Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2003 Mar 21;11(5):641–649. doi: 10.1016/0736-5748(93)90052-F

Requirements for schwann cell migration within cns environments: A viewpoint

RJM Franklin 1, WF Blakemore 1
PMCID: PMC7135762  PMID: 8116476

Abstract

Schwann cells are able to migrate into the CNS and myelinate CNS axons in a number of developmental and pathological situations. Morphological studies based on normal, mutant and experimentally‐lesioned tissue have indicated that Schwann cells are only able to enter the CNS when the integrity of the astrocytic glia limitans is disrupted. The significance and subtlety of the interactions between Schwann cells and astrocytes have been further explored by glial cell transplantation studies. These studies support in vitro observations on Schwann cell behaviour in highlighting the importance of extracellular matrix for both migration and myelin sheath formation. The failure of Schwann cells to intermix with astrocytes is an important aspect of glial cell biology which will have a bearing on efforts to remyelinate demyelinated axons by Schwann cell‐transplantation.

Keywords: Schwann cells, astrocytes, Schwann cell‐transplantation, migration, demyelination, PNS‐CNS interface, glia limitans

References

  • 1. Baron‐Van Evercooren A., Clerin‐Duhamel E., Lapie P., Gansmüller A., Lachapelle F., Gumpel M.. The fate of Schwann cells transplanted in the brain during development. Devl Neurosci.. 14: 1992; 73–84 [DOI] [PubMed] [Google Scholar]
  • 2. Berry M., Hall S., Follows R., Wyse J.P.. Defective myelination in the optic nerve of the Browman‐Wyse (BW) mutant rat. J. Neurocytol.. 18: 1989; 141–159 [DOI] [PubMed] [Google Scholar]
  • 3. Blakemore W.F.. Remyelination by Schwann cells of axons demyelinated by intraspinal injections of 6‐aminonicotinamide in the rat. J. Neurocytol.. 4: 1975; 745–757 [DOI] [PubMed] [Google Scholar]
  • 4. Blakemore W.F.. Invasion of Schwann cells into the spinal cord of the rat following local injections ol lysolecithin. Neuropathol. appl. Neurobiol.. 2: 1976; 21–39 [Google Scholar]
  • 5. Blakemore W.F.. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature. 266: 1977; 68–69 [DOI] [PubMed] [Google Scholar]
  • 6. Blakemore W.F.. Remyelination in the CNS Behan P.O., Clifford Rose F. Progress in Neurological Research. 1979; Pittman: Bath; 12–25 [Google Scholar]
  • 7. Blakemore W.F.. Remyelination of demyelinated spinal cord axons by Schwann cells Kao C.C, Bunge R.P., Reier P.J. Spinal Cord Reconstruction. 1983; Raven Press: New York; 281–291 [Google Scholar]
  • 8. Blakemore W.F.. Limited remyelination of CNS axons by Schwann cells transplanted into the sub‐arachnoid space. J. neurol. Sci.. 64: 1984; 265–276 [DOI] [PubMed] [Google Scholar]
  • 9. Blakemore W.F., Crang A.J.. The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J. neurol. Sci.. 70: 1985; 207–223 [DOI] [PubMed] [Google Scholar]
  • 10. Blakemore W.F., Crang A.J.. Extensive oligodendrocyte remyelination following injection of cultured central nervous system cells into demyelinating lesions in adult central nervous system. Devl Neurosci.. 10: 1988; 1–10 [DOI] [PubMed] [Google Scholar]
  • 11. Blakemore W.F., Crang A.J.. The relationship between type‐1 astrocytes, Schwann cells and oligodendrocytcs following transplantation of glial cell cultures into demyelinating lesions in the adult rat spinal cord. J. Neurocytol.. 18: 1989; 519–528 [DOI] [PubMed] [Google Scholar]
  • 12. Blakemore W.F., Crang A.J., Curtis R.. The interaction of Schwann cells with CNS axons in regions containing normal astrocytes. Acta Neuropathol.. 71: 1986; 295–300 [DOI] [PubMed] [Google Scholar]
  • 13. Blakemore W.F., Crang A.J., Patterson R.C.. Schwann cell remyelination of CNS axons following injection of cultures of CNS cells into areas of persistent demyelination. Neurosci. Lett.. 77: 1987; 20–24 [DOI] [PubMed] [Google Scholar]
  • 14. Blakemore W.F., Patterson R.C.. Observations on the interaction of Schwann cells and astrocytes following X‐irradiation of neonatal rat spinal cord. J. Neurocytol.. 4: 1975; 573–585 [DOI] [PubMed] [Google Scholar]
  • 15. Blakemore W.F., Patterson R.C.. Suppression of remyelination in the CNS by X‐irradiation. Acta Neuropathol.. 42: 1978; 105–113 [DOI] [PubMed] [Google Scholar]
  • 16. Blight A.R., Young W.. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J. neurol. Sci.. 91: 1989; 15–34 [DOI] [PubMed] [Google Scholar]
  • 17. Bunge R.P., Bunge M.B.. Interrelationship between Schwann cell function and extracellular matrix production. Trends Neurosci.. X: 1983; 499–505 [Google Scholar]
  • 18. Bussow H.. Schwann cell myelin ensheathing C.N.S. axons in the nerve fibre layer of the cat retina. J. Neurocytol.. 7: 1978; 207–214 [DOI] [PubMed] [Google Scholar]
  • 19. Collins G.H.. An electron microscope study of remyelination in the brain stem of thiamine deficient rats. Am. J. Pathol.. 48: 1966; 259–273 [PMC free article] [PubMed] [Google Scholar]
  • 20. Crang A.J., Blakemore W.F.. The effect of the number of oligodendrocytes transplanted into X‐irradiated, glial‐free lesions on the extent of oligodendrocyte remyelination. Neurosci. Lett.. 193: 1989; 269–274 [DOI] [PubMed] [Google Scholar]
  • 21. Dal Canto M.C., Lipton H.L.. Schwann cell remyelination and recurrent demyelination in the central nervous system of mice infected with attenuated Theiler's virus. Am. J. Pathol.. 98: 1980; 101–110 [PMC free article] [PubMed] [Google Scholar]
  • 22. Duncan I.D., Hammang J.P., Gilmore S.A.. Schwann cell myelination of the myelin deficient rat spinal cord following X‐irradiation. Glia. 1: 1988; 233–239 [DOI] [PubMed] [Google Scholar]
  • 23. Duncan I.D., Hammang J.P., Jackson K.F., Wood P.M., Bunge R.P., Langford L.. Transplantation of oligodendrocytes, and Schwann cells into the spinal cord of the myelin deficient rat. J. Neurocytol.. 17: 1988; 351–360 [DOI] [PubMed] [Google Scholar]
  • 24. Fraher J.P.. The CNS‐PNS transitional zone of the rat morphological studies at cranial and spinal levels. Prog. Neurobiol.. 38: 1992; 261–316 [DOI] [PubMed] [Google Scholar]
  • 25. Franklin R.J.M., Crang A.J., Blakemore W.F.. Transplantation of type‐1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord. J. Neurocytol.. 20: 1991; 420–430 [DOI] [PubMed] [Google Scholar]
  • 26. Franklin R.J.M., Crang A.J., Blakemore W.F.. Type‐1 astrocytes fail to inhibit Schwann cell remyelination of CNS axons in the absence of cells of the O‐2A lineage. Devl Neurosci.. 14: 1992; 85–92 [DOI] [PubMed] [Google Scholar]
  • 27. Franklin R.J.M., Crang A.J., Blakemore W.F.. The reconstruction of an astrocytic environment in glia‐deficient areas of white matter. J. Neurocytol.. 22: 1993; 382–396 [DOI] [PubMed] [Google Scholar]
  • 28. Ghatak N.R., Hirano A., Doron Y., Zimmerman H.M.. Remyelination in multiple sclerosis with peripheral type myelin. Archs Neurol.. 29: 1973; 262–267 [DOI] [PubMed] [Google Scholar]
  • 29. Gilmore S.A.. Delayed myelination of neonatal rat spinal cord induced by X‐irradiation. Neurology. 16: 1966; 749–753 [Google Scholar]
  • 30. Gilmore S.A., Duncan D.. On the presence of peripheral‐like nervous and connective tissue within irradiated spinal cord. Anat. Rec.. 160: 1968; 675–690 [DOI] [PubMed] [Google Scholar]
  • 31. Graça D.L., Blakemore W.F.. Delayed remyelination in rat spinal cord foliowing ethidium bromide injection. Neuropathol. appl. Neurobiol.. 12: 1986; 593–605 [DOI] [PubMed] [Google Scholar]
  • 32. Griffiths I.R., McCulloch M.C.. Nerve fibres in spinal cord injuries. 1. Changes in the myelin sheath during the initial 5 weeks. J. neurol. Sci.. 58: 1983; 335–349 [DOI] [PubMed] [Google Scholar]
  • 33. Harrison B.M.. Remyelination by cells introduced into a stable demyelinating lesion in the central nervous system. J. neurol. Sci.. 46: 1980; 63–81 [DOI] [PubMed] [Google Scholar]
  • 34. Hughes J.T., Brownel B.. Aberrant nerve fibres within the spinal cord. J. Neurol. Neurosurg. Pychiat.. 26: 1963; 528–534 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Itoyama Y., Ohnishi A., Tateishi J., Kuroiwa Y., Webster H. de F.. Spinal cord multiple sclerosis lesions in Japanese patients: Schwann cell remyelination occurs in areas that lack glial fibrillary acidic protein (GFAP). Acta Neuropathol.. 65: 1985; 217–223 [DOI] [PubMed] [Google Scholar]
  • 36. Itoyama Y., Webster H. de F., Richardson E.P., Trapp B.D.. Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Ann. Neurol.. 14: 1983; 339–346 [DOI] [PubMed] [Google Scholar]
  • 37. Jung H.J., Raine C.S., Suzuki K.. Schwann cells and peripheral nervous system myelin in the rat retina. Acta Neuropathol.. 44: 1978; 245–247 [DOI] [PubMed] [Google Scholar]
  • 38. Nona S.N., Duncan A., Stafford C.A., Maggs A., Jeserich G., Cronly‐Dillon J.R.. Myelination of regenerated axons in goldfish optic nerve by Schwann Cells. J. Neurocytol.. 21: 1992; 391–401 [DOI] [PubMed] [Google Scholar]
  • 39. Obremski V.J., Johnson M.I., Bunge M.B.. Fibroblasts are required for Schwann cell basal lamina deposition and ensheathment of unmyelinated sympathetic neurites in culture. J. Neurocytol.. 22: 1993; 102–117 [DOI] [PubMed] [Google Scholar]
  • 40. Perry V.H., Hayes L.. Lesion‐induced myelin formation in the retina. J. Neurocytol.. 14: 1985; 297–307 [DOI] [PubMed] [Google Scholar]
  • 41. Raine C.S., Traugott U., Stone S.H.. Glial bridges and Schwann cell migration during chronic demyelination in the C.N.S. J. Neurocytol.. 7: 1978; 541–553 [DOI] [PubMed] [Google Scholar]
  • 42. Sims T.J., Gilmore S.A.. Interactions between intraspinal Schwann cells and the cellular constituents normally occurring in the spinal cord: an ultrastructural study in the irradiated rat. Brain Res.. 276: 1983; 17–30 [DOI] [PubMed] [Google Scholar]
  • 43. Sims T.J., Gilmore S.A., Waxman S.G., Klinge E.. Dorsal‐ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats. J. Neuropathol. exp. Neurol.. 44: 1985; 415–429 [DOI] [PubMed] [Google Scholar]
  • 44. Wyse J.P.H., Spira A.W.. Ultrastructural evidence of a peripheral nervous system pattern of myelination in the avascular retina of the guinea pig. Acta Neuropathol.. 54: 1981; 203–210 [DOI] [PubMed] [Google Scholar]
  • 45. Zimprich F., Winter J., Wege H., Lassmann H.. Coronavirus induced primary demyelination — indications for the involvement of a humoral immune response. Neuropathol. appl. Neurobiol.. 17: 1991; 469–484 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from International Journal of Developmental Neuroscience are provided here courtesy of Wiley

RESOURCES