31.Pepys MB, Baltz ML. Acute phase protein with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol. 1983;34:141–142. doi: 10.1016/s0065-2776(08)60379-x. [DOI] [PubMed] [Google Scholar]
  • 32.Ridker PM, Hennekens CH, Buring JE. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–843. doi: 10.1056/NEJM200003233421202. [DOI] [PubMed] [Google Scholar]
  • 33.Ridker PM, Rifai N, Rose L. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of the first cardiovascular events. N Engl J Med. 2003;347:1557–1565. doi: 10.1056/NEJMoa021993. [DOI] [PubMed] [Google Scholar]
  • 34.Sesso HD, Buring JE, Rifai N. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290:2945–2951. doi: 10.1001/jama.290.22.2945. [DOI] [PubMed] [Google Scholar]
  • 35.Morley JJ, Kushner I. Serum C-reactive protein levels in disease. Ann NY Acad Sci. 1982;389:406–418. doi: 10.1111/j.1749-6632.1982.tb22153.x. [DOI] [PubMed] [Google Scholar]
  • 36.Gendrel D, Raymond J, Coste J. Comparison of pro-calcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr Infect Dis J. 1999;18:875–881. doi: 10.1097/00006454-199910000-00008. [DOI] [PubMed] [Google Scholar]
  • 37.Peltola H, Jaakkola M. C-reactive protein in early detection of bacterial versus viral infections in immunocompetent and immunocompromised children. J Pediatr. 1988;113:41–46. doi: 10.1016/s0022-3476(88)80372-x. [DOI] [PubMed] [Google Scholar]
  • 38.Taina J, Jussi M, Pia T. Clinical profile of serologically diagnosed pneumococcal pneumonia. Pediatr Infect Dis J. 2001;20:1028–1033. doi: 10.1097/00006454-200111000-00005. [DOI] [PubMed] [Google Scholar]
  • 39.Kawasaki Y, Hosoya M, Katayose M. Correlation between serum interleukin 6 and C-reactive protein concentrations in patients with adenoviral respiratory infection. Pediatr Infect Dis J. 2002;21:370–374. doi: 10.1097/00006454-200205000-00004. [DOI] [PubMed] [Google Scholar]
  • 40.Ruuskanen O, Meurman O, Sarkkinen H. Adenoviral diseases in children: a study of 105 hospital cases. Pediatrics. 1985;76:79–83. [PubMed] [Google Scholar]
  • 41.Putto A, Meurman O, Ruuskanen O. C-reactive protein in the differentiation of adenoviral, Epstein-Barr viral and streptococcal tonsillitis in children. Eur J Pediatr. 1986;145:204–206. doi: 10.1007/BF00446066. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the Formosan Medical Association are provided here courtesy of Elsevier

RESOURCES