Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Mar 19;6(1):7–18. doi: 10.1016/0891-0618(93)90003-M

Immunohistochemical and behaviour pharmacological analysis of rats inoculated intranasally with vesicular stomatitis virus

Tommy Andersson 1,2, Abdul KH Mohammed , Bengt G Henriksson , Charlotte Wickman 1, Erling Norrby , Marianne Schultzberg 1, Krister Kristensson 1
PMCID: PMC7135654  PMID: 7679911

Abstract

A temperature-sensitive mutant of vesicular stomatitis virus was inoculated intranasally into infant Sprague Dawley rats aged 9 to 17 days. Rats receiving the virus at 9 days of age had an extensive spread of infection throughout the brain and the animals died after a few days. Rats inoculated at day 11 postnatally survived and the infection was limited to the olfactory pathways, hypothalamus, diagonal bands and the anterior raphe nuclei. Stereological measurements showed that the volume of infected neurons constituted 67 ± 10% of the total neuronal volume in the dorsal raphe nucleus. Double-labelling experiments revealed that both 5-hydroxytryptamine- and substance P-immunoreactive neurons contained the virus antigen. The motor stimulant effect of amphetamine was studied at 3 months post infection. The increase in amphetamine-induced frequency and duration of rearing was significantly attenuated in infected rats and the amphetamine-induced locomotion was slightly reduced.

Keywords: Virus infection 5-Hydroxytryptamine Immunohistochemistry Stereology Amphetamine Locomotion Rearing

References

  1. Archer J. Tests for emotionality in rats and mice: a review. Anim. Behav. 1973;21:205–235. doi: 10.1016/s0003-3472(73)80065-x. [DOI] [PubMed] [Google Scholar]
  2. Barthold S.W. Olfactory neural pathway in mouse hepatitis virus nasoencephalities. Acta Neuropathol. 1988;76:502–506. doi: 10.1007/BF00686390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker J.B., Robinson T.E., Lorenz K.A. Sex differences and estrous cycle variations in amphetamine-elicited rotational behaviour. Eur. J. Pharmacol. 1982;80:65–72. doi: 10.1016/0014-2999(82)90178-9. [DOI] [PubMed] [Google Scholar]
  4. Breese G.R., Cooper B.R., Mueller R.A. Evidence for involvement of 5-dydroxytryptamine in the actions of amphetamine. Brit. J. Pharmac. 1974;52:307–314. doi: 10.1111/j.1476-5381.1974.tb09714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brodin E., Lindefors N., Dalsgaard C.-J., Theodorsson-Norheim E., Rosell S. Tachykinin multiplicity in rat central nervous system as studied using antisera raised against substance P and neurokinin A. Regul. Pept. 1986;13:253–272. doi: 10.1016/0167-0115(86)90044-3. [DOI] [PubMed] [Google Scholar]
  6. Carlsson M., Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia—implications for schizophrenia and Parkinson's disease. TINS. 1990;13:272–276. doi: 10.1016/0166-2236(90)90108-m. [DOI] [PubMed] [Google Scholar]
  7. Carter C.J., Pycock C.J. Differential effects of central serotonin manipulation on hyperactive and stereotyped behaviour. Life Sci. 1978;23:953–960. doi: 10.1016/0024-3205(78)90222-9. [DOI] [PubMed] [Google Scholar]
  8. Creese I., Iversen S.D. The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res. 1975;83:419–436. doi: 10.1016/0006-8993(75)90834-3. [DOI] [PubMed] [Google Scholar]
  9. D'Amato R.J., Blue M.E., Largent B.L., Lynch D.R., Ledbetter D.J., Molliver M.E., Snyder S.H. Vol. 84. 1987. Ontogeny of the serotonergic projection to rat neocortex: Transient expression of a dense innervation to primary sensory areas; pp. 4322–4326. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. de Olmos J., Hardy H., Heimer L. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP study. J. Comp. Neurol. 1978;181:213–244. doi: 10.1002/cne.901810202. [DOI] [PubMed] [Google Scholar]
  11. Dubois-Dalcq M., Rentier B., Hooghe-Peters E., Haspel M.V., Knobler R.L., Holmes K. Acute and persistent viral infections of differentiated nerve cells. Rev. Infect. Dis. 1982;4:999–1014. doi: 10.1093/clinids/4.5.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Emerson S.V. Rhabdoviruses. In: Fields B.N., editor. Virology. Raven Press; New York: 1985. pp. 1119–1132. [Google Scholar]
  13. Fibiger H.C., Campbell B.A. The effect of parachlorophenylalanine on spontaneous locomotor activity in the rat. Neuropharmacology. 1971;10:25–32. doi: 10.1016/0028-3908(71)90005-0. [DOI] [PubMed] [Google Scholar]
  14. Griffin D.E., Mullinix J., Narayan O., Johnson R.T. Age dependence of viral expression: comparative pathogenesis of two rodent-adapted strains of measles virus in mice. Infect. Immun. 1974;9:690–695. doi: 10.1128/iai.9.4.690-695.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hasenöhrl R.U., Huston J.P., Schuurman T. Neuropeptide substance P improves water maze performance in aged rats. Psychopharmacology. 1990;101:23–26. doi: 10.1007/BF02253712. [DOI] [PubMed] [Google Scholar]
  16. Huston J.P., Oitzl M.-S. The relationship between reinforcement and memory: parallels in the rewarding and mnemonic effects of the neuropeptide substance P. Neurosci. Biobehav. Rev. 1989;13:171–180. doi: 10.1016/s0149-7634(89)80027-2. [DOI] [PubMed] [Google Scholar]
  17. Johnson D.G., de C. Nogueira Araujo G.M. A simple method of reducing the fading of immunofluorescence during microscopy. J. Immunol. Meth. 1981;43:349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  18. Johnson R.T. Selective vulnerability of neural cells to viral infections. Brain. 1980;103:447–472. doi: 10.1093/brain/103.3.447. [DOI] [PubMed] [Google Scholar]
  19. Johnson R.T. Raven Press; New York: 1982. Viral Infections of the Nervous System. [Google Scholar]
  20. Jonsson G., Kasamatsu T. Maturation of monoamine neurotransmitters and receptors in cat occipital cortex during postnatal critical period. Exp. Brain Res. 1983;50:449–458. doi: 10.1007/BF00239212. [DOI] [PubMed] [Google Scholar]
  21. Kelly P.H., Serviour P.W., Iversen S.D. Amphetamine and apomorphine responses in the rat following 6-OHDA lesion of the nucleus accumbens septi and corpus striatum. Brain Res. 1975;94:507–522. doi: 10.1016/0006-8993(75)90233-4. [DOI] [PubMed] [Google Scholar]
  22. LaFay F., Coulon P., Astic L., Saucier D., Riche D., Holley A., Flamand A. Spread of the CVS strain of rabies virus and of the avirulent mutant AvOl along the olfactory pathways of the mouse after intranasal inoculation. Virology. 1991;183:320–330. doi: 10.1016/0042-6822(91)90145-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lidow H.G.W., Molliver M.E. Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res. Bull. 1982;9:559–604. doi: 10.1016/0361-9230(82)90164-2. [DOI] [PubMed] [Google Scholar]
  24. Lucot J.B., Seiden J.S. Effects of serotonergic agonists and antagonists on locomotor activity of neonatal rats. Pharmacol., Biochem., Behav. 1986;24:537–541. doi: 10.1016/0091-3057(86)90554-x. [DOI] [PubMed] [Google Scholar]
  25. Lundh B., Kristensson K., Norrby E. Selective infections of olfactory epithelium by vesicular stomatitis and Sendai viruses. Neuropath. appl. Neurobiol. 1987;13:111–122. doi: 10.1111/j.1365-2990.1987.tb00175.x. [DOI] [PubMed] [Google Scholar]
  26. Lundh B., Löve A., Kristensson K., Norrby E. Non-lethal infection of aminergic reticular core neurons: age-dependent spread of is mutant vesicular stomatitis virus from the nose. J. Neuropathol. Exp. Neurol. 1988;47:497–506. doi: 10.1097/00005072-198809000-00001. [DOI] [PubMed] [Google Scholar]
  27. Mabry P.D., Campbell B.A. Ontogeny of serotonergic inhibition of behavioural arousal in the rat. J. Comp. Physiol. Psychol. 1974;86:193–201. doi: 10.1037/h0035946. [DOI] [PubMed] [Google Scholar]
  28. Macrides F., Davis B.J., Youngs W.M., Nadi N.S., Margolis F.L. Cholinergic and catecholaminergic afferents to the olfactory bulb in the hamster: a neuroanatomical, biochemical and histochemical investigation. J. Comp. Neurol. 1981;203:497–516. doi: 10.1002/cne.902030311. [DOI] [PubMed] [Google Scholar]
  29. McLean J.H., Shipley M.T., Bernstein D.I. Golgi-like, transneuronal retrograde labelling with CNS injections of herpes simplex virus type 1. Brain Res. Bull. 1989;22:867–881. doi: 10.1016/0361-9230(89)90032-4. [DOI] [PubMed] [Google Scholar]
  30. Mohammed A.K., Danysz W., Ögren S.O., Archer T. Central noradrenaline depletion attenuates amphetamine-induced locomotor behaviour. Neurosci. Lett. 1986;64:139–144. doi: 10.1016/0304-3940(86)90089-3. [DOI] [PubMed] [Google Scholar]
  31. Mohammed A.K., Magnusson O., Maehlen J., Fonnum F., Norrby E., Schultzberg M., Kristensson K. Behavioural deficits and serotonin depletion in adult rats after transient infant nasal viral infection. Neuroscience. 1990;35:355–363. doi: 10.1016/0306-4522(90)90089-M. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mohammed A.K.H., Maehlen J., Magnusson O., Fonnum F., Kristensson K. Persistent changes in behaviour and brain serotonin during ageing in rats subjected to infant nasal virus infection. Neurobiol. Aging. 1991;13:83–87. doi: 10.1016/0197-4580(92)90013-n. [DOI] [PubMed] [Google Scholar]
  33. Moore K.E. Amphetamines: biochemical and behavioural actions in animals. In: Iversen L.L., Iversen S.D., Snyder S.H., editors. Vol. 11. Plenum Press; New York: 1978. pp. 41–98. (Handbook of Psychopharmacology). [Google Scholar]
  34. Morales J.A., Herzog S., Komptes C., Frese K., Rott R. Axonal transport of Borna disease virus along olfactory pathways in spontaneously and experimentally infected rats. Med. Microbiol. Immunol. 1988;177:51–68. doi: 10.1007/BF00189527. [DOI] [PubMed] [Google Scholar]
  35. Neill D.B., Grant L.D., Grossman S.P. Selective potentiation of locomotor effects of amphetamine by midbrain raphe lesions. Physiol. Behav. 1972;9:655–657. doi: 10.1016/0031-9384(72)90026-1. [DOI] [PubMed] [Google Scholar]
  36. Perlman S., Jacobsen G., Afifi A. Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves. Virology. 1989;170:556–560. doi: 10.1016/0042-6822(89)90446-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rabinowitz S.G., Dal Canto M.C., Johnson T.C. Comparison of central nervous system disease produced by wild-type and temperature-sensitive mutants of vesicular stomatitis virus. Infect. Immun. 1976;13:1242–1249. doi: 10.1128/iai.13.4.1242-1249.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Robinson S.E. 6-Hydroxydopamine lesion of the ventral noradrenergic bundle blocks the effect of amphetamine on hippocampal acetylcholine. Brain Res. 1986;397:181–184. doi: 10.1016/0006-8993(86)91383-1. [DOI] [PubMed] [Google Scholar]
  39. Russel K.H., Giordano M., Sandberg P.R. Amphetamine-induced on- and off-wall rearing in adult laboratory rats. Pharmacol., Biochem., Behav. 1987;26:7–10. doi: 10.1016/0091-3057(87)90524-7. [DOI] [PubMed] [Google Scholar]
  40. Sabin A.B., Olitsky P.K. Influence of host factors on neuroinvasiveness of vesicular stomatitis virus. I. Effect of age on the invasion of the brain by virus instilled in the nose. J. Exp. Med. 1937;66:15–34. doi: 10.1084/jem.66.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sandberg P.R., Henault M.A., Hagenmeyer-Hauser S.H., Russel K.H. The topography of amphetamine and scopolamine-induced hyperactivity: toward an activity print. Behav. Neurosci. 1987;101:131–133. doi: 10.1037//0735-7044.101.1.131. [DOI] [PubMed] [Google Scholar]
  42. Shankar V., Kao M., Hamir A.N., Sheng H., Koprowski H., Dietzschold B. Kinetics of virus spread and changes in levels of several cytolytic mRNAs in the brain after intranasal infection of rats with Borna disease virus. J. Virol. 1992;66:992–998. doi: 10.1128/jvi.66.2.992-998.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shaywitz B.A., Klopper J.H., Gordon J.W. Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine. Nature. 1976;261:153–155. doi: 10.1038/261153a0. [DOI] [PubMed] [Google Scholar]
  44. Shian L.R., Wu M.H., Liu M.T., Ho L.T. Hypothalamic involvement in the locomotor stimulant or satiety action of thyrotropin-releasing hormone and amphetamine. Pharmacology. 1985;30:259–265. doi: 10.1159/000138076. [DOI] [PubMed] [Google Scholar]
  45. Shipley M.T. Transport of molecules from nose to brain: Transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res. Bull. 1985;15:129–142. doi: 10.1016/0361-9230(85)90129-7. [DOI] [PubMed] [Google Scholar]
  46. Shipley M.T., Adamek G.D. The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res. Bull. 1984;12:669–688. doi: 10.1016/0361-9230(84)90148-5. [DOI] [PubMed] [Google Scholar]
  47. Steinbusch H.W.M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat. Cell bodies and terminalsNeuroscience. 1981;6:557–618. doi: 10.1016/0306-4522(81)90146-9. [DOI] [PubMed] [Google Scholar]
  48. Steinbusch H.W.M., Verhofstad A.A.J. Immunofluorescent staining of serotonin in the central nervous system. Adv. Pharmacol. Ther. 1979;2:151–160. [Google Scholar]
  49. Sternberger L.A. 2nd Edn. J. Wiley & Sons; New York: 1979. Immunocytochemistry. [Google Scholar]
  50. Tomlinson A.H., Esiri M.M. Herpes simplex encephalitis. Immunohistological demonstration of spread of virus via olfactory pathways in miceJ. Neurol. Sci. 1983;60:473–484. doi: 10.1016/0022-510x(83)90158-2. [DOI] [PubMed] [Google Scholar]
  51. Wagner R.R. Rhabdoviridae and their replication. In: Fields B.N., Knipe D.M., editors. Vol. 2. Raven Press; New York: 1990. pp. 867–881. (Virology). [Google Scholar]
  52. Warbritton J.D., Stewart R.M., Baldessarini R.J. Decreased locomotor activity and attenuation of amphetamine hyperactivity with intraventricular infusion of serotonin in the rat. Brain Res. 1978;143:373–382. doi: 10.1016/0006-8993(78)90578-4. [DOI] [PubMed] [Google Scholar]
  53. Weibel E.R. Academic Press; London: 1979. Stereological Methods, Vol. 1. Practical Methods for Biological Morphometry. [Google Scholar]
  54. West C.H.K., Michael R.P. Mild stress influences sex differences in exploratory and amphetamine-enhanced activity in rats. Brain Res. 1988;30:95–97. doi: 10.1016/0166-4328(88)90011-3. [DOI] [PubMed] [Google Scholar]
  55. Zifa E., Hernandez J., Fayolle C., Fillion G. Postnatal development of 5-HT1 receptors: [3H]5-HT binding sites and 5HT induced adenylate cyclase activation in rat brain cortex. Dev. Brain Res. 1988;44:133–140. doi: 10.1016/0165-3806(88)90124-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Chemical Neuroanatomy are provided here courtesy of Elsevier

RESOURCES