Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2007 Sep 6;106(7):520–527. doi: 10.1016/S0929-6646(07)60002-3

Laboratory Investigation of a Nosocomial Transmission of Tuberculosis at a District General Hospital

Wei-Lun Huang a, Ruwen Jou a,*, Pen-Fang Yeh b, Angela Huang b; the Outbreak Investigation Team
PMCID: PMC7135660  PMID: 17660141

Abstract

Background/Purpose

Nosocomial outbreak of tuberculosis (TB) is rarely documented and the transmission is usually difficult to confirm because of the long incubation period of the mycobacterial infection. In this report, we demonstrated the use of molecular genotyping methods together with contact tracing to identify the source case, the causative outbreak strain and transmission dynamics of Mycobacterium tuberculosis, and for the definite confirmation of a suspected outbreak.

Methods

M. tuberculosis strains were genotyped with IS6110 restriction fragment length polymorphism, spacer oligonucleotide typing and minisatellite interspersed repetitive unit–variable number tandem repeat methods. Clinical data and contact tracing results were collected from medical records and the National TB Registry.

Results

In this episode, 66 health care workers (HCWs) were notified as TB cases. A total of 18 M. tuberculosis isolates from HCWs and patients were collected. IS6110 RFLP results revealed that 9 out of 10 HCWs' and 7 out of 8 patients' isolates shared the same genotype. The causative isolate was identified as the Beijing genotype. The index case was a hospitalized respirator-dependent patient.

Conclusion

Thorough collection along with molecular diagnosis and genotyping of all M. tuberculosis isolates are recommended for the confirmation of any suspected nosocomial TB outbreak.

Key Words: genotyping, nosocomial transmission, Taiwan, tuberculosis

References

  • 1.Phillips MS, von Reyn CF. Nosocomial infections due to nontuberculous mycobacteria. Clin Infect Dis. 2001;33:1363–1374. doi: 10.1086/323126. [DOI] [PubMed] [Google Scholar]
  • 2.Greenaway C, Menzies D, Fanning A. Delay in diagnosis among hospitalized patients with active tuberculosis–predictors and outcomes. Am J Respir Crit Care Med. 2002;165:927–933. doi: 10.1164/ajrccm.165.7.2107040. [DOI] [PubMed] [Google Scholar]
  • 3.Wilkins D, Woolcock AJ, Cossart YE. Tuberculosis: medical students at risk. Med J Aust. 1994;160:395–397. [PubMed] [Google Scholar]
  • 4.Yologlu S, Durmaz B, Bayindir Y. Nosocomial infections and risk factors in intensive care units. New Microbiol. 2003;26:299–303. [PubMed] [Google Scholar]
  • 5.Larson JL, Lambert L, Stricof RL. Potential nosocomial exposure to Mycobacterium tuberculosis from a broncho-scope. Infect Control Hosp Epidemiol. 2003;24:825–830. doi: 10.1086/502144. [DOI] [PubMed] [Google Scholar]
  • 6.Conde MB, Loivos AC, Rezende VM. Yield of sputum induction in the diagnosis of pleural tuberculosis. Am J Respir Crit Care Med. 2003;167:723–725. doi: 10.1164/rccm.2111019. [DOI] [PubMed] [Google Scholar]
  • 7.McWilliams T, Wells AU, Harrison AC. Induced sputum and bronchoscopy in the diagnosis of pulmonary tuberculosis. Thorax. 2002;57:1010–1014. doi: 10.1136/thorax.57.12.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Keijman J, Tjhie J, Olde DS. Unusual nosocomial transmission of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 2001;20:808–809. doi: 10.1007/s100960100606. [DOI] [PubMed] [Google Scholar]
  • 9.Merlani GM, Francioli P. Established and emerging water-borne nosocomial infections. Curr Opin Infect Dis. 2003;16:343–347. doi: 10.1097/00001432-200308000-00006. [DOI] [PubMed] [Google Scholar]
  • 10.Wan GH, Lu SC, Tsai YH. Polymerase chain reaction used for the detection of airborne Mycobacterium tuberculosis in health care settings. Am J Infect Control. 2004;32:17–22. doi: 10.1016/s0196-6553(03)00090-7. [DOI] [PubMed] [Google Scholar]
  • 11.Menzies D, Fanning A, Yuan L. Tuberculosis among health care workers. N Engl J Med. 1995;332:92–98. doi: 10.1056/NEJM199501123320206. [DOI] [PubMed] [Google Scholar]
  • 12.Nosocomial transmission of Mycobacterium tuberculosis found through screening for severe acute respiratory syndrome–Taipei, Taiwan, 2003. MMWR. 2004;53:321–322. [PubMed] [Google Scholar]
  • 13.Chen YC, Chen PJ, Chang SC. Infection control and SARS transmission among healthcare workers, Taiwan. Emerg Infect Dis. 2004;10:895–898. doi: 10.3201/eid1005.030777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chen ZC. Tuberculosis Annual Report, 2002. Taipei: Center for Disease Control, Department of Health, Taiwan.
  • 15.Veen J. Microepidemics of tuberculosis: the stone-in-the-pond principle. Tuber Lung Dis. 1992;73:73–76. doi: 10.1016/0962-8479(92)90058-R. [DOI] [PubMed] [Google Scholar]
  • 16.Rastogi N, Goh KS, David HL. Drug susceptibility testing in tuberculosis: a comparison of the proportion methods using Lowenstein-Jensen, Middlebrook 7H10 and 7H11 agar media and a radiometric method. Res Microbiol. 1989;140:405–417. doi: 10.1016/0923-2508(89)90016-8. [DOI] [PubMed] [Google Scholar]
  • 17.Telenti A, Imboden P, Marchesi F. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341:647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  • 18.Rad ME, Bifani P, Martin C. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis. 2003;9:838–845. doi: 10.3201/eid0907.020803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.van Embden JD, Cave MD, Crawford JT. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31:406–409. doi: 10.1128/jcm.31.2.406-409.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kamerbeek J, Schouls L, Kolk A. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–914. doi: 10.1128/jcm.35.4.907-914.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Chin PJ, Jou R. A modified automated high-throughput mycobacterial interspersed repetitive unit method for genotyping Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2005;53:325–327. doi: 10.1016/j.diagmicrobio.2005.05.013. [DOI] [PubMed] [Google Scholar]
  • 22.Narvskaya O, Otten T, Limeschenko E. Nosocomial outbreak of multidrug-resistant tuberculosis caused by a strain of Mycobacterium tuberculosis W-Beijing family in St. Petersburg, Russia. Eur J Clin Microbiol Infect Dis. 2002;21:596–602. doi: 10.1007/s10096-002-0775-4. [DOI] [PubMed] [Google Scholar]
  • 23.Jou R, Chiang CY, Huang WL. Distribution of the Beijing family genotypes of Mycobacterium tuberculosis in Taiwan. J Clin Microbiol. 2005;43:95–100. doi: 10.1128/JCM.43.1.95-100.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Bifani PJ, Mathema B, Liu Z. Identification of a W variant outbreak of Mycobacterium tuberculosis via population-based molecular epidemiology. JAMA. 1999;282:2321–2327. doi: 10.1001/jama.282.24.2321. [DOI] [PubMed] [Google Scholar]
  • 25.Supply P, Lesjean S, Savine E. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol. 2001;39:3563–3571. doi: 10.1128/JCM.39.10.3563-3571.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Qian L, Van Embden JD, Van Der Zanden AG. Retrospective analysis of the Beijing family of Mycobacterium tuberculosis in preserved lung tissues. J Clin Microbiol. 1999;37:471–474. doi: 10.1128/jcm.37.2.471-474.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Kent JH. The epidemiology of multidrug-resistant tuberculosis in the United States. Med Clin North Am. 1993;77:1391–1409. doi: 10.1016/s0025-7125(16)30200-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of the Formosan Medical Association are provided here courtesy of Elsevier

RESOURCES