Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2006;581:93–96. doi: 10.1007/978-0-387-33012-9_15

Adp-Ribose-1”-Phosphatase Activities of the Human Coronavirus 229E and Sars Coronavirus X Domains

Ákos Putics 3, Jutta Slaby 4, Witold Filipowicz 5, Alexander E Gorbalenya 6, John Ziebuhr 7
Editors: Stanley Perlman1, Kathryn V Holmes2
PMCID: PMC7138433  PMID: 17037511

The content is available as a PDF (1.1 MB).

Contributor Information

Stanley Perlman, Email: Stanley-Perlman@uiowa.edu

Kathryn V. Holmes, Email: Kathryn.Holmes@ucHSC.edu

References

  • 1.Ziebuhr J. The coronavirus replicase. Curr. Top. Microbiol. Immunol. 2005;287:57–94. doi: 10.1007/3-540-26765-4_3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Ziebuhr J, Thiel V, Gorbalenya AE. The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J. Biol. Chem. 2001;276:33220–33232. doi: 10.1074/jbc.M104097200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Snijder EJ, Bredenbeek PJ, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 2003;331:991–1004. doi: 10.1016/S0022-2836(03)00865-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Genschik P, Hall J, Filipowicz W. Cloning and characterization of the Arabidopsis cyclic phosphodiesterase which hydrolyzes ADP-ribose 1″,2″-cyclic phosphate and nucleoside 2′,3′-cyclic phosphates. J. Biol. Chem. 1997;272:13211–13219. doi: 10.1074/jbc.272.20.13211. [DOI] [PubMed] [Google Scholar]
  • 5.Kumaran D, Eswaramoorthy S, Studier FW, Swaminathan S. Structure and mechanism of ADP-ribose-1″-monophosphatase (Appr-1″-pase), a ubiquitous cellular processing enzyme. Protein Sci. 2005;14:719–726. doi: 10.1110/ps.041132005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Gorbalenya AE, Koonin EV, Lai MM. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 1991;288:201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Allen MD, Buckle AM, et al. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol. 2003;330:503–511. doi: 10.1016/S0022-2836(03)00473-X. [DOI] [PubMed] [Google Scholar]
  • 8.Shull NP, Spinelli SL, Phizicky EM. A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 2005;33:650–660. doi: 10.1093/nar/gki211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Martzen MR, McCraith SM, et al. A biochemical genomics approach for identifying genes by the activity of their products. Science. 1999;286:1153–1155. doi: 10.1126/science.286.5442.1153. [DOI] [PubMed] [Google Scholar]
  • 10.Thiel V, Ivanov KA, et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 2003;84:2305–2315. doi: 10.1099/vir.0.19424-0. [DOI] [PubMed] [Google Scholar]

Articles from The Nidoviruses are provided here courtesy of Nature Publishing Group

RESOURCES