Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2005 May 16;36(7):775–781. [Article in French] doi: 10.1016/S0335-7457(96)80065-7

Infections respiratoires aiguës virales et asthme de l'enfant

Aspects épidémiologiques, immunopathologiques et thérapeutiques

Acute viral respiratory tract infections and childhood asthma

L Réfabert 1,1, J De Blic 1, P Scheinmann 1
PMCID: PMC7144306  PMID: 32287950

Résumé

Les infections virales respiratoires sont de très importants facteurs déclenchants des crises d'asthme. Chez l'enfant les études épidémiologiques les plus récentes, utilisant la PCR, leur attribuent le déclenchement de 80 à 85 % des crises, aussi bien pour les crises modérées que les crises nécessitant une hospitalisation. Le virus respiratoire syncytial et les virus parainfluenzae prédominent chez le nourrisson, les rhinovirus et le mycoplasme chez l'enfant plus grand. Les mécanismes précis de l'induction des crises d'asthme par les virus restent mal compris, toutefois de récentes études montrent une augmentation de l'activation des cellules inflammatoires dans le lavage alvéolaire. Les sujets atopiques, en dehors des périodes d'allergie, ne semblent pas avoir plus de manifestations respiratoires viro-induites que les non-atopiques. En revanche, chez le sujet asthmatique, l'infection virale aggrave les réactions immédiate et retardée de l'hypersensibilité immédiate après test de provocation allergénique, en augmentant la libération des médiateurs mastocytaires et le recrutement des éosinophiles dans les voies aériennes inférieures. Les études chez l'homme et l'animal suggèrent que la production locale de cytokines (IL4, IL8, RANTES, MIP-1a...) et l'expression accrue chez l'asthmatique de la molécule d'adhésion ICAM1 aient un rôle important pour le recrutement et l'activation des cellules de l'inflammation dans les voies aériennes. Une hypothèse, qui reste à démontrer serait que dans des situations où, comme dans l'asthme, les lymphocytes Th2 prédominent, un excès d'Il4 pourrait inhiber les CD8 cytotoxiques, les cellules NK et les Th1 et ainsi entraîner une diminution des défenses antivirales et une réaction inflammatoire broncho-pulmonaire plus sévère que chez le non-asthmatique.

Références

  • 1.Alwan W.H., Record F.M., Openshaw P.J.M. Phenotypic and functional characterization of T cell lines specific for individual respiratory syncytial virus proteins. J. Immunol. 1993;150:5211–5218. [PubMed] [Google Scholar]
  • 2.Bardin P.G., Johnston S.L., Pattemore P.K. Viruses as precipitants of asthma symptoms. II Physiology and mechanisms. Clin. Exp. Allergy. 1992;22:809–822. doi: 10.1111/j.1365-2222.1992.tb02825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Brunette M.G., Lands L., Thibodeau L.P. Child asthma, prevention of attacks with short term corticosteroid treatement of upper respiratory tract infection. Pediatrics. 1988;81:624–629. [PubMed] [Google Scholar]
  • 4.Calhoun W.J., Dick E.C., Schwartz L.B., Busse W.W. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. J. Clin. Invest. 1994;94:2200–2208. doi: 10.1172/JCI117581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cheung D., Dick E.C., Timmers M.C., de Klerk E.P.A., Spaan W.J.M., Sterk P.J. Rhinovirus inhalation causes long-lasting excessive airway narrowing in response to methacholine in asthmatic subjects in vivo. Am. J. Respir. Crit. Care Med. 1995;152:1490–1496. doi: 10.1164/ajrccm.152.5.7582282. [DOI] [PubMed] [Google Scholar]
  • 6.Choi A.M.K., Jacoby D.B. Influenza virus A infection induces interleukine-8 gene expression in human airway epithelial cells. Fed. Eur. Biochem. Soc. Lett. 1992;309:327–329. doi: 10.1016/0014-5793(92)80799-m. [DOI] [PubMed] [Google Scholar]
  • 7.Clough J.B., Holgate S.T. Episodes of respiratory morbidity in children with cough an wheeze. Am. J. Respir. Crit. Care Med. 1994;150:48–53. doi: 10.1164/ajrccm.150.1.8025771. [DOI] [PubMed] [Google Scholar]
  • 8.Connett G., Lenney W. Prevention of viral induced asthma attacks using inhaled budesonide. Arch. Dis. Child. 1993;68:85–87. doi: 10.1136/adc.68.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Coyle A.J., Erard F., Bertrand C. Virus specific CD8 cells can switch to IL-5 production and induce airway eosinophilia. J. Exp. Med. 1995;181:1229–1233. doi: 10.1084/jem.181.3.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Dales R.E., Schweitzer I., Toogood J.H., Drouin M., Yang W., Dolovitch J., Boulet J. Respiratory infections and the autumn increase in asthma morbidity. Eur. Respir. J. 1996;9:72–77. doi: 10.1183/09031936.96.09010072. [DOI] [PubMed] [Google Scholar]
  • 11.Denburg J.A. Asthma: The inflammatory response. Am. J. Respir. Crit. Care Med. 1996;153:S11–S13. doi: 10.1164/ajrccm/153.6_Pt_2.S11. [DOI] [PubMed] [Google Scholar]
  • 12.Doyle W.J., Skoner D.P., Fireman P., Seroky J.T., Green I., Ruben F., Kardazke D.R., Gwaltney J.M. Rhinovirus 39 infections in allergic and nonallergic subjects. J. Allergy Clin. Immunol. 1992;89:968–978. doi: 10.1016/0091-6749(92)90219-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Duff A.L., Pomeranz E.S., Gelber L.E., Price W., Farris H., Hayden F.G., Platts-Mills T.A.E., Heymann P.W. Risk factor for acute wheezing in infants and children: viruses, passive smoking, and IgE antibodies to inhalant allergens. Pediatrics. 1993;92:535–540. [PubMed] [Google Scholar]
  • 14.Fraenkel D.J., Bardin P.J., Sanderson G., Lampe F., Johnston S.L., Holgate S.T. Immunohistochemical analysis of nasal biopsies during rhinovirus experimental colds. Am. J. Respir. Crit. Care Med. 1994;150:1130–1136. doi: 10.1164/ajrccm.150.4.7921447. [DOI] [PubMed] [Google Scholar]
  • 15.Fraenkel D.J., Bardin P.G., Sanderson G., Lampe F., Johnston S.L., Holgate S.T. Lower airways inflammation during rhinovirus colds in normal and asthmatic subjects. Am. J. Respir. Crit. Care Med. 1995;151:879–886. doi: 10.1164/ajrccm/151.3_Pt_1.879. [DOI] [PubMed] [Google Scholar]
  • 16.Gern J.E., Busse W.W. The effects of rhinovirus infections on allergic airway responses. Am. J. Respir. Crit. Care Med. 1995;152:S40–S45. doi: 10.1164/ajrccm/152.4_Pt_2.S40. [DOI] [PubMed] [Google Scholar]
  • 17.Greve J.M., Davis G., Meyer A.M., Forte C.P., Tost S.C., Marlor C.W., Kamark M.E., McClelleand A. The major human rhinovirus receptor is ICAM1. Cell. 1989;56:839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  • 18.Hayden F.G., Albrecht J.K., Kaiser D.L., Gwaltney J.M. Prevention of natural colds by contact prophylaxis with intranasal alpha2-interferon. N. Engl. J. Med. 1986;314:71–75. doi: 10.1056/NEJM198601093140202. [DOI] [PubMed] [Google Scholar]
  • 19.Hayden F.G., Mills S.E., Johns M.E. Human tolerance and histopathologic effects of long term administration of interferon alpha-2. J. Infect. Dis. 1983;148:914–921. doi: 10.1093/infdis/148.5.914. [DOI] [PubMed] [Google Scholar]
  • 20.Isaac D. Production of interferon in respiratory syncytial virus broncholitis. Arch. Dis. Child. 1989;64:92–95. doi: 10.1136/adc.64.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Johnston S.L., Bardin P.G., Pattemore P.K. Viruses as precipitants of asthma symptoms III. Rhinoviruses, molecular biology and prospects for future intervention. Clin. Exp. Allergy. 1993;23:237–246. doi: 10.1111/j.1365-2222.1993.tb00316.x. [DOI] [PubMed] [Google Scholar]
  • 22.Johnston S.L., Pattemore P.K., Sanderson G., Smith S., Lampe F., Josephs L., Symington P., O'Toole S., Myint S.H., Tyrrell Q.A.J., Holgate S.T. Community study of role of viral infection in exacerbations of asthma in 9–11 year old children. Brit. Med. J. 1995;310:1225–1228. doi: 10.1136/bmj.310.6989.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Johnston S.L., Pattemore P.K., Sanderson G., Smith S., Campbell M.J., Josephs L.K., Cunningham A., Robinson S., Myint S.T., Ward M.E., Tyrrell D.A.J., Holgate S.T. The relationship between upper respiratory infection and hospital admissions for asthma: a time-trend analysis. Am. J. Respir. Crit. Care Med. 1996;154:654–660. doi: 10.1164/ajrccm.154.3.8810601. [DOI] [PubMed] [Google Scholar]
  • 23.Johnston S.L. Natural and experimental rhinovirus infections of the lower respiratory tract. Am. J. Respir. Crit. Care Med. 1995;152:S46–S52. doi: 10.1164/ajrccm/152.4_Pt_2.S46. [DOI] [PubMed] [Google Scholar]
  • 24.Johnston S.L. Proceedings of the XVth world congress of asthmology. Hogrefe and Huber; Seattle: 1996. Viral infection in children whith existing asthma; pp. 102–107. [Google Scholar]
  • 25.Koller D.Y., Herouy Y., Götz M., Hagel E., Urbanek R., Eichler I. Clinical value of monitoring eosinophil activity in asthma. Arch. Dis. Child. 1995;73:413–417. doi: 10.1136/adc.73.5.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kondo S., Ito M., Satto M., Sugimori M., Watanabe H. Progressive bronchial obstruction during the acute stage of respiratory tract infection in asthmatic. Chest. 1994;106:100–104. doi: 10.1378/chest.106.1.100. [DOI] [PubMed] [Google Scholar]
  • 27.König P., Eigen H., Ellis M.H., Blake K., Geller D., Shapiro G., Welch M., Scott C. The effect of nedocromil sodium on childhood asthma during the viral season. Am. J. Respir. Crit. Care Med. 1995;52:1879–1886. doi: 10.1164/ajrccm.152.6.8520750. [DOI] [PubMed] [Google Scholar]
  • 28.Le Roux P., Scheinmann P. Allergologie Pédiatrique. Flammarion Médecine-Sciences; Paris: 1994. Infections et crises d'asthme; pp. 299–301. [Google Scholar]
  • 29.Lemanske R.F., Dick E.C., Swenson C.A., Vrtis R.F., Busse W.W. Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions. J. Clin. Invest. 1989;83:1–10. doi: 10.1172/JCI113843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Macek V., Sorli J., Kopriva S., Marin J. Persistent adenoviral infection and chronic airway obstruction in children. Am. J. Respir. Crit. Care Med. 1994;150:7–10. doi: 10.1164/ajrccm.150.1.8025775. [DOI] [PubMed] [Google Scholar]
  • 31.Marini M., Vittori E., Hollemgorg J., Mattoli S. Expression of the potent inflammatory cytokines, GM-CSF and IL-6 and IL-8 in bronchial epithelial cells of patients with asthma. J. Allergy Clin. Immunol. 1992;82:1001–1009. doi: 10.1016/0091-6749(92)90223-o. [DOI] [PubMed] [Google Scholar]
  • 32.Merolla R., Rebert N.A., Tsiviste P.T., Hoffmann S.P., Panuska J.R. Respiratory syncitial virus replication in human lung epithelial cells: inhibition by tumor necrosis factor α and interferon β. Am. J. Respir. Crit. Care Med. 1995;152:1358–1366. doi: 10.1164/ajrccm.152.4.7551395. [DOI] [PubMed] [Google Scholar]
  • 33.Mertsola J., Ziegler T., Ruuskanen O., Vanto T., Koivikko A., Halonen P. Recurrent wheezy bronchitis and viral respiratory infections. Arch. Dis. Child. 1991;66:124–129. doi: 10.1136/adc.66.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Murray M., Webb M.S.C., O'Callaghan C., Swarbrick A.S., Milner A.D. Respiratory status and allergy after bronchiolitis. Arch. Dis. Child. 1992;67:482–487. doi: 10.1136/adc.67.4.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Noah T.L., Becker S. Respiratory syncytial virus-induced cytokine production by a human bronchial epithelial cell line. Am. J. Physiol. 1993;265:L472–L478. doi: 10.1152/ajplung.1993.265.5.L472. [DOI] [PubMed] [Google Scholar]
  • 36.Pattemore P.K., Johnston S.L., Bardin P.G. Viruses as precipitants of asthma symptoms I. Epidemiology. Clin. Exp. Allergy. 1992;22:325–336. doi: 10.1111/j.1365-2222.1992.tb03094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Pilewski J.M., Albelda S.M. Cell adhesion molecules in asthma: homing activation and airway remodeling. Am. J. Respir. Cell. Mol. Biol. 1995;12:1–3. doi: 10.1165/ajrcmb.12.1.7811464. [DOI] [PubMed] [Google Scholar]
  • 38.Proud D., Nalcerio R.M., Gwaltney J.M., Hendley J.O. Kinins are generated in nasal secretions during natural rhinovirus colds. J. Infect. Dis. 1990;161:120–123. doi: 10.1093/infdis/161.1.120. [DOI] [PubMed] [Google Scholar]
  • 39.Proud D., Gwaltney J.M., Hendley J.O., Dinarello C.A., Gillis S., Schleimer R.P. Increased levels of interleukine-1 are detected in nasal secretions of volunteers during experimental rhinovirus colds. J. Infect. Dis. 1994;169:1007–1013. doi: 10.1093/infdis/169.5.1007. [DOI] [PubMed] [Google Scholar]
  • 40.Rakes G.P., Arruda E., Ingram J.M., Hoover G.E., Hayden F.G., Platt-Mills T.A.E., Heymann P.W. Human rhinovirus in wheezing children: relationship to serum IgE and nasal eosinophil cationic protein. J. Allergy Clin. Immunol. 1995;95:260. (abstract) [Google Scholar]
  • 41.Skoner D.P., Whiteside T.L., Wilson J.W., Doyle W.J., Hebermann R.B., Firement P. Effects of rhinovirus 39 infection on cellular immune parameters in allergic and nonallergic subjects. J. Allergy Clin. Immunol. 1993;92:732–743. doi: 10.1016/0091-6749(93)90017-a. [DOI] [PubMed] [Google Scholar]
  • 42.Staunton D.E., Mreluzzi V.J., Rthlein R., Barton R., Marlin S.D., Springer T.A. A cell adhesion molecule ICAM1 is the major surface receptor for rhinovirus. Cell. 1989;56:849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  • 43.Subauste M.C., Jacoby D.B., Richards S.M., Proud D. Infection of a human respiratory epithelial cell line with rhinovirus: induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. J. Clin. Invest. 1995;96:549–557. doi: 10.1172/JCI118067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Teran L.M., Johnston S.L., Shute J.K., Church M.K., Holgate S.T. Increased levels of interleukine-8 in the nasal aspirates of children with virus-associated asthma. J. Allergy Clin. Immunol. 1994;93:272. [Google Scholar]
  • 45.Vrtis R.F., Pack J., Dick E.C., Gleich G.J., Busse W.W. The effect of recombinant γ-interferon on human eosinophil function: a mechanism for respiratory virus promotion of inflammation. J. Allergy Clin. Immunol. 1992;89:295. [Google Scholar]
  • 46.Welliver R.C., Wong D.I., Sun E., Middleton E.J., Vaughan R.S., Ogra P.L. The development of repiratory syncytial virus specific IgE and the release of histamine in nasopharyngeal secretions after infection. N. Engl. J. Med. 1981;305:841–846. doi: 10.1056/NEJM198110083051501. [DOI] [PubMed] [Google Scholar]
  • 47.Wilson N.M., Silverman M. Treatment of acute, episodic asthma in preschool children using intermittent high dose inhaled steroids at home. Arch. Dis. Child. 1990;65:407–410. doi: 10.1136/adc.65.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Storr J., Lenney W. School holidays and admission with asthma. Arch. Dis. Child. 1989;64:103–107. doi: 10.1136/adc.64.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Ashley J.S.A. Seasonal trends in childhood asthma. BMJ. 1983;287:1721. doi: 10.1136/bmj.287.6406.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Khot A., Burn R., Evans N., Lenney C., Lenney W. Seasonal variation and time trends in chilhood asthma in England and Wales 1975–81. BMJ. 1984;289:235–237. doi: 10.1136/bmj.289.6439.235. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Revue Francaise D'Allergologie et D'Immunologie Clinique are provided here courtesy of Elsevier

RESOURCES