Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1998;2(2):119–125. doi: 10.1023/A:1009769923763

Let the Cells Speak: Neutrophils as Biologic Markers of the Inflammatory Response

Alexander D Romaschin 1, Debra M Foster 1, Paul M Walker 1, John C Marshall 1
PMCID: PMC7144478  PMID: 32288619

The content is available as a PDF (114.0 KB).

References

  • 1.Patrick DA, Moore FA, Moore EE, et al. Neutrophil priming and activation in the pathogenesis of post injury multiple organ failure. New Horizons. 1996;4:194–210. [PubMed] [Google Scholar]
  • 2.Faist E, Schinkel C, Zimmer S. Update on the mechanisms of immune suppression of injury and immune modulation. World J Surg. 1996;20:454–459. doi: 10.1007/s002689900071. [DOI] [PubMed] [Google Scholar]
  • 3.Bone RC, Grodzin CJ, Balk RA. Sepsis: A new hypothesis for pathogenesis of the disease process. Chest. 1997;112:235–243. doi: 10.1378/chest.112.1.235. [DOI] [PubMed] [Google Scholar]
  • 4.Goris RJA, te Boekhorst TPA, Nuytinck JKS, Gimbrere JSF. Multiple organ failure. Generalized autodestructive inflammation? Arch Surg. 1985;120:1109–1115. doi: 10.1001/archsurg.1985.01390340007001. [DOI] [PubMed] [Google Scholar]
  • 5.Cavaillon JM. The non-specific nature of endotoxin tolerance. Trends Microbiol. 1995;3:320–324. doi: 10.1016/s0966-842x(00)88963-5. [DOI] [PubMed] [Google Scholar]
  • 6.Tschaikowsky K, Sittl R, Braun GG, et al. Increased f Met-Leu-Phe receptor expression and altered superoxide production of neutrophil granulocytes in septic and post traumatic patients. J Clin Invest. 1993;72:18–25. doi: 10.1007/BF00231111. [DOI] [PubMed] [Google Scholar]
  • 7.Windsor ACJ, Mullen PG, Fowler AA, et al. Role of the neutrophil in adult respiratory distress syndrome. Br J Surg. 1993;80:10–17. doi: 10.1002/bjs.1800800106. [DOI] [PubMed] [Google Scholar]
  • 8.Vedder NB, Winn RK, Rice CL, et al. Neutrophil-mediated vascular injury in shock and multiple organ failure. In: Passmore JC, Reynolds DG, Traber DC, et al., editors. Perspectives in Shock Research: Metabolism, Immunology, Mediators and Models. New York: Alan R Liss, Inc.; 1988. pp. 181–191. [PubMed] [Google Scholar]
  • 9.Wenisch C, Parschalk P, Hasenhundl M, et al. Polymorphonuclear leukocyte dysregulation in patients with gram-negative septicemia assessed by flow cytometry. Eur J Clin Invest. 1995;25:418–424. doi: 10.1111/j.1365-2362.1995.tb01723.x. [DOI] [PubMed] [Google Scholar]
  • 10.Vespasiano MC, Lewandoski JR, Zimmerman JJ. Longitudinal analysis of neutrophil superoxide anion generation in patients with septic shock. Crit Care Med. 1993;21:666–672. doi: 10.1097/00003246-199305000-00008. [DOI] [PubMed] [Google Scholar]
  • 11.Terregino CA, Lubkin C, Thom SR. Impaired neutrophil adherence as an early marker of systemic inflammatory response syndrome and severe sepsis. Ann Emerg Med. 1997;29:400–403. doi: 10.1016/s0196-0644(97)70353-6. [DOI] [PubMed] [Google Scholar]
  • 12.Marshall JC, Watson RWG. Apoptosis in the resolution of systemic inflammation. In: Vincent JL, editor. Yearbook of Intensive Care and Emergency Medicine. Berlin: Springer-Verlag; 1997. pp. 100–108. [Google Scholar]
  • 13.Reinhart K, Wiegand-Löhnert C, Grimminger F, Kaul M, Withington S, Treacher D, Eckart J, Willatts S, Bouza C, Krausch D, Stockenhuber F, Eiselstein J, Daum L, Kempeni J. Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: A multicenter, randomized, placebo-controlled, dose-ranging study. Crit Care Med. 1996;24:733–742. doi: 10.1097/00003246-199605000-00003. [DOI] [PubMed] [Google Scholar]
  • 14.Reinhart K. A new marker of the systemic inflammatory response syndrome: Procalcitonin (PCT). Sepsis 1998; this issue.
  • 15.Roumen RMH, Redl H, Schlag G, Zilow G, Sandtner W, Koller W, Hendriks T, Goris RJA. Inflammatory mediators in relation to the development of multiple organ failure in patients after severe blunt trauma. Crit Care Med. 1995;23:474–480. doi: 10.1097/00003246-199503000-00010. [DOI] [PubMed] [Google Scholar]
  • 16.Pinsky MR, Vincent JL, Deviere J, et al. Serum cytokine levels in human septic shock: Relation to multiple-system organ failure and mortality. Chest. 1993;103:565–575. doi: 10.1378/chest.103.2.565. [DOI] [PubMed] [Google Scholar]
  • 17.Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RMH, Sibbald WJ. ACCP-SCCM Consensus Conference: Definitions of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–1655. doi: 10.1378/chest.101.6.1644. [DOI] [PubMed] [Google Scholar]
  • 18.Pizzo PA. Management of fever in patients with cancer and treatment induced neutropenia. N Engl J Med. 1993;328:1323–1332. doi: 10.1056/NEJM199305063281808. [DOI] [PubMed] [Google Scholar]
  • 19.Marshall JC, Sweeney D. Microbial infection and the septic response in critical surgical illness: Sepsis, not infection, determines outcome. Arch Surg. 1990;123:1465–1469. doi: 10.1001/archsurg.1990.01410130019002. [DOI] [PubMed] [Google Scholar]
  • 20.Chang R, Wong GY. Prognostic significance of marked leukocytosis in hospitalized patients. J Gen Intern Med. 1991;6:199–203. doi: 10.1007/BF02598960. [DOI] [PubMed] [Google Scholar]
  • 21.Chalasani N, Patel K, Clark WS, Wilcox CM. The prevalence and significance of leukocytosis in upper gastrointestinal bleeding. Am J Med Sci. 1998;315:233–236. doi: 10.1097/00000441-199804000-00003. [DOI] [PubMed] [Google Scholar]
  • 22.Fenwick JC, Cameron M, Naiman SC, Haley LP, Onco JJ, Wiggs BR, Tweeddale MG. Blood transfusion as a cause of leukocytosis in critically ill patients. Lancet. 1994;344:855–856. doi: 10.1016/s0140-6736(94)92828-2. [DOI] [PubMed] [Google Scholar]
  • 23.Seebach JD, Morant R, Ruegg R, Seifert B, Fehr J. The diagnostic value of the neutrophil left shift in predicting inflammatory and infectious disease. Am J Clin Pathol. 1998;109:114–115. doi: 10.1093/ajcp/107.5.582. [DOI] [PubMed] [Google Scholar]
  • 24.Allen RC. Phagocytic leukocyte oxygenation activities and chemiluminescence: A kinetic approach to analysis. Meth Enzymol. 1986;133:449–493. doi: 10.1016/0076-6879(86)33085-4. [DOI] [PubMed] [Google Scholar]
  • 25.Allen RC, Stjernholm RL, Steele RH. Evidence for generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Comm. 1972;47:769–XXX. doi: 10.1016/0006-291x(72)90545-1. [DOI] [PubMed] [Google Scholar]
  • 26.Witko-Sarsat V, Nguyen AT, Knight J, Deschamps-Latscha B. Pholasin: A new chemiluminescent probe for the detection of chloramines derived from human phagocytes. Free Radical Biol & Med. 1992;13:83–88. doi: 10.1016/0891-5849(92)90169-h. [DOI] [PubMed] [Google Scholar]
  • 27.Thornton BP, Vetvicka V, Pitman M, et al. Analysis of the sugar specificity and molecular location of the β glucan binding lectin site of complement receptor type 3. J Immunol. 1996;156:1235–1246. [PubMed] [Google Scholar]
  • 28.Rosenbloom AJ, Levann D, Ray B, et al. Density and avidity changes of CD11b on circulating polymorphonuclear leukocytes (PMN) in systemic inflammatory response syndrome (SIRS) Am J Respir Crit Care Med. 1996;153:A123. [Google Scholar]
  • 29.Stevens DL, Bryant AE, Huffman J, Thompson K, Allen RC. Analysis of circulating phagocyte activity measured by whole blood luminescence: Correlation with clinical status. J Infect Dis. 1994;170(6):1463–1472. doi: 10.1093/infdis/170.6.1463. [DOI] [PubMed] [Google Scholar]
  • 30.Lindsay TF, Memari N, Ghanekar A, et al. Rupture of an abdominal aortic aneurysm causes priming of phagocytic oxidative burst. J Vasc Surg. 1997;25:599–610. doi: 10.1016/s0741-5214(97)70285-4. [DOI] [PubMed] [Google Scholar]
  • 31.Greenberg RN, Wilson KM, Kunz AY, et al. Observations using antiendotoxin antibody (E5) as adjunctive therapy in humans with suspected, serious, gram-negative sepsis. Crit Care Med. 1992;20:30–35. doi: 10.1097/00003246-199206000-00005. [DOI] [PubMed] [Google Scholar]
  • 32.Greenman RL, Schein RMH, Martin MA, et al. A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of Gram negative sepsis. JAMA. 1991;266:1097–1102. [PubMed] [Google Scholar]
  • 33.Bone RC, Balk RA, Fein AM, et al. A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: Results of a prospective, multicenter, randomized, controlled trial. Crit Care Med. 1995;23:994–1006. doi: 10.1097/00003246-199506000-00003. [DOI] [PubMed] [Google Scholar]
  • 34.McCloskey RV, Straube RC, Sanders C, et al. Treatment of septic shock with human monoclonal antibody HA-1A. Ann Intern Med. 1994;121:1–5. doi: 10.7326/0003-4819-121-1-199407010-00001. [DOI] [PubMed] [Google Scholar]
  • 35.Ziegler EJ, Fisher CJ, Sprung CL, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. N Engl J Med. 1991;324:429–436. doi: 10.1056/NEJM199102143240701. [DOI] [PubMed] [Google Scholar]
  • 36.Wortel CH, von der Mohlen MAM, van Deventer SJH, et al. Effectiveness of a human monoclonal anti-endotoxin antibody (HA-1A) in gram-negative sepsis: Relationship to endotoxin and cytokine levels. J Infect Dis. 1992;166:1367–1374. doi: 10.1093/infdis/166.6.1367. [DOI] [PubMed] [Google Scholar]
  • 37.Executive Summary of an American College of Chest Physicians, National Institute of Allergyinfectious Disease,National Heart, Lung,Blood Institute Workshop. From the bench to the bedside: The future of sepsis research. Chest. 1997;111:744–753. [PubMed] [Google Scholar]
  • 38.Romaschin AD, Walker PM, Harris D, et al. A rapid assay of endotoxin in whole blood using autologous neutrophil dependent chemiluminescence. J Immunol Methods (in press) 1998. [DOI] [PubMed]
  • 39.Haslett C. Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes. Clin Sci. 1992;83:639–648. doi: 10.1042/cs0830639. [DOI] [PubMed] [Google Scholar]
  • 40.Martin SJ, Green DR. Protease activation during apoptosis: Death by a thousand cuts? Cell. 1995;82:349–352. doi: 10.1016/0092-8674(95)90422-0. [DOI] [PubMed] [Google Scholar]
  • 41.Savill JS, Wyllie AH, Henson JE, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. J Clin Invest. 1989;83:865–875. doi: 10.1172/JCI113970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: Implications for the regulation of apoptosis in neutrophils. J Exp Med. 1996;184:429–440. doi: 10.1084/jem.184.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Watson RWG, Redmond HP, Wang JH, Condron C, Bouchier-Hays D. Neutrophils undergo apoptosis following ingestion of Escherichia coli. J Immunol. 1996;156:3986–3992. [PubMed] [Google Scholar]
  • 44.Lee A, Whyte MKB, Haslett C. Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leuk Biol. 1993;54:283–288. [PubMed] [Google Scholar]
  • 45.Watson RWG, Rotstein OD, Parodo J, Bitar R, Marshall JC. The interleukin-1 beta converting enzyme (caspase-1) inhibits neutrophil apoptosis through processing of interleukin-1. J Immunol 1998; in Press. [PubMed]
  • 46.Watson RWG, Rotstein OD, Nathens AB, Parodo J, Marshall JC. Neutrophil apoptosis is modulated by endothelial transmigration and adhesion molecule engagement. J Immunol. 1997;158:945–953. [PubMed] [Google Scholar]
  • 47.Chitnis D, Dickerson C, Munster AM, Winchurch RA. Inhibition of apoptosis in polymorphonuclear neutrophils from burn patients. J Leuk Biol. 1996;59:835–839. doi: 10.1002/jlb.59.6.835. [DOI] [PubMed] [Google Scholar]
  • 48.Jimenez MF, Watson RWG, Parodo J, Evans D, Foster D, Steinberg M, Rotstein OD, Marshall JC. Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome (SIRS) Arch Surg. 1997;132:1263–1270. doi: 10.1001/archsurg.1997.01430360009002. [DOI] [PubMed] [Google Scholar]

Articles from Sepsis are provided here courtesy of Nature Publishing Group

RESOURCES