Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1998 Sep 23;29(4):297–307. doi: 10.1016/S0968-4328(98)00011-0

Optimization of phosphorus localization by EFTEM of nucleic acid containing structures

C Quintana *,, S Marco , N Bonnet , C Risco , ML Gutiérrez §, A Guerrero §, JL Carrascosa
PMCID: PMC7135716  PMID: 9744088

Abstract

Energy Filtered Transmission Electron Microscopy (EFTEM) has been used to study nucleic acids localization in unstained thin sections of virus-infected cells. For this purpose, phosphorus maps (P-maps) have been obtained by applying the N-windows Egerton model for background subtraction from data acquired by a non-dedicated TEM Jeol 1200EXII equipped with a post-column PEELS Gatan 666–9000 and a Gatan Image Filter (GIF-100). To prevent possible errors in the evaluation of elemental maps and thus incorrect nucleic acid localization, we have studied different regions of swine testis (ST) cells with similar local density containing either high concentration of nucleic acids (condensed chromatin and ribosomes) or a very low concentration (mitochondria). Special care was taken to optimize the sample preparation conditions to avoid as much as possible the traditional artifacts derived from this source. Selection of the best set of pre-edge images for background fitting was also considered in order to produce “true P-maps”. A new software for interactive processing of images series has been applied to estimate this set. Multivariate Statistical Analysis was used as a filtering tool to separate the “useful information” present in the inelastic image series (characteristic signal) from the “non-useful information” (noise and acquisition artifacts). The reconstitution of the original image series preserving mainly the useful information allowed the computation of P-maps with improved signal-to-noise ratio (SNR). This methodology has been applied to study the RNA content of maturation intermediate coronavirus particles found inside infected cells.

Keywords: EFTEM, elemental P-maps, image processing, coronaviruses

References

  1. Adamson-Sharpe K.M., Ottensmeyer F.P. Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Microsc. 1981;122:309–314. doi: 10.1111/j.1365-2818.1981.tb01271.x. [DOI] [PubMed] [Google Scholar]
  2. Abolhassani-Dadras S., Vazquez-Nin G.H., Echevarria O.M., Boutinard Rouelle-Rossier V., Fakan S. ESI in situ analysis of extrachromosomal RNP granules. J. Microsc. 1994;174:23–238. [Google Scholar]
  3. Abolhassani-Dadras S., Vazquez-Nin G.H., Echevarria O.M., Fakan S. Image-EELS for in situ estimation of phosphorus content of RNP granules. J. Microsc. 1996;183:215–222. [Google Scholar]
  4. Bazett-Jones D.P., Ottensmeyer F.P. Phosphorus distribution in the nucleosome. Science. 1981;211:169–170. doi: 10.1126/science.7444457. [DOI] [PubMed] [Google Scholar]
  5. Bazett-Jones D.P. Empirical basis for phosphorus mapping and structure determination of DNA: protein complexes by electron spectroscopic imaging. Microbeam Anal. J. 1993;2:69–79. [Google Scholar]
  6. Beniac D.R., Czarnota G.J., Rutherford B.L., Ottensmeyer F.P., Harauz G. Three-dimensional architecture of Thermomyces lanuginosus small subunit ribosomal RNA. Micron. 1997;28:13–20. [Google Scholar]
  7. Beniac D.R., Czarnota G.J., Rutherford B.L., Ottensmeyer F.P., Harauz G. The in situ architecture of E. coli ribosomal RNA derived from electron spectroscopic imaging and three-dimensional reconstruction. J. Microsc. 1997;188:24–35. doi: 10.1046/j.1365-2818.1997.2370795.x. [DOI] [PubMed] [Google Scholar]
  8. Bonnet N., Colliex C., Mory C., Tence M. Developments in processing image sequences for elemental mapping. Scanning Microsc. Suppl. 1988;2:351–364. [PubMed] [Google Scholar]
  9. Bonnet N., Simova E., Lebonvallet S., Kaplan X. New applications of multivariate statistical analysis in spectroscopy and microscopy. Ultramicroscopy. 1992;40:1–11. [Google Scholar]
  10. Bonnet N., Trebbia P. Multi-dimensional data analysis and processing in electron-induced microanalysis. Scanning Microscopy Suppl. 1992;6:163–177. [Google Scholar]
  11. Bonnet N. Processing of images and image series: a tutorial review for chemical microanalysis. Mikrochim. Acta. 1995;120:195–210. [Google Scholar]
  12. Bonnet N., Zahm J.M. Analysis of image sequences in fluorescence videomicroscopy of stationary objects. Cytometry. 1998;31:217–228. doi: 10.1002/(sici)1097-0320(19980301)31:3<217::aid-cyto9>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  13. Bretaudiere J.P., Frank J. Reconstitution of molecular images analyzed by correspondence analysis: a tool for structural interpretation. J. Microsc. 1986;144:1–14. doi: 10.1111/j.1365-2818.1986.tb04669.x. [DOI] [PubMed] [Google Scholar]
  14. Colliex C., Tence M., Lefévre E., Mory C., Gu H., Bouchet D., Jean-guillaume C. Electron Energy Loss Spectrometry mapping. Mikrochim. Acta. 1994;114/115:71–87. [Google Scholar]
  15. Egerton R.F. Inelastic scattering of 80 keV electrons in amorphous carbon. Phil. Mag. 1975;31:199–215. [Google Scholar]
  16. Le Furgey A., Davilla S.D., Kopf D.A., Sommer J.R., Ingram P. Real-time quantitative elemental analysis and mapping: microchemical imaging in cell physiology. J. of Microsc. 1992;165:191–223. doi: 10.1111/j.1365-2818.1992.tb01481.x. [DOI] [PubMed] [Google Scholar]
  17. Grief C., Nermut M.V., Hockley D.J. A morphological and immunolabeling study of freeze-substituted human and simian immunodeficiency viruses. Micron. 1994;25:119–128. doi: 10.1016/0968-4328(94)90036-1. [DOI] [PubMed] [Google Scholar]
  18. Harauz G., Ottensmeyer F.P. Nucleosome reconstitution via Phosphorus mapping. Science. 1984;226:936–940. doi: 10.1126/science.6505674. [DOI] [PubMed] [Google Scholar]
  19. Harauz G., Evans D.H., Beniac D.R., Arsenault A.L., Rutherford B., Ottensmeyer F.P. Electron spectroscopic imaging of encapsidated DNA in vaccinia virus. Can. J. Microbiol. 1995;41:889–894. doi: 10.1139/m95-122. [DOI] [PubMed] [Google Scholar]
  20. Hofer F., Warbichler P., Grogger W. Imaging of nanometer-sized precipitates in solids by electron spectroscopic imaging. Ultramicroscopy. 1995;59:15–31. [Google Scholar]
  21. Heng Y.-M., Simon G.T., Boublik M., Ottensmeyer F.P. Experimental ionization cross-sections of phophorus and calcium by electron spectroscopic imaging. J. Microsc. 1990;160:161–171. doi: 10.1111/j.1365-2818.1990.tb03055.x. [DOI] [PubMed] [Google Scholar]
  22. Jeanguillaume C., Colliex C., Trebbia P. About the use of electron energy loss spectroscopy for chemical mapping of thin foils with high spacial resolution. Ultramicroscopy. 1978;3:137–142. doi: 10.1016/s0304-3991(78)80030-8. [DOI] [PubMed] [Google Scholar]
  23. Korn A.P., Spitnik-Elson P., Elson D., Ottensmeyer F.P. Specific visualization of ribosomal RNA in the intact ribosome by electron spectroscopic imaging. Eur. J. Cell Biol. 1983;31:334–340. [PubMed] [Google Scholar]
  24. Krivanek O.L., Alexander J.G., Dellby N., Meyer C.E. Design and first applications of a post-column imaging filter. Microsc. Microanal. Microstruct. 1992;3:187–199. [Google Scholar]
  25. Krivanek O.L., Friedman S.L., Gubbens A.J., Kraus B. An imaging filter for biological applications. Ultramicroscopy. 1995;59:267–282. doi: 10.1016/0304-3991(95)00034-x. [DOI] [PubMed] [Google Scholar]
  26. Krivanek O.L., Kundmann M.K., Kimoto K. Spatial resolution in EFTEM elemental maps. J. Microsc. 1995;180:277–287. [Google Scholar]
  27. Leapman R.D. Scanning transmission electron microscope (STEM) elemental mapping by electron energy loss spectroscopy. Annals New York Acad. Sci. 1986;483:327–338. doi: 10.1111/j.1749-6632.1986.tb34539.x. [DOI] [PubMed] [Google Scholar]
  28. Leapman R.D., Hunt J.A. Comparison of detection limits for EELS and EDXS. Microsc. Microanal. Microstruct. 1991;2:231–244. [Google Scholar]
  29. Olins A.L., Olins D.E., Bazett-Jones D.P. Osmium ammine-B and electron spectroscopic imaging of ribonucleoproteins: correlation of stain and phosphorus. Biol. Cel. 1996;87:143–147. [PubMed] [Google Scholar]
  30. Ottensmeyer F.P. Elemental mapping by energy filtration: advantages, limitations, compromises. Annals New York Acad. Sci. 1986;483:339–353. doi: 10.1111/j.1749-6632.1986.tb34541.x. [DOI] [PubMed] [Google Scholar]
  31. Ottensmeyer F.P., Andrew J.W. High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J. Ultrastruct. Res. 1980;72:336–348. doi: 10.1016/s0022-5320(80)90069-6. [DOI] [PubMed] [Google Scholar]
  32. Ottensmeyer F.P., Frankland B.W. Spectral processing for parallel recording of elemental maps. Scanning Microsc. Suppl. 1988;2:343–350. [PubMed] [Google Scholar]
  33. Ottensmeyer F.P., Andrews A.L., Arsenault Y.M., Heng G.T., Simon G.C., Weatherly G.C. Elemental Imaging by Electron Energy Loss Microscopy. Scanning. 1988;10:227–238. [Google Scholar]
  34. Özel M., Pauli G., Gelderblom H.R. Electron spectroscopic imaging (ESI) of viruses using thin-section and immunolabeling preparations. Ultramicroscopy. 1990;32:35–41. doi: 10.1016/0304-3991(90)90091-y. [DOI] [PubMed] [Google Scholar]
  35. Quintana C. X-ray microanalysis of cell nuclei. J. Electron Microsc. Techn. 1991;18:411–423. doi: 10.1002/jemt.1060180410. [DOI] [PubMed] [Google Scholar]
  36. Quintana C. Cryofixation, cryosubstitution, cryoembedding for ultrastructural, immunocytochemical and microanalytical studies. Micron. 1994;25:63–99. doi: 10.1016/0968-4328(94)90056-6. [DOI] [PubMed] [Google Scholar]
  37. Quintana C., Bonnet N. Improvements in biological X-ray microanalysis: cryoembedding for specimen preparation and multivariate statistical analysis for data interpretation. Scanning Microsc. Suppl. 1994;8:83–99. [PubMed] [Google Scholar]
  38. Quintana C., Bonnet N. Multivariate statistical analysis applied to X-ray spectra and X-ray mapping of liver cell nuclei. Scanning Microsc. 1994;8:563–586. [PubMed] [Google Scholar]
  39. Quintana C., Marco S., Carrascosa J.L. Evaluation of the analytical and imaging performances of a non-dedicated TEM equipped with a parallel electron energy loss spectrometer (PEELS) and image filter (IF) J. Trace Microprobe Techn. 1997;15:175–188. [Google Scholar]
  40. Rattner J.B., Bazett-Jones D.P. Kinetochore structure: electron spectroscopic imaging of the kinetochore. J. Cell Biol. 1989;108:1209–1219. doi: 10.1083/jcb.108.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Reimer L., Messemer W.M.R. Contrast in the electron spectroscopic imaging mode of a TEM. II. Z-ratio, structure-sensitive and phase contrast. J. Microsc. 1990;159:143–160. [Google Scholar]
  42. Risco C., Antón I.M., Sun˜é C., Pedregosa A.M., Martín-Alonso J.M., Parra F., Carrascosa J.L., Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the car☐yterminal region on the external surface of the virion. J. Virol. 1995;69:5269–5277. doi: 10.1128/jvi.69.9.5269-5277.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Risco C., Muntión M., Enjuanes L., Carrascosa J.L. Two types of viral-related particles are found during TGEV morphogenesis. J. Virol. 1998;12:4022–4031. doi: 10.1128/jvi.72.5.4022-4031.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tenailleau H., Martin J.M. A new background subtraction for low-energy EELS core edges. J. of Microsc. 1992;166:297–306. [Google Scholar]
  45. Shuman H., Chang C.F., Buhle J.R., Somlyo A.P. Electron Energy Spectroscopy: Quantitation and Imaging. Annals New York Acad. Sci. 1986;483:295–310. doi: 10.1111/j.1749-6632.1986.tb34536.x. [DOI] [PubMed] [Google Scholar]
  46. Trebbia P., Bonnet N. EELS elemental mapping with unconventional methods. I. Theoretical basis: image analysis with multivariate statistics and entropy concepts. Ultramicroscopy. 1990;34:165–178. doi: 10.1016/0304-3991(90)90070-3. [DOI] [PubMed] [Google Scholar]
  47. Trebbia P., Mory C. EELS elemental mapping with unconventional methods. II. Applications to biological specimens. Ultramicroscopy. 1990;34:179–203. doi: 10.1016/0304-3991(90)90071-s. [DOI] [PubMed] [Google Scholar]
  48. Vazquez-Nin G.H., Abolhassani-Dadras S., Echevarria O.M., Boutinard Rouelle-Rossier V., Fakan S. Phosphorus distribution in perichromatin granules and surrounding nucleoplasm as visualized by electron spectroscopic imaging. Biol. Cell. 1996;87:171–177. [PubMed] [Google Scholar]

Articles from Micron (Oxford, England : 1993) are provided here courtesy of Elsevier

RESOURCES