Abstract
Background: Advances have been made in selecting sensitive cell lines for isolation, in early detection of respiratory virus growth in cells by rapid culture assays, in production of monoclonal antibodies to improve many tests such as immunofluorescence detection of virus antigens in nasopharyngeal aspirates, in highly sensitive antigen detections by time-resolved fluoroimmunoassays (TR-FIAs) and biotin-enzyme immunoassays (BIOTH-E), and, finally, in the polymerase chain reaction (PCR) detection of respiratory virus DNA or RNA in clinical specimens. All of these advances have contributed to new or improved possibilities for the diagnosis of respiratory virus infections.
Objectives and study design: This review summarizes our experiences during the last 15 years in the development of diagnostic tests for respiratory virus infections, and in use of these tests in daily diagnostic work and in epidemiological studies.
Results: Immunofluorescence tests based on monoclonal antibodies, all-monoclonal TR-FIAs, and biotin-enzyme immunoassays (EIAs) have about the same sensitivities and specificities. They compare well with the sensitivity of virus culture. PCR followed by liquid-phase hybridization is a sensitive method for detecting adenovirus DNA and enterovirus and rhinovirus RNA in clinical specimens. IgG EIA on paired acute and convalescent phase sera is the most sensitive serological test for respiratory virus infections and is a valuable reference method when evaluating the sensitivity of new diagnostic tests. The IgG avidity test can distinguish primary infections from re-infections at least in respiratory syncytial virus (RSV) infections. IgM antibody assays, on the other hand, had low sensitivities in our studies.
Conclusions: The choice of diagnostic methods for respiratory virus infections depends on the type and location of the laboratory, the number of specimens tested, and the previous experience of the laboratory. Virus culture, whenever possible, should be the basic diagnostic method; the results, including identification of the virus, should be available no more than 24 h later than the results of rapid diagnostic tests. In small laboratories, especially in hospitals where specimen transportation is well organized, immunofluorescence may be the best choice for antigen detection with the provision that an experienced microscopist and a good UV microscope are available. If the laboratory receives a large number of specimens and has previous experience with EIAs, then biotin-EIAs or TR-FIAs may be the most practical techniques. Their advantages include the stability of the antigens in clinical samples since intact, exfoliated epithelial cells are not required, treatment of specimens is practical, testing of large numbers of specimens is possible, and reading the printed test result is less subjective than reading fluorescence microscopy. The larger role of PCR in the diagnosis of respiratory virus infections depends on future developments such as practical methods to extract DNA or RNA and to purify the extracts from nonspecific inhibitors, plus further improvements to minimize cross-contamination. Group-specific detection of enteroviruses and rhinoviruses is an example of the potential for PCR technology. In experienced laboratories. EIA IgG antibody tests should be available. Recombinant antigens may be a useful part of such assays.
Keywords: Respiratory viruses, Polymerase chain reaction (PCR), Antigen detection, Rapid culture assay
References
- Agbalika F., Hartemann P., Foliguet J.M. Trypsin-treated MA-I 04: A sensitive cell line for isolating enteric viruses from environmental samples. Appl. Environ. Microbiol. 1984;47:378–380. doi: 10.1128/aem.47.2.378-380.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson L.J., Hierholzer J.C., Bingham P.G., Stone Y.O. Microneutralization test for respiratory syncytial virus based on an enzyme immunoassay. J. Clin. Microbiol. 1985;22:1050–1052. doi: 10.1128/jcm.22.6.1050-1052.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arstila P., Halonen P. Direct antigen detection. In: Lennette E.H., Halonen P., Murphy F.A., editors. Laboratory Diagnosis of Infectious Diseases Principles and Practice, Vol. II. Viral Rickettsial, and Chlamydial Diseases. Springer Verlag; New York: 1988. pp. 60–75. [Google Scholar]
- Castells E., George V.G., Hierholzer J.C. NCI-H292 as an alternative cell line for the isolation and propagation of the human paramyxoviruses. Arch. Virol. 1990;115:277–288. doi: 10.1007/BF01310536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahlen P.O., Iitia A.J., Skagius G., Frostell A., Nunn M.F., Kwiatkowski M. Detection of human immunodeficiency virus type 1 by using the polymerase chain reaction and a time-resolved fluorescence-based hybridization assay. J. Clin. Microbiol. 1991;29:798–804. doi: 10.1128/jcm.29.4.798-804.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dominguez E.A., Taber L.H., Couch R.B. Comparison of rapid diagnostic techniques for respiratory syncytial and influenza A virus respiratory infections in young children. J. Clin. Microbiol. 1993;31:2286–2290. doi: 10.1128/jcm.31.9.2286-2290.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank A.L., Couch R.B., Griffis C.A., Baxter B.D. Comparison of different tissue cultures for isolation and quantitation of influenza and parainfluenza viruses. J. Clin. Microbiol. 1979;10:32–36. doi: 10.1128/jcm.10.1.32-36.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gleaves C.A., Smith T.F., Shuster E.A., Pearson G.R. Rapid detection of cytomegalovirus in MRC-5 cells inoculated with urine specimens by using low-speed centrifugation and monoclonal antibody to an early antigen. J. Clin. Microbiol. 1984;19:917–919. doi: 10.1128/jcm.19.6.917-919.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gleaves C.A., Wilson D.J., Wold A.D., Smith T.F. Detection and serotyping of herpes simplex virus in MRC-5 cells by use of centrifugation and monoclonal antibodies 16 h post inoculation. J. Clin. Microbiol. 1985;21:29–32. doi: 10.1128/jcm.21.1.29-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grandien M., Pettersson C.A., Gardner P.S., Linde A., Stanton A. Rapid viral diagnosis of acute respiratory infections: Comparison of enzyme-linked immunosorbent assay and the immunofluorescence technique for detection of viral antigens in nasopharyngeal secretions. J. Clin. Microbiol. 1985;22:757–760. doi: 10.1128/jcm.22.5.757-760.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths P.D., Stirk P.R., Ganczakowski M., Panjwani D.D., Ball M.G., Blacklock H.A., Prentice H.G. Rapid diagnosis of cytomegalovirus infection in immunocompromised patients by detection of early antigen fluorescent foci. Lancet. 1984;ii:1242–1244. doi: 10.1016/s0140-6736(84)92797-1. [DOI] [PubMed] [Google Scholar]
- Halonen P., Obert G., Hierholzer J.C. Direct detection of viral antigens in respiratory infections by immunoassays: A four year experience and new developments. Med. Virol. 1985;4:65–83. [Google Scholar]
- Halonen P., Meurman O., Lovgren T., Hemmila I., Soini E. Detection of viral antigens by time-resolved fluoroimmunoassay. Curr. Top. Microbiol. Immunol. 1983;104:133–146. doi: 10.1007/978-3-642-68949-9_8. [DOI] [PubMed] [Google Scholar]
- Halonen P., Nikkari S., Waris M., Siitari H., Orvell C., Hierholzer J. One-step time-resolved fluoroimmunoassays based on monoclonal antibodies in detection of respiratory viruses. In: Balows A., Tilton R.C., Turano A., editors. Rapid Methods and Automation in Microbiology and Immunology. Brixia Academic Press; Brescia: 1989. pp. 365–370. [Google Scholar]
- Halonen P., Rocha E., Hierholzer J., Holloway B., Hyypia T., Hurskainen P., Pallansch M. Detection of enteroviruses and rhinoviruses in clinicaj specimens by PCR and liquid-phase hybridization. J. Clin. Microbiol. 1995;33:648–653. doi: 10.1128/jcm.33.3.648-653.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harmon M.W., Jones I., Shaw M., Keitel W., Reimer C.B., Halonen P., Kendal A.P. Immunoassays for serological diagnosis of influenza type A using recombinant DNA produced nucleoprotein antigen and monoclonal antibody to human IgG. J. Med. Virol. 1989;27:25–30. doi: 10.1002/jmv.1890270106. [DOI] [PubMed] [Google Scholar]
- Hierholzer J.C. Rapid diagnosis of viral infection. In: Vaheri A., Tilton R.C., Balows A., editors. Rapid Methods and Automation in Microbiology and Immunology. Springer-Verlag; Berlin: 1991. pp. 556–573. [Google Scholar]
- Hierholzer J.C. Viral causes of respiratory infections. Immunol. Allergy Clin. North Am. 1993;13:27–42. [Google Scholar]
- Hierholzer J.C., Hatch M.H. Acute hemorrhagic conjunctivitis. In: Darrell R.W., editor. Viral Diseases of the Eye. Lea and Febiger; Philadelphia: 1985. pp. 165–196. [Google Scholar]
- Hierholzer J.C., Anderson L.J., Halonen P.E. Monoclonal time-resolved fluoroimmunoassay: Sensitive systems for the rapid diagnosis of respiratory virus infections. In: de La Maza L.M., Peterson E.M., editors. Medical Virology IX. Plenum Press; New York: 1990. pp. 17–45. [Google Scholar]
- Hierholzer J.C., Bingham P.G., Castells E., Coombs R.A. Time-resolved fluoroimmunoassays with monoclonal antibodies for rapid identification of parainfluenza type 4 and mumps viruses. Arch. Virol. 1993;130:335–352. doi: 10.1007/BF01309665. [DOI] [PubMed] [Google Scholar]
- Hierholzer J.C., Castells E., Banks G.G., Bryan J.A., McEwen C.T. Sensitivity of NCI-H292 human lung mucoepidermoid cells for respiratory and other human viruses. J. Clin. Microbiol. 1993;31:1504–1510. doi: 10.1128/jcm.31.6.1504-1510.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hierholzer J.C., Halonen P.E., Dahlen P.O., Bingham P.G., McDonough M.M. Detection of adenovirus in clinical specimens by polymerase chain reaction and liquid-phase hybridization quantitated by time-resolved fluorometry. J. Clin. Microbiol. 1993;31:1886–1891. doi: 10.1128/jcm.31.7.1886-1891.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hierholzer J.C., Halonen P.E., Bingham P.G., Coombs R.A., Stone Y.O. Antigen detection in human respiratory coronavirus infections by monoclonal time-resolved fluoroimmunoassay. Clin. Diag. Virol. 1994;2:165–179. doi: 10.1016/0928-0197(94)90020-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hierholzer J.C., Tannock G.A., Hierholzer C.M., Coombs R.A., Kennett M.L., Phillips P.A., Gust I.D. Subgrouping of respiratory syncytial virus strains from Australia and Papua New Guinea by biological and antigenic characteristics. Arch. Virol. 1994;136:133–147. doi: 10.1007/BF01538823. [DOI] [PubMed] [Google Scholar]
- Hyypiä T., Stanway G. Biology of coxsackie A viruses. Adv. Virus Res. 1993;42:343–373. doi: 10.1016/s0065-3527(08)60089-5. [DOI] [PubMed] [Google Scholar]
- Johnson F.B. Transport of viral specimens. Clin. Microbiol. Rev. 1990;3:120–131. doi: 10.1128/cmr.3.2.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim H.W., Wyatt R.G., Fernie B.F., Brandt C.D., Arrobio J.O., Jeffries B.C., Parrott R.H. Respiratory syncytial virus detection by immunofluorescence in nasal secretions with monoclonal antibodies against selected surface and internal proteins. J. Clin. Microbiol. 1983;18:1399–1404. doi: 10.1128/jcm.18.6.1399-1404.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klenk H.D., Rott R., Orlich M., Blodorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
- Koskinen P., Vuorinen T., Meurman O. Influenza A and B virus IgG and IgM serology by enzyme immunoassays. Epidemiology and Infection. 1987;99:55–64. doi: 10.1017/s0950268800066863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krilov L.R., Lipson S.M., Barone S.R., Kaplan M.H., Ciamician Z., Harkness S.H. Evaluation of a rapid diagnostic test for respiratory syncytial virus (RSV): potential for bedside diagnosis. Pediatrics. 1994;93:903–906. [PubMed] [Google Scholar]
- Lennette E.H., Lennette D.A., Lennette E.T., editors. Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections. 7th edn. American Public Health Association; Washington DC: 1995. [Google Scholar]
- McIntosh K., Halonen P., Ruuskanen O. Report of a workshop on respiratory viral infections: epidemiology, diagnosis, treatment, and prevention. Clin. Infect. Dis. 1993;16:151–164. doi: 10.1093/clinids/16.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meguro H., Bryant J.D., Torrence A.E., Wright P.F. Canine kidney cell line for isolation of respiratory viruses. J. Clin. Microbiol. 1979;9:175–179. doi: 10.1128/jcm.9.2.175-179.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meurman O., Waris M., Hedman K. Immunoglobulin G antibody avidity in patients with respiratory syncytial virus infection. J. Clin. Microbiol. 1992;30:1479–1484. doi: 10.1128/jcm.30.6.1479-1484.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nohynek H., Eskola J., Laine E., Halonen P., Ruutu P., Saikku P. The causes of hospital-treated acute lower respiratory tract infection in children. Am. J. Dis. Child. 1991;145:618–622. doi: 10.1001/archpedi.1991.02160060036016. [DOI] [PubMed] [Google Scholar]
- Palmer, E.L. and Martin, M.L. (1988) Electron Microscopy in Viral Diagnosis CRC Press, Boca Raton, FL.
- Ryan-Poirier K.A., Katz J.M., Webster R.G., Kawaoka Y. Application of Directigen Flu-A for the detection of influenza A virus in human and nonhuman specimens. J. Clin. Microbiol. 1992;30:1072–1075. doi: 10.1128/jcm.30.5.1072-1075.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scalia G., Halonen P.E., Condorelli F., Mattila M.L., Hierholzer J.C. Comparison of monoclonal biotinavidin enzyme immunoassay and monoclonal time-resolved fluoroimmunoassay in detection of respiratory virus antigens. Clin. Diag. Virol. 1995;3:351–359. doi: 10.1016/0928-0197(94)00050-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt N.J., Emmons R.W. General principles of laboratory diagnostic methods for viral, rickettsial and chlamydial infections. In: Schmidt N.J., Emmons R.W., editors. Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections. 6th edn. American Public Health Association; Washington DC: 1989. pp. 1–35. [Google Scholar]
- Walker G.T., Fraiser M.S., Schram J.L., Little M.C., Nadeau J.G., Malinowski D.P. Strand displacement amplification technique—an isothermal, in vitro DNA amplification technique. Nucl. Acids Res. 1992;20:1691–1696. doi: 10.1093/nar/20.7.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walls H.H., Johansson K.H., Harmon M.W., Halonen P.E., Kendal A.P. Time-resolved fluoroimmunoassay with monoclonal antibodies for rapid diagnosis of influenza infections. J. Clin. Microbiol. 1986;24:907–912. doi: 10.1128/jcm.24.6.907-912.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waris M. Pattern of respiratory syncytial virus epidemics in Finland: two-year cycles with alternating-prevalence of groups A and B. J. Infect. Dis. 1991;163:464–469. doi: 10.1093/infdis/163.3.464. [DOI] [PubMed] [Google Scholar]
- Waris M., Ziegler T., Kivivirta M., Ruuskanen O. Rapid detection of respiratory syncytial virus and influenza A virus in cell cultures by immunoperoxidase staining with monoclonal antibodies. J. Clin. Microbiol. 1990;28:1159–1162. doi: 10.1128/jcm.28.6.1159-1162.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vuorinen T., Meurman O. Enzyme immunoassays for detection of IgG and IgM antibodies to parainfluenza types 1, 2 and 3. J. Virol. Methods. 1989;23:63–70. doi: 10.1016/0166-0934(89)90090-6. [DOI] [PubMed] [Google Scholar]
- Ziegler T., Waris M., Rautiainen M., Arstila P. Herpes simplex virus detection by macroscopic reading after overnight incubation and immunoperoxidase staining. J. Clin. Microbiol. 1988;26:2013–2017. doi: 10.1128/jcm.26.10.2013-2017.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziegler T., Hall H., Sanchez-Fauquier A., Gamble W.C., Cox N.J. Type- and subtype-specific detection of influenza viruses in clinical specimens by rapid culture assay. J. Clin. Microbiol. 1995;33:318–321. doi: 10.1128/jcm.33.2.318-321.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
