Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2015 Dec 10;17(3):463–476. doi: 10.1016/S0749-0720(15)30001-3

Bovine Neonatal Immunology

George M Barrington 1,*, Steven M Parish 1
PMCID: PMC7135619  PMID: 11692503

Abstract

Early fetal immune development occurs independent of antigen exposure, whereas later development depends on exposure to specific antigens. Although neonates are immunocompetent at birth, they are clearly immunonaive and dependent on passively acquired maternal immunoglobulins, immune cells, and other substances from colostrum for protection. Neonates that suffer failure of passive transfer of maternal immunoglobulins may be at increased risk for disease; however, many other factors interact in conjunction with the level of passively acquired immunoglobulin to determine the occurrence of disease.

References

  • 1.Aldridge B.M., McGuirk S.M., Lunn D.P. Effect of colostral ingestion on immunoglobulinpositive cells in calves. Vet Immunol Immunopathol. 1998;62:51–64. doi: 10.1016/s0165-2427(97)00158-x. [DOI] [PubMed] [Google Scholar]
  • 2.Archambault D., Morin G., Elazhary Y. Immune response of pregnant heifers and cows to bovine rotavirus inoculation and passive protection to rotavirus infection in newborn calves fed colostral antibodies or colostral lymphocytes. Am J Vet Res. 1988;49:1084–1091. [PubMed] [Google Scholar]
  • 3.Banks K.L. Host defense in the newborn animal. J Am Vet Med Assoc. 1982;181:1053–1056. [PubMed] [Google Scholar]
  • 4.Banks K.L., McGuire T.C. Neonatal immunology. In: Halliwell R.E.W., Gorman N.T., editors. Veterinary Clinical Immunology. WB Saunders; Philadelphia: 1989. pp. 193–204. [Google Scholar]
  • 5.Barber D.M.L. Serum immunoglobulin status of calves. An unreliable guide to viability and performance. Vet Rec. 1978;102:428–440. doi: 10.1136/vr.102.19.418. [DOI] [PubMed] [Google Scholar]
  • 6.Barrington G.M., Besser T.E., Gay C.C. Effect of prolactin on in vitro expression of the bovine mammary immunoglobulin G1 receptor. J Dairy Sci. 1997;80:94–100. doi: 10.3168/jds.S0022-0302(97)75916-2. [DOI] [PubMed] [Google Scholar]
  • 7.Barrington G.M., Besser T.E., Gay C.C. Regulation of the immunoglobulin G1 receptor, Effect of prolactin on in vivo expression of the bovine mammary immunoglobulin G1 receptor. J Endo. 1999;163:25–31. doi: 10.1677/joe.0.1630025. [DOI] [PubMed] [Google Scholar]
  • 8.Besser T.E., Garmendia A.E., McGuire T.C. Effect of colostral immunoglobulin G1 and immunoglobulin M concentrations on immunoglobulin absorption in calves. J Dairy Sci. 1985;68:2033–2037. doi: 10.3168/jds.S0022-0302(85)81065-1. [DOI] [PubMed] [Google Scholar]
  • 9.Besser T.E., Gay C.C. Septicemic colibacillosis and failure of passive transfer of colostral immunoglobulins in calves. Vet Clin North Am Food Anim Pract. 1985;1:445–459. doi: 10.1016/s0749-0720(15)31295-0. [DOI] [PubMed] [Google Scholar]
  • 10.Besser T.E., McGuire T.C., Gay C.C. Transfer of functional immunoglobulin G (IgG) antibody into the gastrointestinal tract accounts for IgG clearance in calves. J Virol. 1988;62:2234–2237. doi: 10.1128/jvi.62.7.2234-2237.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Besser T.E., Gay C.C., McGuire T.C. Passive immunity to bovine rotavirus infection associated with transfer of serum antibody into the intestinal lumen. J Virol. 1988;62:2238–2242. doi: 10.1128/jvi.62.7.2238-2242.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Brandon M.R., Watson D.L., Lascelles A.K. The mechanism of transfer of immunoglobulin into mammary secretion of cows. Aust J Exp BioI Med Sci. 1971;49:613. doi: 10.1038/icb.1971.67. [DOI] [PubMed] [Google Scholar]
  • 13.Butler J.E. Immunoglobulins of the mammary secretions. In: Larson B.L., Smith V.R., editors. Vol III. Academic Press; New York: 1974. p. 217. (Lactation, A Comprehensive Treatise). [Google Scholar]
  • 14.Butler J.E. Bovine immunoglobulins. An augmented review. Vet Immunol Immunopatho. 1983;I4:43–152. doi: 10.1016/0165-2427(83)90056-9. [DOI] [PubMed] [Google Scholar]
  • 15.Cadlow G.L. Relationship of calf antibody status to disease and performance. Vet Rec. 1988;122:63–65. doi: 10.1136/vr.122.3.63. [DOI] [PubMed] [Google Scholar]
  • 16.Clover C.K., Zarkower A. Immunological responses in colostrum-fed and colostrumdeprived calves. Am J Vet Res. 1980;41:1002–1007. [PubMed] [Google Scholar]
  • 17.Crowther C., Raistrick H. A comparative study of the proteins of the colostrum and the milk of the cow and their relations to serum proteins. Biochem J. 1916;10:435–452. doi: 10.1042/bj0100434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Devery J.E., Davis C.L., Larson B.L. Endogenous production of immunoglobulin IgG1 in newborn calves. J Dairy Sci. 1979;62:1814–1818. doi: 10.3168/jds.s0022-0302(79)83504-3. [DOI] [PubMed] [Google Scholar]
  • 19.Dixon F.J., Weigle W.O., Vazquez J.J. Metabolism and mammary secretion of serum proteins in the cow. Lab Invest. 1961;10:216–237. [PubMed] [Google Scholar]
  • 20.Gay C.C. Proceedings of the 4th International Symposium on Neonatal Diarrhea, Veterinary Infectious Disease Organization (VIDa) Saskatoon; Saskatchewan, Canada: 1983. Failure of passive transfer of colostral immunoglobulins and neonatal disease in calves, A review. pp 346–364. [Google Scholar]
  • 21.Guidry A.J., Paape M.J., Pearson R.E. Quarter milk variation in immunoglobulins and ability to support phagocytosis. J Dairy Sci. 1980;63:611. doi: 10.3168/jds.S0022-0302(80)82979-1. [DOI] [PubMed] [Google Scholar]
  • 22.Hammer D.K., Kickhofen B., Malchow H. Preferential adsorption of a single bovine IgG type by isolated epithelial cells of the mammary gland. In: Peters H., editor. Protides of the Biological Fluids. The Netherlands, Elsevier Science; Amsterdam: 1969. pp. 663–668. [Google Scholar]
  • 23.Hartmann P.E. Changes in the composition and yield of the mammary secretion of cows during the initiation of lactation. J Endocrinol. 1973;59:231. doi: 10.1677/joe.0.0590231. [DOI] [PubMed] [Google Scholar]
  • 24.Heckert R.A., Saif L.J., Mengel J.P. Mucosal and systemic antibody responses to bovine coronavirus structural proteins in experimentally challenge-exposed calves fed low or high amounts of colostral antibodies. Am J Vet Res. 1991;52:700–708. [PubMed] [Google Scholar]
  • 25.Hudgens A.R., Tyler J.W., Besser T.E. Optimizing performance of a qualitative zinc sulfate turbidity test for passive transfer of immunoglobulin G in calves. Am J Vet Res. 1996;12:1711–1713. [PubMed] [Google Scholar]
  • 26.Husband A.I., Brandon M.R., Lascelles A.K. Absorption and endogenous production of immunoglobulins in calves. Aust J Exp Bioi Med Sci. 1972;50:491–498. doi: 10.1038/icb.1972.41. [DOI] [PubMed] [Google Scholar]
  • 27.Husband A.I., Lascelles A.K. Anitbody response to neonatal immunization in calves. Res Vet Sci. 1975;18:201–207. [PubMed] [Google Scholar]
  • 28.Husband A.J. Ontogeny of the gut-associated immune system. In: Butler J.E., editor. The Ruminant Immune System. New York; Plenum Press: 1980. pp. 633–647. [Google Scholar]
  • 29.Keller M.A., Kidd R.M., Bryson Y.J. Lymphokine production of human milk lymphocytes. Infect Immun. 1981;32:632–636. doi: 10.1128/iai.32.2.632-636.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kemler R.H., Mossmann H., Strohmaier B. In vitro studies on the selective binding of IgG from different species to tissue sections of the bovine mammary gland. Eur J Immunol. 1975;5:603–608. doi: 10.1002/eji.1830050905. [DOI] [PubMed] [Google Scholar]
  • 31.Larson B.L. Transfer of specific blood serum proteins to lacteal secretions near parturition. J Dairy Sci. 1958;41:1033–1044. [Google Scholar]
  • 32.Larson B.L., Leary H.L., Devery J.E. Immunoglobulin production and transport by the mammary gland. J Dairy Sci. 1980;53:665–671. doi: 10.3168/jds.S0022-0302(80)82988-2. [DOI] [PubMed] [Google Scholar]
  • 33.Larson B.L. Biosynthesis and cellular secretion of milk. In: Larson B.L., editor. Lactation. The Iowa State University Press; Ames, lA: 1985. p. 129. [Google Scholar]
  • 34.Leary H.L., Larson B.L., Nelson D.R. Immunohistochemical localization of IgG1 and IgG2 in prepartum and lactating bovine mammary tissue. Vet Immunol Immunopathol. 1982;3:509–514. doi: 10.1016/0165-2427(82)90016-2. [DOI] [PubMed] [Google Scholar]
  • 35.Le Jan C. Secretory component and IgA expression by epithelial cells in sow mammary gland and mammary secretions. Res Vet Sci. 1993;55:265–270. doi: 10.1016/0034-5288(93)90092-t. [DOI] [PubMed] [Google Scholar]
  • 36.Le Jan C., Le Dividich J., Chevaleyre C. Devenir des cellules colostrales chez Ie porc nouveau-ne. J Rech Porc Fr. 1995;27:91–96. [Google Scholar]
  • 37.Le Jan C. Cellular components of mammary secretions and neonatal immunity. A review. Vet Res. 1996;27:403–417. [PubMed] [Google Scholar]
  • 38.Logan E.F., Stenhouse A., Ormrod D.J. The role of colostral immunoglobulins in intestinal immunity to enteric colibacillosis in the calf. Res Vet Sci. 1974;17:280–301. [PubMed] [Google Scholar]
  • 39.Logan E.F., Gibson T. Serum immunoglobulin levels in suckled beef calves. Vet Rec. 1975;97:229. doi: 10.1136/vr.97.12.229. [DOI] [PubMed] [Google Scholar]
  • 40.Lopez J.W., Allen S.D. Mitchell J, et al, Rotavirus and cryptosporidium shedding in dairy calf feces and its relationship to colostral immune transfer. J Dairy Sci. 1988;71:1288. doi: 10.3168/jds.S0022-0302(88)79685-X. [DOI] [PubMed] [Google Scholar]
  • 41.Menanteau-Horta A.M., Ames T.R., Johnson D.W. Effect of maternal antibody upon vaccination with infectious bovine rhinotracheitis and bovine virus diarrhea vaccines. Can J Comp Med. 1985;49:10–14. [PMC free article] [PubMed] [Google Scholar]
  • 42.Noceck J.E., Braund D.G., Warner R.G. Influence of neonatal colostrum administration, immunoglobulin and continued feeding of colostrum on calf gain, health and serum protein. J Dairy Sci. 1984;67:319–333. doi: 10.3168/jds.S0022-0302(84)81305-3. [DOI] [PubMed] [Google Scholar]
  • 43.Oda S., Satoh H., Matsunga T. Insulin-like growth factor-I, GH, insulin, and glucagons concentrations in bovine colostrum and in plasma of dairy cows and neonatal calves around parturition. Comp Biochem Physiol. 1989;94:805–812. doi: 10.1016/0300-9629(89)90638-5. [DOI] [PubMed] [Google Scholar]
  • 44.Osburn B.I., Stabenfeldt G.H., Ardens A.A. Perinatal immunity in calves. J Am Vet Med Assoc. 1974;164:295–298. [PubMed] [Google Scholar]
  • 45.Osburn B.I., MacLachlan N.J., Terrell T.G. Ontogeny of the immune system. J Am Vet Med Assoc. 1982;181:1049–1052. [PubMed] [Google Scholar]
  • 46.Ouzrout R., Guiguen F., Lerondelle C. Evolution des sous-populations lymphocytaires dans Ie lait de brebis au moment de I' excretion du virus Maedi. Ann Rech Vet. 1991;22:379–386. [PubMed] [Google Scholar]
  • 47.Parish S.M., Tyler J.W., Besser T.E. Prediction of serum IgGl concentration in Holstein calves using serum gamma glutamyltransferase activity. J Vet Intern Med. 1997;11:344–347. doi: 10.1111/j.1939-1676.1997.tb00478.x. [DOI] [PubMed] [Google Scholar]
  • 48.Park Y.H., Fox L.K., Hamilton M.J. Bovine mononuclear leukocyte subpopulations in peripheral blood and mammary gland secretions during lactation. J Dairy Sci. 1992;75:998–1006. doi: 10.3168/jds.S0022-0302(92)77842-4. [DOI] [PubMed] [Google Scholar]
  • 49.Parmely M.J., Beer A.E. Colostral cell-mediated immunity and the concept of a common immune system. J Dairy Sci. 1977;60:655–665. doi: 10.3168/jds.S0022-0302(77)83915-5. [DOI] [PubMed] [Google Scholar]
  • 50.Politis I., McBride B.W., Burton J.H. Secretion of interleukin-1 by bovine milk macrophages. Am J Vet Res. 1991;52:858–862. [PubMed] [Google Scholar]
  • 51.Reidel-Caspari G., Schmidt F.W. The influence of colostral leukocytes on the immune system of the neonatal calf. II. Effects on passive and active immunization. DTW Dtsch Teirarztl Wochenschr. 1991;98:165–204. [PubMed] [Google Scholar]
  • 52.Rewinski M.J., Yang T.J. Lactation stage-dependent changes in levels of tumor necrosis factor/cachectin in milk. Am J Reprod Immuno. 1994;I31:170–176. doi: 10.1111/j.1600-0897.1994.tb00863.x. [DOI] [PubMed] [Google Scholar]
  • 53.Sambasivarao D., Hooton J., Dost A. A novel immunosuppressive factor in bovine colostrum blocks activation of the interleukin 2 gene enhancer at the NFAT site. Biochem Cell BioI. 1996;74:585–593. doi: 10.1139/o96-063. [DOI] [PubMed] [Google Scholar]
  • 54.Sasaki M., Davis C.L., Larson B.L. Production and turnover of IgGl and IgG2 immunoglobulins in the bovine around parturition. J Dairy Sci. 1976;59:2046–2055. doi: 10.3168/jds.S0022-0302(76)84486-4. [DOI] [PubMed] [Google Scholar]
  • 55.Schnorr K.L., Pearson L.F. Intestinal absorption of maternal leukocytes by newborn lambs. J Reprod Immuno. 1984;I6:329–337. doi: 10.1016/0165-0378(84)90031-7. [DOI] [PubMed] [Google Scholar]
  • 56.Senogles D.R., Muscoplat C.C., Paul P.S. Ontogeny of circulating B lymphocytes in neonatal calves. Res Vet Sci. 1978;25:34–36. [PubMed] [Google Scholar]
  • 57.Sheldrake R.F., Husband A.J. Intestinal uptake of intact matemallymphocytes by neonatal rats and lambs. Res Vet Sci. 1985;39:10–15. [PubMed] [Google Scholar]
  • 58.Sordillo L.M., Redmond M.J., Campos M. Cytokine activity in bovine mammary gland secretions during the periparturient period. Can J Vet Res. 1991;55:298–299. [PMC free article] [PubMed] [Google Scholar]
  • 59.Smith K.L., Schanbacher F.L. Hormone induced lactation in the bovine. 1. Lactational performance following injection of 1713-oestradiol and progesterone. J Dairy Sci. 1973;56:738–743. doi: 10.3168/jds.s0022-0302(73)85243-9. [DOI] [PubMed] [Google Scholar]
  • 60.Stott G.H., Marx D.B., Menefee B.E. Colostral immunoglobulin transfer in calves. II. The rate of absorption. J Dairy Sci. 1979;62:1766–1773. doi: 10.3168/jds.S0022-0302(79)83495-5. [DOI] [PubMed] [Google Scholar]
  • 61.Stott G.H., Marx D.B., Menefee B.E. Colostral immunoglobulin transfer in calves. III. Amount of absorption. J Dairy Sci. 1979;62:1902–1907. doi: 10.3168/jds.S0022-0302(79)83521-3. [DOI] [PubMed] [Google Scholar]
  • 62.Tizzard I.R. Veterinary Immunology: An Introduction. WB Saunders; Philadelphia: 2000. Immunity in the fetus and newborn; pp. 210–221. [Google Scholar]
  • 63.Tokuyama Y., Tokuyama H. Purification and identification of TGF 13 2 related growth factor from bovine colostrum. J Dairy Res. 1993;60:99–109. doi: 10.1017/s0022029900027382. [DOI] [PubMed] [Google Scholar]
  • 64.Torre P.M., Oliver S.P. Changes in blastogenic activity of bovine blood mononuclear cells throughout the nonIactating period. J Dairy Sci. 1988;71:1078–1084. doi: 10.3168/jds.S0022-0302(88)79655-1. [DOI] [PubMed] [Google Scholar]
  • 65.Tyler J.W., Besser T.E., Wilson L. Evaluation of a whole blood glutaraldehyde coagulation test for the detection of failure of passive transfer in calves. J Vet Intern Med. 1996;10:82–84. doi: 10.1111/j.1939-1676.1996.tb02032.x. [DOI] [PubMed] [Google Scholar]
  • 66.Tyler J.W., Hancock D.D., Parish S.M. Evaluation of 3 assays for failure of passive transfer in calves. J Vet Intern Med. 1996;10:304–307. doi: 10.1111/j.1939-1676.1996.tb02067.x. [DOI] [PubMed] [Google Scholar]
  • 67.Wells G.H., Osborne T.B. Anaphylaxis reactions with purified proteins from milk. J Infect Dis. 1921;29:200–216. [Google Scholar]
  • 68.Williams P.P. Immunomodulating effects of intestinal absorbed maternal colostral leukocytes by neonatal pigs. Can J Vet Res. 1993;57:1–8. [PMC free article] [PubMed] [Google Scholar]
  • 69.Winger K., Gay C.C., Besser T.E. Immunoglobulin G, transfer into induced mammary secretions: The effect of dexamethasone. J Dairy Sci. 1995;78:1306–1309. doi: 10.3168/jds.S0022-0302(95)76751-0. [DOI] [PubMed] [Google Scholar]
  • 70.Wyatt C.R., Madruga C., Cluff C. Differential distribution of gamma/delta + T cell receptor lymphocyte subpopulations in blood and spleen of young and adult cattle. Vet Immunol Immunopathol. 1994;40:187–199. doi: 10.1016/0165-2427(94)90019-1. [DOI] [PubMed] [Google Scholar]

Articles from The Veterinary Clinics of North America. Food Animal Practice are provided here courtesy of Elsevier

RESOURCES