Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 5;141(6):597–610. doi: 10.1016/0923-2516(90)90033-F

Expression vectors for quatitating in vivo translational ambiguity: Their potential use to analyse frameshifting at the HIV gag-pol junction

M Cassan (1), V Berteaux (1), P-O Angrand (2), J-P Rousset (2)
PMCID: PMC7135639  PMID: 2087598

Abstract

Translational errors are necessary so as to allow gene expression in various organisms. In retroviruses, synthesis of pol gene products necessitates either readthrough of a stop codon or frameshifting. Here we present an experimental system that permits quantification of translational errors in vivo. It consists of a family of expression vectors carrying different mutated versions of the luc gene as reporter. Mutations include both an in-frame stop codon and 1-base-pair deletions that require readthough or frameshift, respectively, to give rise to an active product. This system is sensitive enough to detect background errors in mammalian cells. In addition, one of the vectors contains two unique cloning sites that make it possible to insert any sequence of interest. This latter vector was used to analyse the effect of a DNA fragment, proposed to be the target of high level slippage at the gag-pol junction of HIV. The effect of paromomycin and kasugamycin, two antibiotics known to influence translational ambiguity, was also tested in cultured cells. The results indicate that paromomycin diversely affects readthrough and frameshifting, while kasugamycin had no effect.

This family of vectors can be used to analyse the influence of structural and external factors on translational ambiguity in both mammalian cells and bacteria.

Keywords: Translation, HIV, Luciferase, gag-pol Junction, Frameshifting, Expression vectors

References

  1. Atkins J.F., Weiss R.B., Gesteland R.F. Ribosome gymnastics-degree of difficulty 9.5, style 10.0. Cell. 1990;62:413–423. doi: 10.1016/0092-8674(90)90007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belcourt M.F., Farabaught P.J. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell. 1990;62:339–352. doi: 10.1016/0092-8674(90)90371-K. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bossi L. Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J. mol. Biol. 1983;164:73–87. doi: 10.1016/0022-2836(83)90088-8. [DOI] [PubMed] [Google Scholar]
  4. Brierley I., Digard P., Inglis S.C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. van Bull C.P.J.J., Visser W., van Knippenberg P.H. Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harbouring the ksgA gene. FEBS Letters. 1974;177:119–123. doi: 10.1016/0014-5793(84)80994-1. [DOI] [PubMed] [Google Scholar]
  6. Burke J.F., Mogg A.E. Suppression of a nonsense mutation in mammalian cells in vivo by aminoglycoside antibiotics G-418 and paromomycin. Nucl. Acids Res. 1985;13:6265–6272. doi: 10.1093/nar/13.17.6265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Camonis J.H., Cassan M., Rousset J.P. Of mice and yeast: versatile vectors which permit gene expression in both budding yeast and higher eucaryotic cells. Gene. 1990;86:263–268. doi: 10.1016/0378-1119(90)90288-3. [DOI] [PubMed] [Google Scholar]
  8. Clare J.J., Belcourt M., Farabaugh P.J. Vol. 85. 1988. Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty 1 transposon; pp. 6816–6820. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Craigen W.J., Cook R.G., Tate W.P., Caskey C.T. Vol. 82. 1985. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2; pp. 3616–3620. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Craigen W.J., Caskey C.T. Expression of peptide chain release factor 2 requires high-efficiency frameshifting. Nature (Lond.) 1986;322:273–275. doi: 10.1038/322273a0. [DOI] [PubMed] [Google Scholar]
  11. Debouck C., Gorniak J.G., Strickler J.E., Meek T.D., Metcalf B.W., Rosenberg M. Vol. 84. 1987. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor; pp. 8903–8906. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dequart-Chablat M., Coppin-Raynal E., Picard-Bennoun M., Madjar J.J. At least seven ribosomal proteins are involved in the control of translational accuracy in a eucaryotic organism. J. mol. Biol. 1986;190:167–175. doi: 10.1016/0022-2836(86)90290-1. [DOI] [PubMed] [Google Scholar]
  13. Ehrenberg M., Kurland C.G., Blomberg C. Kinetic costs of accuracy in translation. In: Kirkwood T.B.L., Rosenberg R.F., Galas D.J., editors. Accuracy in molecular processes. Chapman and Hall; London, New York: 1986. pp. 329–361. [Google Scholar]
  14. Hall C., Jacob E., Ringold G., Lee F. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. mol. Appl. Genet. 1983;2:101–109. [PubMed] [Google Scholar]
  15. Hatfield D., Oroszlan S. The where, what and how of ribosomal frameshifting in retroviral protein synthesis. TIBS. 1990;15:186–190. doi: 10.1016/0968-0004(90)90159-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hizi A., Henderson L.E., Copeland T.D., Sowder R.C., Hixson C.V., Oroslan S. Vol. 84. 1987. Characterization of mouse mammary tumor virus gag-pro gene products and the ribosomal frameshift site by protein sequencing; pp. 7041–7045. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature (Lond.) 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
  19. Jacks T., Townsley K., Varmus H.E., Majors J. Vol. 84. 1987. Two efficient ribosomal frameshift events are required for synthesis of mouse mammary tumor virus gag-related polyproteins; pp. 4298–4302. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacks T., Varmus H.E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
  21. Klatzmann D., Barré-Sinoussi F., Nugeyre M.T., Dauguet C., Vilmer E., Griscelli C., Brun-Vézinet F., Rouzioux C., Gluckman J.C., Chermann J.C., Montagnier L. Selective tropism of lymphadenopathy associated virus (LAV) for helper-induced T lymphocytes. Science. 1984;225:59–63. doi: 10.1126/science.6328660. [DOI] [PubMed] [Google Scholar]
  22. Lee S-Y., Chen J-H., Maizel J.V. Thermodynamic stability and statistical significance of potential stem-loop structures situated at the frameshift sites in retroviruses. Nucl. Acids Res. 1989;17:6143–6152. doi: 10.1093/nar/17.15.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lightfoote M.M., Coligan J.E., Folks T.M., Fauci A.S., Martin M.A., Venkatesan S. Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus. J. Virol. 1986;60:771–775. doi: 10.1128/jvi.60.2.771-775.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lim S.K., Mullins J.J., Chen C.M., Gross K.W., Maquat L.E. Novel metabolism of several β0-thalassemic β-globin mRNAs in erythroid tissues of transgenic mice. EMBO J. 1989;9:2613–2619. doi: 10.1002/j.1460-2075.1989.tb08401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Martin R., Moog A.E., Heywood L.A., Nitschke L., Burke J.F. Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol. gen. Genetics. 1989;217:411–418. doi: 10.1007/BF02464911. [DOI] [PubMed] [Google Scholar]
  26. Miller J.H. Cold Spring Harbor Laboratory; New York: 1972. Experiments in molecular genetics. [Google Scholar]
  27. Miller J.H., Albertini A.M. Effects of surrounding sequence on the suppression of nonsense codons. J. mol. Biol. 1983;164:59–71. doi: 10.1016/0022-2836(83)90087-6. [DOI] [PubMed] [Google Scholar]
  28. Nakamaye K.L., Eckstein F. Inhibition of restriction endonuclease NciI cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucl. Acids Res. 1986;14:9679–9698. doi: 10.1093/nar/14.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nguyen V.T., Morange M., Bensaude O. Firefly luciferase luminescence assays using scintillation counters for quantitation in transfected mammalian cells. Ann. Biochem. 1988;171:404–408. doi: 10.1016/0003-2697(88)90505-2. [DOI] [PubMed] [Google Scholar]
  30. Picard-Bennoun M. Does translational ambiguity increase during cell differentiation? FEBS Letters. 1982;149:167–170. doi: 10.1016/0014-5793(82)81094-6. [DOI] [PubMed] [Google Scholar]
  31. Schwartz O., Verelizier J.L., Montagnier L., Hazan U. A microtransfection method using the luciferase-encoding reporter gene for the assay of human immunodeficiency virus LTR promoter activity. Gene. 1990;88:197–205. doi: 10.1016/0378-1119(90)90032-m. [DOI] [PubMed] [Google Scholar]
  32. Tsuchihashi Z., Kornberg A. Vol. 87. 1990. Translational frameshift generates the γ subunit of DNA polymerase III holoenzyme; pp. 2516–2520. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Umezawa H., Okami Y., Hashimoto T., Suhara Y., Hamada M., Takenchi T. A new antibiotic, kasugamycin. J. Antibiot. (Tokio) 1965;18:101–103. (Sér. A) [PubMed] [Google Scholar]
  34. Varmus H. Retroviruses. Science. 1988;240:1427–1434. doi: 10.1126/science.3287617. [DOI] [PubMed] [Google Scholar]
  35. Weiss R.B., Dunn D.M., Shuh M., Atkins J.F., Gesteland R.F. E. coli Ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent. New Biol. 1989;1:159–169. [PubMed] [Google Scholar]
  36. Weiss R., Teich N., Varmus H., Coffin J. Cold Spring Harbor Laboratory; New York: 1982. Molecular biology of tumor viruses, RNA tumor viruses. [Google Scholar]
  37. de Wet J.R., Wood K.V., de Luca M., Helinski D.R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 1987;7:725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wilhem J., Jessop J.J., Pettitt S.E. Aminoglycoside antibiotics and eukaryotic protein synthesis: stimulation oferrors in the translation of natural messengers in extracts of cultured human cells. Biochemistry. 1978;17:1149–1153. doi: 10.1021/bi00600a002. [DOI] [PubMed] [Google Scholar]
  39. Williams T.M., Burlein J.E., Ogden S., Kircka L.J., Kant J.A. Advantages of firefly luciferase as a reporter gene: application to the interleukin-2 gene promoter. Analyt. Biochem. 1989;176:28–32. doi: 10.1016/0003-2697(89)90267-4. [DOI] [PubMed] [Google Scholar]
  40. Wilson W., Braddock M., Adams S.E., Rathjen P.D., Kingsman S.M., Kingsman A.J. HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell. 1988;55:1159–1169. doi: 10.1016/0092-8674(88)90260-7. [DOI] [PubMed] [Google Scholar]
  41. Yoshinaka Y., Katoh I., Copeland T.D., Oroszlan S. Vol. 82. 1985. Murine leukemia virus protease in encoded by the gag-pol gene and is synthetised through suppression of an amber termination codon; pp. 1618–1622. (Proc. nat. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Research in Virology are provided here courtesy of Elsevier

RESOURCES