Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Mar 14;22(2):189–195. doi: 10.1016/0197-0186(93)90012-T

The asymmetric distribution of phosphatidylcholine in rat brain synaptic plasma membranes

Ronit Shina 1, Richard C Crain 2, Philip Rosenberg 3, Eleonora Condrea 1,
PMCID: PMC7135640  PMID: 8439772

Abstract

The distribution of phosphatidylcholine between inner and outer monolayers of rat brain synaptic plasma membrane was investigated by means of a phosphatidylcholine specific exchange protein. About 70% of the total membranal phosphatidylcholine was in the outer leaflet, 33% of which was exposed and readily exchanged in intact synaptosomes while the remainder was exchangeable following osmotic shock. Permeabilization of the synaptic plasma membranes by overnight incubation in buffer or by saponin (<0.08%) exposed an additional 30% of phosphatidylcholine to exchange, presumably from the inner cytoplasmic leaflet. Phosphatidylcholine is therefore asymmetrically distributed in the synaptosomal plasma membrane, as it is in other plasma membranes.

References

  1. Bartlett G.R. Phosphorus assay in column chromatography. J. biol. Chem. 1959;234:466–468. [PubMed] [Google Scholar]
  2. Bishop W.R., Bell R.M. Assembly of phospholipids into cellular membranes: biosynthesis, transmembrane movement and intracellular translocation. A. Rev. Cell Biol. 1988;4:579–584. doi: 10.1146/annurev.cb.04.110188.003051. [DOI] [PubMed] [Google Scholar]
  3. Bloj N., Zilversmit D.B. Asymmetry and transposition rates of phosphatidylcholine in rat erythrocyte ghosts. Biochemistry. 1976;15:1277–1283. doi: 10.1021/bi00651a017. [DOI] [PubMed] [Google Scholar]
  4. Bodemann H., Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J. Membrane Biol. 1972;8:1–26. doi: 10.1007/BF01868092. [DOI] [PubMed] [Google Scholar]
  5. Bonting S.L., Simon K.A., Hawkins N.M. Studies on sodium-potassium-activated adenosine triphosphatase. Arch. Biochem. Biophys. 1961;95:416–423. doi: 10.1016/0003-9861(61)90170-9. [DOI] [PubMed] [Google Scholar]
  6. Booth R.F.G., Clark J.B. A rapid method for preparation of relatively pure metabolically active synaptosomes from rat brain. Biochem. J. 1978;176:365–370. doi: 10.1042/bj1760365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bretscher M.S. Asymmetrical lipid bilayer structure for biological membranes. Nature New Biol. 1972;236:11–16. doi: 10.1038/newbio236011a0. [DOI] [PubMed] [Google Scholar]
  8. Burgess G.M., McKinney J.S., Fabiato A., Leslie B.A., Putney J.W. Calcium pools in saponin-permeabilized guinea pig hepatocytes. J. biol. Chem. 1983;258:15336–15345. [PubMed] [Google Scholar]
  9. Cotman C.W., Matthews D.A. Isolation and partial characterization. Vol. 249. 1971. Synaptic plasma membranes from rat brain synaptosomes; pp. 380–394. (Biochim. Biophys. Acta). [DOI] [PubMed] [Google Scholar]
  10. Crain R.C. Non-specific lipid transfer proteins as probes of membrane structure and function. Lipids. 1982;17:935–943. doi: 10.1007/BF02534589. [DOI] [PubMed] [Google Scholar]
  11. Crain R.C. Phospholipid transfer proteins as probes of membrane structure and function. In: Hilderson H.J., editor. Vol. 16. Plenum Press; N.Y: 1990. pp. 45–67. (Subcellular Biochemistry: Intracellular transfer of lipid molecules). [DOI] [PubMed] [Google Scholar]
  12. Folch J., Lees J., Sloane Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 1957;226:497–513. [PubMed] [Google Scholar]
  13. Fontaine R.N., Harris R.A., Schroeder F. Amino-phospholipid asymmetry in murine synaptosomal plasma membrane. J. Neurochem. 1980;34:269–277. doi: 10.1111/j.1471-4159.1980.tb06592.x. [DOI] [PubMed] [Google Scholar]
  14. Franck P.F.H., Bevers E.M., Lubin B.H., Comfurius P., Chiu D.T.-Y., Op den Kamp J.A.F., Zwall R.F.A. Uncoupling of the membrane skeleton from the lipid bilayer. J. clin. Invest. 1985;75:183–190. doi: 10.1172/JCI111672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freysz L., Dreyfus J., Vincendon G., Binaglia L., Robert R., Porcellati G. Asymmetry of brain microsomal membranes: correlation between the asymmetric distribution of phospholipids and the enzymes involved in their synthesis. In: Horrocks L.A., Ansell G.B., Porcellati G., editors. Vol. 1. Raven Press; N.Y: 1982. pp. 37–47. (Phospholipids in the Nervous System: Metabolism). [Google Scholar]
  16. Gordesky S.E., Marinetti G.V. The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem. biophys. Res. Commun. 1973;50:1027–1031. doi: 10.1016/0006-291x(73)91509-x. [DOI] [PubMed] [Google Scholar]
  17. Kamp H., Wirtz K., Baer P., Slotboom A., Rosenthal J., Paltauf F., Van Deenen L. Specificity of the phosphatidylcholine exchange protein from beef liver. Biochemistry. 1977;16:1310–1316. doi: 10.1021/bi00626a011. [DOI] [PubMed] [Google Scholar]
  18. Karlish S.J.D., Jorgensen P.L., Gitler C. Identification of a membrane-embedded segment of the large polypeptide chain of (Na+, K+) ATPase. Nature. 1977;269:715–717. doi: 10.1038/269715a0. [DOI] [PubMed] [Google Scholar]
  19. Low M.G., Limbrick A.R., Finean J.B. Phospholipase C (Bacillus cereus) acts only at the inner surface of the erythrocyte membrane. FEBS Lett. 1973;34:1–4. doi: 10.1016/0014-5793(73)80689-1. [DOI] [PubMed] [Google Scholar]
  20. Lubin B., Kuypers F., Chiu D. Red cell membrane lipid dynamics. Prog. Clin. Biol. Res. 1989;319:507–524. [PubMed] [Google Scholar]
  21. Marinetti G., Albrecht M., Ford T., Stotz E. Analysis of human plasma phosphatides by paper chromatography. Biochim. Biophys. Acta. 1959;36:4–13. doi: 10.1016/0006-3002(59)90062-9. [DOI] [PubMed] [Google Scholar]
  22. Markwell M.A.K., Haas S.M., Bieber L.L., Tolbert N.E. A modification of the Lowry procedure to simplify protein determinations in membrane and lipoprotein samples. Analyt. Biochem. 1978;87:206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  23. Op den Kamp J.A.F. Lipid asymmetry in membranes. A. Rev. Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  24. Rothman J.E., Lenard J. Membrane asymmetry. Science. 1977;195:743–753. doi: 10.1126/science.402030. [DOI] [PubMed] [Google Scholar]
  25. Rottier P., Brandenburg D., Armstrong J., Van der Zeijst B., Warren G. Vol. 81. 1984. Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the E1 glycoprotein of coronavirus mouse hepatitis virus A59; pp. 1421–1425. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shina R., Yates S.L., Ghassemi A., Rosenberg P., Condrea E. Inhibitory effect of EDTA·Ca2+ on the hydrolysis of synaptosomal phospholipids by phospholipase A2 toxins and enzymes. Biochem. Pharmac. 1990;40:2233–2239. doi: 10.1016/0006-2952(90)90717-y. [DOI] [PubMed] [Google Scholar]
  27. Smith A.P., Loh H.H. Vol. 19. 1976. The topographical distribution of phosphatidylethanolamine and phosphatidylserine in synaptosomal plasma membrane; pp. 147–151. (Proc. West. Pharmac. Soc.). [PubMed] [Google Scholar]
  28. Steck T.L. The organization of proteins in the human red blood cell membrane. J. cell. Biol. 1974;62:1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steck T.L., Wackman N., Tarlov A.R. The exchange of erythrocyte membrane phospholipids with rat liver extracts in vitro. J. Supramol. Sta. 1976;4:169–180. doi: 10.1002/jss.400040204. [DOI] [PubMed] [Google Scholar]
  30. Thorell J.J., Johansson B.G. Enzymatic iodination of polypeptides with I125 to high specific activity. Biochim. Biophys. Acta. 1971;251:363–369. doi: 10.1016/0005-2795(71)90123-1. [DOI] [PubMed] [Google Scholar]
  31. Tohmatsu T., Nishida A., Nagao S., Nakashima S., Nozawa Y. Inhibitory action of cyclic AMP on inositol 1,4,5-triphosphate-induced Ca2+ release in saponin-permeabilized platelets. Biochim. Biophys. Acta. 1989;1013:190–193. doi: 10.1016/0167-4889(89)90048-7. [DOI] [PubMed] [Google Scholar]
  32. Van Meer G., Poorthuis B.J.H.M., Wirtz K.W.A., Op Den Kamp J.A.F., Van Deenen L.L.M. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. Eur. J. Biochem. 1980;103:283–288. doi: 10.1111/j.1432-1033.1980.tb04313.x. [DOI] [PubMed] [Google Scholar]
  33. Wassler M., Jonasson I., Persson R., Fries E. Differential permeabilization of membranes by saponin treatment of isolated rat hepatocytes. Biochem. J. 1987;247:407–415. doi: 10.1042/bj2470407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Westerman J., Kamp H.H., Wirtz K.W.A. Phosphatidylcholine transfer protein from bovine liver. Methods Enzymol. 1983;98:581–586. doi: 10.1016/0076-6879(83)98185-5. [DOI] [PubMed] [Google Scholar]
  35. Wirtz K., Van Kessel G.V., Kamp H.H., Demel K.A. The protein mediated transfer of phosphatidylcholine between membranes. Eur. J. Biochem. 1976;61:515–523. doi: 10.1111/j.1432-1033.1976.tb10046.x. [DOI] [PubMed] [Google Scholar]
  36. Zachowski A., Devaux P.F. Transmembrane movements of lipids. Experientia. 1990;46:644–656. doi: 10.1007/BF01939703. [DOI] [PubMed] [Google Scholar]
  37. Zilversmit D.B. Lipid transfer proteins. J. Lipid Res. 1984;25:1563–1569. [PubMed] [Google Scholar]
  38. Zilversmit D.B., Hughes M.E. Phospholipid exchange between membranes. Methods membr. Biol. 1976;7:211–259. [Google Scholar]
  39. Zwaal R.A. Membrane and lipid involvement in blood coagulation. Biochim. Biophys. Acta. 1978;515:163–169. doi: 10.1016/0304-4157(78)90003-5. [DOI] [PubMed] [Google Scholar]

Articles from Neurochemistry International are provided here courtesy of Elsevier

RESOURCES