Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2007 Nov 30;144:419–453. doi: 10.1016/S0923-2516(06)80059-2

Progress towards a higher taxonomy of viruses

Vers une taxonomie hiérarchique des virus

CW Ward 1
PMCID: PMC7135741  PMID: 8140287

Abstract

The current consensus view is that a higher hierarchical taxonomy of viruses cannot be established for two reasons. Firstly, viruses appear to be polyphyletic in origin, with several sets of viruses arising by different, independent routes at different times. Secondly, subsequent virus adaptation for survival in different host/vector combinations has involved the selective acquisition of additional genes by a process of cassette or modular evolution, with these additional gene modules coming from other viruses or host genetic material. Thus, depending on the gene product used for comparison, different phylogenetic relationships can be deduced. Further virus adaptation can arise by reassortment of segmented genomes, gene duplication, deletions, frameshift mutations, point mutations or de novo development of new gene products from existing, unused reading frames.

The solution to the first objection is to place all viruses in a separate kingdom and assign the current viruses to several phyla that reflect these diverse origins. The solution to the second objection is to consider the core module of replication machinery as the major criterion on which to make the initial assignments to classes and orders. For RNA viruses, the major criterion is the sequence identity of the RNA-dependent RNA polymerase.

Using this criterion, the positive strand RNA viruses can be assigned to five classes that correspond to the recently recognized supergroups of RNA viruses. These five classes contain four, three, three, three and one order(s) respectively. These fourteen orders contain 31 virus families (including 17 families of plant viruses) and 48 genera (including 30 genera of plant viruses). This approach confirms the separation of the alphaviruses and flaviviruses into two families, the Togaviridae and Flaviridae, but suggests that several other current taxonomic assignments, such as the pestiviruses, hepatitis C virus, rubiviruses, hepatitis E virus and arteriviruses, may be wrong. The coronaviruses and toroviruses appear to be distinct families in distinct orders, not distinct genera of the same family as currently classified. In addition, the luteoviruses are split into two families and apple chlorotic leaf spot virus appears not to be a closterovirus but a new genus of the Potexviridae.

From an analysis of the polymerase dendrograms of the dsRNA viruses, it appears that they are not closely related to each other, but belong to four additional classes (Partitiviridae, Reoviridae, Birnaviridae and Cystoviridae) and one additional order (Totiviridae) of one of the classes of positive ssRNA viruses in the same subphylum as the positive strand RNA viruses. The negative strand virus polymerase relationships confirm the assignment of the negative strand viruses to two orders in a single class in a separate subphylum of the RNA viruses.

This review includes preliminary data suggesting that the DNA viruses can also be assigned to higher taxa on the basis of the sequence identities of their highly conserved DNA polymerases. The suggested use of viral polymerases to establish higher order relationships is similar in principle to the use of highly conserved ribosomal RNA gene sequences in prokaryotic and eukaryotic taxonomy. This review also discusses the assignment of 33 of the 35 groups of plant viruses into genera of 25 families based on the nature of the genome and its arrangement, the level of sequence identity and, to a lesser extent, particle morphology.

Keywords: Virus, Taxonomy, Hierarchy; DNA viruses, RNA viruses; Review

Abbreviation: dsDNA, double-stranded DNA; dsRNA, double-stranded RNA; ICNV, International Committee on Nomenclature of Viruses; ICTV, International Committee for Taxonomy of Viruses; kb, kilobase; kbp, kilobase pair; ORF, open reading frame; ssDNA, single-stranded DNA; ssRNA, single-stranded RNA

References

  1. Ackermann H.-W. Tailed phages. In: Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F., editors. Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag; Brescia, Italy: 1991. pp. 159–166. [Google Scholar]
  2. Ackermann H.-W. Leviviridae. In: Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F., editors. Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag; Heidelberg, Berlin: 1991. pp. 306–308. [Google Scholar]
  3. Agranovsky A.A., Boyki A.P., Karasev A.V., Lunina N.A., Koonin E.V., Dolja V.V. Nucleotide sequence of the 3′-terminal half of beet yellow closterovirus RNA genome: unique arrangement of eight virus genes. J. Gen. Virol. 1991;72:15–23. doi: 10.1099/0022-1317-72-1-15. [DOI] [PubMed] [Google Scholar]
  4. Ahlquist B., Strauss E.G., Rice C.M., Strauss J.H., Haseloff J., Zimmern D. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses. J. Virol. 1985;53:536–542. doi: 10.1128/jvi.53.2.536-542.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Argos P., Kamer G., Nicklin M.J.H., Wimmer E. Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucl. Acids Res. 1984;122:7251–7267. doi: 10.1093/nar/12.18.7251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bar-Joseph M., Murant A.F. Closterovirus group. CMI/AAB Descriptions of Plant Viruses. 1982;(No. 260) [Google Scholar]
  7. Barnett O.W. Potyviridae, a proposed family of plant viruses. Arch. Virol. 1991;118:139–141. doi: 10.1007/BF01311310. [DOI] [PubMed] [Google Scholar]
  8. Barnett O.W. Springer-Verlag; Heidelberg, Berlin: 1992. Potyvirus Taxonomy. [Google Scholar]
  9. Boyko P.V., Karasev A.V., Agranovsky A.A., Koonin E.V., Dolja V.V. Vol. 89. 1992. Coat protein gene duplication in a filamentous RNA virus of plants; pp. 9156–9160. (Proc. Natl. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Braithwaite D.K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucl. Acids Res. 1993;21:787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bruenn J.A. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucl. Acids Res. 1991;19:217–226. doi: 10.1093/nar/19.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Buck K.W., Ghabrial S.A. Totiviridae. In: Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F., editors. Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag; Heidelberg, Berlin: 1991. pp. 203–205. [Google Scholar]
  13. Carrington J.C., Morris T.J., Stockley P.G., Harrison S.C. Structure and assembly of turnip crinkle virus. Analysis of the coat protein gene and implications of the subunit primary structure. J. Mol. Biol. 1987;194:265–276. doi: 10.1016/0022-2836(87)90374-3. [DOI] [PubMed] [Google Scholar]
  14. Colman P.M., Ward C.W. Structure and diversity of influenza virus neuraminidase. Curr. Topics Microbiol. Immunol. 1985;114:177–255. doi: 10.1007/978-3-642-70227-3_5. [DOI] [PubMed] [Google Scholar]
  15. Dasgupta R., Kaesberg P. Complete nucleotide sequences of the coat protein messenger RNAs of brome mosaic virus and cowpea chlorotic mottle virus. Nucl. Acids Res. 1982;10:703–713. doi: 10.1093/nar/10.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Davies C., Symons R.H. Further implications for the evolutionary relationships between tripartite plant viruses based on cucumber mosaic virus RNA 3. Virology. 1988;165:216–224. doi: 10.1016/0042-6822(88)90675-7. [DOI] [PubMed] [Google Scholar]
  17. Demler S.A., de Zeoten G.A. The nucleotide sequence and luteovirus-like nature of RNA 1 of an aphid non-transmissible strain of pea enation mosaic virus. J. Gen. Virol. 1991;72:1819–1834. doi: 10.1099/0022-1317-72-8-1819. [DOI] [PubMed] [Google Scholar]
  18. Ding S., Keese P., Gibbs A. Nucleotide sequence of the ononis yellow mosaic tymovirus genome. Virology. 1989;172:555–563. doi: 10.1016/0042-6822(89)90198-0. [DOI] [PubMed] [Google Scholar]
  19. Dolja V.V., Carrington J.C. Evolution of positive-strand RNA viruses. Sem. Virol. 1992;3:315–326. [Google Scholar]
  20. Dolja V.V., Boyko V.P., Agranovsky A.A., Koonin E.V. Phylogeny of capsid proteins of rodshaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology. 1991;184:79–86. doi: 10.1016/0042-6822(91)90823-t. [DOI] [PubMed] [Google Scholar]
  21. Fazekas de St Groth S. Evolution and hierarchy of influenza viruses. Arch. Environ. Health. 1970;21:293–303. doi: 10.1080/00039896.1970.10667241. [DOI] [PubMed] [Google Scholar]
  22. Fazekas de St Groth S. Antigenic, adaptive and adsorptive variants of the influenza A hemagglutinin. In: Laver W.G., Bachmayer H., Weil R., editors. The Influenza Virus Hemagglutinin. Springer-Verlag; Heidelberg, Berlin: 1978. pp. 25–48. [Google Scholar]
  23. Fenner F. Portraits of viruses: the poxviruses. Intervirology. 1979;11:137–157. doi: 10.1159/000149027. [DOI] [PubMed] [Google Scholar]
  24. Forster R.L.S., Bevan M.W., Harbison S.-A., Gardner R.C. The complete nucleotide sequences of the potexvirus white clover mosaic virus. Nucl. Acids Res. 1988;16:291–303. doi: 10.1093/nar/16.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fraenkel-Conrat H. Plenum Press; Heidelberg, Berlin: 1985. The Viruses: catalogue, characterization and classification. [Google Scholar]
  26. Francki R.I.B. Current problems in plant virus taxonomy. In: Matthews R.E.F., editor. A Critical Appraisal of Viral Taxonomy. CRC Press; New York: 1983. pp. 63–104. [Google Scholar]
  27. Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F. Springer-Verlag; Boca Raton, FL: 1991. Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses. [Google Scholar]
  28. Franssen H., Leunissen J., Goldbach R., Lomonosoff G., Zimmern D. Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses. EMBO J. 1984;3:855–861. doi: 10.1002/j.1460-2075.1984.tb01896.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Fujimura T., Wickner R.B. Gene overlap results in a viral protein having an RNA binding domain and a major coat protein domain. Cell. 1988;55:663–671. doi: 10.1016/0092-8674(88)90225-5. [DOI] [PubMed] [Google Scholar]
  30. Georgopoulos C., Tilly K., Casjens S. Lambdoid phage head assembly. In: Hendrix R.W., Roberts J.W., Stahl F.W., Weisberg R.A., editors. Lambda II. Cold Spring Harbor Laboratory; Heidelberg, Berlin: 1983. pp. 279–304. [Google Scholar]
  31. German S., Candresse T., Lanneau M., Huet J.C., Pernollet J.C., Dunez J. Nucleotide sequence and genomic organisation of apple chlorotic leaf spot closterovirus. Virology. 1990;179:104–112. doi: 10.1016/0042-6822(90)90279-z. [DOI] [PubMed] [Google Scholar]
  32. Goldbach R. Genome similarities between plant and animal RNA viruses. Microbiol. Sci. 1987;4:197–202. [PubMed] [Google Scholar]
  33. Goldbach R. The recombinative nature of potyviruses: implications for setting up true phylogenetic taxonomy. In: Barnett O.W., editor. Potyvirus Taxonomy. Springer-Verlag; New York: 1992. pp. 299–304. [DOI] [PubMed] [Google Scholar]
  34. Goldbach R., Wellink J. Evolution of plus-stranded RNA viruses. Intervirology. 1988;29:260–267. doi: 10.1159/000150054. [DOI] [PubMed] [Google Scholar]
  35. Gorbalenya A.E., Koonin E.V. Viral proteins containing the purine NTP-binding sequence pattern. Nucl. Acids Res. 1989;17:8413–8440. doi: 10.1093/nar/17.21.8413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Guilley H., Carrington J.C., Balazs E., Jonard G., Richards K., Morris T.J. Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucl. Acids Res. 1985;13:6663–6677. doi: 10.1093/nar/13.18.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Habili N., Symons R.H. Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucl. Acids Res. 1989;17:9543–9555. doi: 10.1093/nar/17.23.9543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hamamatsu C., Toriyama S., Toyoda T., Ishihama A. Ambisense coding strategy of the rice stripe virus genome: in vitro translation studies. J. Gen. Virol. 1993;74:1125–1131. doi: 10.1099/0022-1317-74-6-1125. [DOI] [PubMed] [Google Scholar]
  39. Harrison S.C. Principles of virus structure. In: Fields B.N., Knipe D.M., Chanock R.M., Hirsch M.S., Melnick J.L., Monath T.P., Roizman B., editors. Virology. 2nd Edition. Raven Press; Heidelberg, Berlin: 1990. pp. 37–61. [Google Scholar]
  40. Haseloff J., Goelet P., Zimmern D., Ahlquist P., Dasgupta R., Kaesberg P. Vol. 81. 1984. Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organisation; pp. 4358–4362. (Proc. Natl. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hearne P.Q., Knorr D.A., Hillman B.I., Morris T.J. The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virology. 1990;177:141–151. doi: 10.1016/0042-6822(90)90468-7. [DOI] [PubMed] [Google Scholar]
  42. Howard C.R. Hepadnaviridae. In: Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F., editors. Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Virues. Springer-Verlag; New York: 1991. pp. 111–116. [Google Scholar]
  43. Howarth A.J., Goodman R.M. Divergence and evolution of geminivirus genomes. J. Mol. Evol. 1986;23:313–319. [Google Scholar]
  44. Hudson P.J., McKern N.M., Power B.E., Azad A.A. Genomic structure of the large RNA segment of infectious bursal disease virus. Nucl. Acids Res. 1986;14:5001–5012. doi: 10.1093/nar/14.12.5001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Huisman M.J., Linthorst H.J.M., Bol J.F., Cornelissen B.J.C. The complete nucleotide sequence of potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J. Gen. Virol. 1988;69:1789–1798. doi: 10.1099/0022-1317-69-8-1789. [DOI] [PubMed] [Google Scholar]
  46. Jagadish M.N., Staton V.J., Hudson P.J., Azad A.A. Birnavirus precursor polyprotein is processed in Escherichia coli by its own virus-encoded polypeptide. J. Virol. 1988;62:1084–1087. doi: 10.1128/jvi.62.3.1084-1087.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kakutani T., Hayano Y., Hayashi T., Minobe Y. Ambisense segment 4 of rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae) J. Gen. Virol. 1990;71:1427–1432. doi: 10.1099/0022-1317-71-7-1427. [DOI] [PubMed] [Google Scholar]
  48. Kashiwazaki S., Minobe Y., Minobe T., Hibino H. Nucleotide sequence of barley yellow mosaic virus RNA 1: a close evolutionary relationship with potyviruses. J. Gen. Virol. 1990;71:2781–2790. doi: 10.1099/0022-1317-71-12-2781. [DOI] [PubMed] [Google Scholar]
  49. Katsura I. Tail assembly and injection. In: Hendrix R.W., Roberts J.W., Stahl F.W., Weisberg R.A., editors. Lambda II. Cold Spring Harbor Laboratory; Heidelberg, Berlin: 1983. pp. 331–346. [Google Scholar]
  50. Keese P., Mackenzie A., Gibbs A. Nucleotide sequence of the genome of an Australian isolate of turnip yellow mosaic tymovirus. Virology. 1989;172:536–546. doi: 10.1016/0042-6822(89)90196-7. [DOI] [PubMed] [Google Scholar]
  51. Kingsbury D.W. Nomenclature of plant viruses. In: Ride W.D.L., Younes T., editors. Biological Nomenclature Today. IRL Press; New York: 1987. pp. 49–57. IVBS Monograph Series 2. [Google Scholar]
  52. Kingsman A.J., Adams S.E., Burns N.R., Kingsman S.M. Retroelement particles as purification, presentation and targeting vehicles. Trends in Biotech. 1991;9:303–309. doi: 10.1016/0167-7799(91)90100-v. [DOI] [PubMed] [Google Scholar]
  53. Klein C., Fritsch C., Briand J.P., Richards K.E., Jonard G., Hirth L. Physical and functional heterogeneity in TYMV RNA: evidence for the existence of an independent messenger coding for the coat protein. Nucl. Acids Res. 1976;3:3043–3061. doi: 10.1093/nar/3.11.3043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Koonin E.V. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 1991;72:2197–2206. doi: 10.1099/0022-1317-72-9-2197. [DOI] [PubMed] [Google Scholar]
  55. Koonin E.V. Evolution of double-stranded RNA viruses: a case for polyphyletic origin from different groups of positive-stranded RNA viruses. Sem. Virol. 1992;3:327–339. [Google Scholar]
  56. Koonin E.V., Choi G.H., Nuss D.L., Shapira R., Carrington J.C. Vol. 88. 1991. Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive strand RNA viruses; pp. 10647–10651. (Proc. Natl. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Lawrence M.C., Suzuki E., Varghese J.N., Davis P.C., Van Donkelaar A., Tulloch P.A., Colman P.M. The three-dimensional structure of the seed storage protein phaseolin at 3A resolution. EMBO J. 1990;9:9–15. doi: 10.1002/j.1460-2075.1990.tb08074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Lommel S.A., Weston-Fina M., Xiong Z., Lomonossoff G.P. The nucleotide sequence and gene organisation of red clover necrotic mosaic virus RNA-2. Nucl. Acids Res. 1988;16:8587–8602. doi: 10.1093/nar/16.17.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Lwoff A. Principles of classification and nomenclature. Nature (Lond.) 1967;215:13–14. doi: 10.1038/215013a0. [DOI] [PubMed] [Google Scholar]
  60. Mans R.M.W., Pleij C.W.A., Bosch L. tRNA-like structures; structure, function and evolutionary significance. Eur. J. Biochem. 1991;201:303–324. doi: 10.1111/j.1432-1033.1991.tb16288.x. [DOI] [PubMed] [Google Scholar]
  61. Martelli G.P. Classification and nomenclature of plant viruses: state of the art. Plant Dis. 1992;76:436–442. [Google Scholar]
  62. Martin R.R., Keese P.K., Young M.J., Waterhouse P.M., Gerlach W.L. Evolution and molecular biology of luteoviruses. Ann. Rev. Phytopathol. 1990;28:341–363. [Google Scholar]
  63. Matthews R.E.F. The history of viral taxonomy. In: Matthews R.E.F., editor. Critical appraisal of viral taxonomy. CRC Press; Arlington, VA: 1983. pp. 1–35. [Google Scholar]
  64. Matthews R.E.F. Viral taxonomy for the nonvirologist. Ann. Rev. Microbiol. 1985;39:451–474. doi: 10.1146/annurev.mi.39.100185.002315. [DOI] [PubMed] [Google Scholar]
  65. Matthews R.E.F. Viral taxonomy. Microbiol. Sci. 1985;2:74–75. [PubMed] [Google Scholar]
  66. Matthews R.E.F. Academic Press; Boca Raton, FL: 1991. Plant Virology 3rd Edition; pp. 635–682. Chapter 17. [Google Scholar]
  67. Mayo M.A., Reavy B., Turnbull-Ross A.D., Murant A.F. Sequence relationships among parsnip yellow fleck virus, rice tungro spherical virus and picorna-like viruses. IXth Intl Congr. Virol. Glasgow; Scotland; 1993. pp. P76–P79. Abstract. [Google Scholar]
  68. Memelink J., van der Vlugt C.I.M., Linthorst H.J.M., Derks A.F.L.M., Asjes C.J., Bol J.F. Homologies between the genomes of a carlavirus (lily symptomless virus) and a potexvirus (lily virus X) from lily plants. J. Gen. Virol. 1990;71:917–924. doi: 10.1099/0022-1317-71-4-917. [DOI] [PubMed] [Google Scholar]
  69. Milinkovitch M.C., Orti G., Meyer A. Revised phylogeny of whales by mitochondrial ribosomal DNA sequences. Nature (Lond.) 1993;361:346–348. doi: 10.1038/361346a0. [DOI] [PubMed] [Google Scholar]
  70. Morgan M.M., Macreadie I.G., Harley V.R., Hudson P.J., Azad A.A. Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product. Virology. 1988;163:240–242. doi: 10.1016/0042-6822(88)90258-9. [DOI] [PubMed] [Google Scholar]
  71. Morse M.A., Marriot A.C., Nuttall P.A. The glycoprotein of thogoto virus (a tick-borne orthomyxo-like virus) is related to the baculovirus glycoprotein GP64. Virology. 1992;186:640–646. doi: 10.1016/0042-6822(92)90030-s. [DOI] [PubMed] [Google Scholar]
  72. Murphy F.A., Kingsbury D.W. Virus Taxonomy. In: Fields B.N., Knipe D.M., Chanock R.M., Hirsch M.S., Melnick J.L., Monath T.P., Roizman B., editors. Virology. 2nd Edition. Raven Press, Ltd.; New York: 1990. pp. 9–35. [Google Scholar]
  73. Nutter R.C., Scheets K., Panganiban L.C., Lommel S.A. The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucl. Acids Res. 1989;17:3163–3177. doi: 10.1093/nar/17.8.3163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Parge H.E., McRee D.E., Capozza M.A., Bernstein S.L., Getzoff E.D., Tainer J.A. Three dimensional structure of bacterial pili. Antonie van Leeuwenhoek. 1987;53:447–453. doi: 10.1007/BF00415501. [DOI] [PubMed] [Google Scholar]
  75. Prasad B.V.V., Yamaghuchi S., Roy P. Three-dimensional structure of single-shelled bluetongue virus. J. Virol. 1992;66:2135–2142. doi: 10.1128/jvi.66.4.2135-2142.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Pringle C.R. Abstracts. VIIIth International Congress of Virology; New York: 1990. The order mononegavirales — a proposal for introduction of the taxonomic category of the order into virus classification; p. 500. Abstract ICTV-10. [Google Scholar]
  77. Rabussay D., Geiduschek E.P. Regulation of gene action in the development of lytic bacteriophages. In: Fraenkel-Conrat H., Wagner R.R., editors. Regulation and Genetics: Bacterial DNA Viruses. Plenum Press; Berlin: 1977. pp. 1–196. [Google Scholar]
  78. Rupasov V.V., Morozov S.Y., Kanyuka K.V., Zavriev S.K. Partial nucleotide sequence of potato virus M RNA shows similarities to potexviruses in gene arrangement and the encoded amino acid sequences. J. Gen. Virol. 1989;70:1861–1869. doi: 10.1099/0022-1317-70-7-1861. [DOI] [PubMed] [Google Scholar]
  79. Rybicki E. The classification of organisms at the edge of life or problems with virus systematics. South African J. Sci. 1990;86:182–186. [Google Scholar]
  80. Shukla D.D., Ward C.W. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Adv. Virus Res. 1989;36:273–314. doi: 10.1016/s0065-3527(08)60588-6. [DOI] [PubMed] [Google Scholar]
  81. Stackebrandt E. Origin and evolution of prokaryotes. In: Gibbs A.J., Calisher C.H., Garcia-Arenal F., editors. Molecular basis of virus evolution. Cambridge University Press; New York: 1994. (in press). [Google Scholar]
  82. Stanley J., Markham P.G., Callis R.J., Pinner M.S. The nucleotide sequence of an infectious clone of the geminivirus beet curley top virus. EMBO J. 1986;5:1761–1767. doi: 10.1002/j.1460-2075.1986.tb04424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Strauss J.H. Togaviridae. In: Francki R.I.B., Fauquet C.M., Knudson D.L., Brown F., editors. Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag; Cambridge: 1991. pp. 216–222. [Google Scholar]
  84. Strauss J.H., Strauss E.G. Evolution of RNA viruses. Ann. Rev. Microbiol. 1988;42:657–683. doi: 10.1146/annurev.mi.42.100188.003301. [DOI] [PubMed] [Google Scholar]
  85. Strauss E.G., Strauss J.H., Levine A.J. Virus evolution. In: Fields B.N., Knipe D.M., Chanock R.M., Hirsch M.S., Melnick J.L., Monath T.P., Roizman B., editors. Virology. 2nd Edition. Raven Press, Ltd.; Heidelberg, Berlin: 1990. pp. 167–190. Chapter 9. [Google Scholar]
  86. Takahashi M., Toriyama S., Hamamatsu C., Ishihama A. Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. J. Gen. Virol. 1993;74:769–773. doi: 10.1099/0022-1317-74-4-769. [DOI] [PubMed] [Google Scholar]
  87. Tordo N., De Haan P., Goldbach R., Poch O. Evolution of negative-stranded RNA genomes. Sem. Virol. 1992;3:341–357. [Google Scholar]
  88. Uhlin B.E., Baga M., Goransson M., Lindbereg F.P., Lund B., Norgren M., Normark S. Genes determining adhesin formation in uropathogeneic Escherichia coli. Curr. Topics Microbiol. Immunol. 1985;118:163–178. doi: 10.1007/978-3-642-70586-1_9. [DOI] [PubMed] [Google Scholar]
  89. Van Regenmortel M.H.V. Applying the species concept to plant viruses. Arch. Virol. 1989;104:1–17. doi: 10.1007/BF01313804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Van Vloten-Doting L., Francki R.I.B., Fulton R.W., Kaper J.M., Lane L.C. Tricornaviridae: a proposed family of plant viruses with tripartite, single-stranded RNA genomes. Intervirology. 1981;15:198–203. doi: 10.1159/000149232. [DOI] [PubMed] [Google Scholar]
  91. Ward C.W. Structure of the influenza virus hemagglutinin. Curr. Topics Microbiol. Immunol. 1981;94/95:1–74. doi: 10.1007/978-3-642-68120-2_1. [DOI] [PubMed] [Google Scholar]
  92. Ward C.W., Shukla D.D. Taxonomy of potyviruses: current problems and some solutions. Intervirology. 1991;32:269–296. doi: 10.1159/000150211. [DOI] [PubMed] [Google Scholar]
  93. Ward C.W., McKern N.M., Frenkel M.J., Shukla D.D. Sequence data as the major criterion for potyvirus classification. In: Barnett O.W., editor. Potyvirus Taxonomy. Springer-Verlag; New York: 1992. pp. 283–297. [DOI] [PubMed] [Google Scholar]
  94. Ward C.W., Weiller G., Shukla D.D., Gibbs A.J. Molecular evolution of potyviruses, the largest plant virus family. In: Gibbs A.J., Calisher C.H., Garcia-Arenal F., editors. Molecular basis of viral evolution. Cambridge University Press; Heidelberg, Berlin: 1994. (in press). [Google Scholar]
  95. Weiner A.M., Maizels N. Vol. 84. 1987. tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis; pp. 7383–7387. (Proc. Natl. Acad. Sci. (Wash.)). [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. White M., Gribbin J. Penguin Books; Cambridge: 1992. Stephen Hawking: A Life In Science; pp. 102–103. [Google Scholar]
  97. Wu S., Rinehart C.A., Kaesberg P. Sequence and organisation of southern bean mosaic virus genomic RNA. Virology. 1987;161:73–80. doi: 10.1016/0042-6822(87)90172-3. [DOI] [PubMed] [Google Scholar]
  98. Xiong Z., Lommel S.A. The complete nucleotide sequence and genome organisation of red clover necrotic mosaic virus RNA-1. Virology. 1989;171:543–554. doi: 10.1016/0042-6822(89)90624-7. [DOI] [PubMed] [Google Scholar]
  99. Zavriev S.K., Kanyuka K.V., Levay K.E. The genome organisation of potato virus M RNA. J. Gen. Virol. 1991;72:9–14. doi: 10.1099/0022-1317-72-1-9. [DOI] [PubMed] [Google Scholar]
  100. Zhu Y., Hayakawa T., Toriyama S., Takahashi M. Complete nucleotide sequence of RNA 3 of rice stripe virus: an ambisense coding strategy. J. Gen. Virol. 1991;72:763–767. doi: 10.1099/0022-1317-72-4-763. [DOI] [PubMed] [Google Scholar]
  101. Zimmern D. Evolution of RNA viruses. In: Holland J., Domingo E., Ahlquist P., editors. RNA genetics. CRC Press; London: 1987. pp. 211–240. [Google Scholar]

Articles from Research in Virology are provided here courtesy of Elsevier

RESOURCES