Abstract
Aim
In order to assess the influence of total-body irradiation (TBI) on the outcome and incidence of complication after bone marrow transplantation (BMT), we retrospectively analyzed our patients treated for acute leukemia and conditioned with TBI prior to BMT.
Patients and Methods
Between 1980 and 1993, 326 patients referred to our department with acute non-lymphoblastic leukemia (ANLL, n=182) and acute lymphoblastic leukemia (ALL, n=144) in complete remission underwent TBI either in single dose (190 patients: 10 Gy administered to the midplane, and 8 Gy to the lungs [STBI]) or in 6 fractions (136 patients: 12 Gy on 3 consecutive days, and 9 Gy to the lungs [FTBI]) before BMT. The male-to-female ratio was 204/122 (1.67), and the median age was 30 years (mean: 30 ± 11, range: 3 to 63). The patients were analyzed according to 3 instantaneous dose rate groups: 118 patients in the LOW group (≤0.048 Gy/min), 188 in the MEDIUM group (> 0.048 and ≤ 0.09 Gy/min), and 20 in the HIGH group (> 0.09 cGy/min). Conditioning chemotherapy consisted of cyclophosphamide (CY) alone in 250 patients, CY and other drugs in 54, and 22 patients were conditioned using combinations without CY. Following TBI, allogeneic and autologous BMT were realized respectively in 118 and 208 patients. Median follow-up period was 68 months (mean: 67 ± 29, range: 24 to 130 months).
Results
Five-year survival, LFS, RI and TRM rates were 42%, 40%, 47%, and 24%, respectively. Five-year LFS was 36% in the STBI and 45% in the FTBI group (p = 0.17). It was 36% in the LOW group, 42% in the MEDIUM group, and 30% in the HIGH group (p > 0.05). Five-year RI was 50% in STBI, 43% in FTBI, 55% in LOW, 41% in MEDIUM, and 44% in HIGH groups (STBI vs. FTBI, p = 0.48; LOW vs. MEDIUM, p = 0.03: MEDIUM vs. HIGH, p = 0.68). TRM was not influenced significantly by the different TBI techniques. When analyzing separately the influence of fractionation and the instantaneous dose rate either in ANLL or ALL patients, no difference in terms of survival and LFS was observed. Fractionation did not influence the 5-year RI both in ANLL and ALL patients. However, among the patients with ANLL, 5-year RI was significantly higher (58%) in the LOW group than the MEDIUM group (31%, p = 0.001), whereas instantaneous dose rate did not significantly influence the RI in ALL patients. The 5-year TRM rate was significantly higher in allogeneic BMT group both in ANLL (37%) and ALL (37%) patients than those treated by autologous BMT (ANLL: 15%, ALL: 18%: p = 0.002 and 0.02, respectively). The 5-year estimated interstitial pneumonitis (IP) and cataract incidence rates were 22% and 19%, respectively, in all patients. IP incidence seemed to be higher in the HIGH group (46%) than the MEDIUM (19%, p = 0.05) or LOW (25%, p = 0.15) groups. Furthermore, cataract incidence was significantly influenced by fractionation (STBI vs. FTBI, 29% vs. 9%; p = 0.003) and instantaneous dose rate (LOW vs. MEDIUM vs. HIGH, 0% vs. 27% vs. 33%; p < 0.0001). Multivariate analyses revealed that the best factors influencing the survival were 1st CR (p = 0.0007), age ≤ 40 years (p = 0.003), and BMT after 1985 (p = 0.008). The RI was influenced independently only by the remission status (p = 0.0002). On the other hand, the TRM rate was lower in patients who did not experience graft-vs.-host disease (GvHD, p < 0.0001), and in those treated after 1985 (p = 0.0005). GvHD was the only independent factor involved in the development of IP (p = 0.01). When considering the cataract incidence, the only independent factor was the instantaneous dose rate (p = 0.0008).
Conclusion
The outcome of BMT patients conditioned with TBI for acute leukemia was not significantly influenced by the TBI technique, and TRM seemed to be lower in patients treated after 1985. On the other hand, cataract incidence was significantly influenced by the instantaneous dose rate.
Keywords: TBI, Dose rate, Fractionation, Acute leukemia, BMT
Zusammenfassung
Hintergrund
Um den Einfluß der Ganzkörperbestrahlung (TBI) auf die Prognose und die Inzidenz von Komplikationen bei Knochenmarktransplantationen (BMT) zu evaluieren, haben wir retrospektiv unser Patientengut, das bei akuter Leukämie vor der BMT mit der TBI behandelt wurde, analysiert.
Patienten und Methode
Von 1980 bis 1993 wurden 326 Patienten mit akuter nichtlymphatischer Leukämie (ANLL, n = 182) und akuter lymphatischer Leukämie (ALL, n = 144) in Vollremission in unserer Abteilung mit einer TBI vor einer BMT behandelt. Die TBI wurde entweder mit einer Einzeldosis (STBI; n = 190: 10 Gy L4, 8 Gy Lungen) oder in sechs Fraktionen (FTBI; n = 136: an drei aufeinanderfolgenden Tagen 12 Gy L4, 9 Gy Lungen) appliziert. Die Männer/Frauen-Ratio betrug 204/122 (1,67). und das mediane Alter betrug 30 Jahre (± 11, 3–63). Außerdem wurden die Patienten in Relation zu drei momentanen Dosisraten analysiert: 118 Patienten waren in der Gruppe mit niedriger Dosisrate (LDR; ≤ 0,048 Gy/min), 188 wurden mit mittlerer Dosisrate (MDR; > 0,048 und ≤ 0.09 Gy/min) und 20 mit einer hohen Dosisrate (HDR; > 0,09 Gy/min) bestrahlt. Die konditionierende Chemotherapie bestand aus Cyclophosphamid (CY) alleine bei 250 Patienten, CY und anderen Medikamenten bei 54 Patienten, und 22 Patienten wurden mit Kombinationen ohne CY behandelt. Nach der TBI wurden allogene und autologe BMT bei respektive 118 und 208 Patienten durchgeführt. Das mediane Follow-up betrug 68 Monate (67 ± 29,24 bis 130 Monate).
Ergebnisse
Das Fünf-Jahres-Überleben, das leukämiefreie Überleben (LFS), die Fünf-Jahres-Rezidivinzidenz (RI) und die therapiebedingte Mortalität (TRM) betrugen jeweils 42%, 40%, 47% und 24%. Das LFS betrug 36% in der STBI- und 45% in der FTBI-Gruppe (p = 0,17). Es betrug 36% in der LDR-, 42% in der MDR- und 30% in der HDR-Gruppe (p > 0,05). Die RI betrug 50% in der STBI-, 43% in der FTBI-, 55% in der LDR-, 41% in der MDR- und 44% in der HDR-Gruppe (STBI vs. FTBI, p = 0,48: LDR vs. MDR, p = 0,03; MDR vs. HDR, p = 0,68). Die TRM wurde durch die unterschiedlichen Bestrahlungstechniken nicht signifikant beeinflußt. Bei der getrennten Analyse des Einflusses der Fraktionierung und der momentanen Dosisrate bei ANLL- oder ALL-Patienten wurde kein Unterschied für das Überleben oder das LFS beobachtet. Die Fraktionierung beeinflußte die RI weder bei den ANLL- noch bei den ALL-Patienten. Jedoch war bei den ANLL-Patienten die RI signifikant höher (58%) in der LDR- als in der MDR-Gruppe (31%, p = 0,001), die momentane Dosisrate zeigte aber keinen signifikanten Einfluß auf die RI bei ALL-Patienten. Die Fünf-Jahres-TRM-Rate war in der allogenen BMT-Gruppe bei den ANLL- (37%) und ALL-Patienten (37%) signifikant höher als bei der autologen BMT-Gruppe (ANLL 15%, ALL 18%; respektive p = 0,002 und 0,02). Die Fünf-Jahres-Inzidenzraten für die interstitielle Pneumonitis (IP) und Katarakt betrugen 22% respektive 19% bei allen Patienten. Die IP-Inzidenz schien höher zu sein in der HDR- (46%) als in der MDR- (19%, p = 0,05) und LDR-Gruppe (25%, p = 0,15). Außerdem wurde die Kataraktinzidenz signifikant durch die Fraktionierung (STBI vs. FTBI, 29% vs. 9%, p = 0,003) und die momentane Dosisrate (LDR vs. MDR vs. HDR, 0% vs. 27% vs. 33%, p < 0,0001) beeinflußt. Multivarianzanalysen zeigten folgende Hauptfaktoren, die die Überlebensraten beeinflußten: erste Vollremission (p = 0,0007). Alter < 40 Jahre (p = 0,003) und BMT nach 1985 (p = 0,008). Die RI wurde unabhängig nur durch den Remissionsstatus beeinflußt. Außerdem war die TRM-Rate niedriger bei Patienten, die keine Graft-vs.-Host-Reaktion (GvHD, p < 0,0001) hatten, und bei den Patienten, die nach 1985 behandelt wurden. GvHD war der einzige unabhängige Faktor in der Entwicklung der IP (p = 0,01). Für die Kataraktinzidenz fand sich als einziger unabhängiger Faktor die momentane Dosisrate (p = 0,0008).
Schlußfolgerungen
Die Prognose der BMT-Patienten, die mit einer TBI bei akuter Leukämie behandelt wurden, wurde nicht durch die TBI-Technik signifikant beeinflußt, und die TRM schien bei den Patienten, die nach 1985 behandelt wurden, niedriger auszufallen. Außerdem wurde die Kataraktinzidenz durch die momentane Dosisrate signifikant beeinflußt.
Schlüsselwörter: TBI, Dosisrate, Fraktionierung, Akute Leukämie, BMT
References
- 1.Appelbaum F, Fisher L, Thomas ED. Chemotherapy vs. marrow transplantation for adults with acute nonlymphoblastic leukemia: a five-year follow-up. Blood. 1988;72:179–84. [PubMed] [Google Scholar]
- 2.Baranov AE, Selidovkin GD, Butturini A, et al. Hematopoietic recovery after 10-Gy acute total body irradiation. Blood. 1994;83:596–9. [PubMed] [Google Scholar]
- 3.Barrett A. Total body irradiation (TBI) before bone marrow transplantation in leukemia: a co-operative study from the European Group for Bone Marrow Transplantation. Br J Radiol. 1982;55:562–7. doi: 10.1259/0007-1285-55-656-562. [DOI] [PubMed] [Google Scholar]
- 4.Barrett A, Depledge MH, Powles RL. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation. Int J Radiat Oncol Biol Phys. 1983;9:1029–33. doi: 10.1016/0360-3016(83)90393-0. [DOI] [PubMed] [Google Scholar]
- 5.Barrett A, Nicholls J, Gibson B. Late effects of total body irradiation. Radiother Oncol. 1987;9:131–5. doi: 10.1016/S0167-8140(87)80200-1. [DOI] [PubMed] [Google Scholar]
- 6.Baume D, Cosset JM, Pico JL, et al. Maladie veino-occlusive du foie après greffe de moelle osseuse: intérêt possible du fractionnement de l’irradiation corporelle totale. Presse Méd. 1987;16:1759–1759. [PubMed] [Google Scholar]
- 7.Belkacémi Y, Ozsahin M, Pène F, et al. Cataractogenesis after total-body irradiation. Int J Radiat Oncol Biol Phys. 1996;10:53–60. doi: 10.1016/s0360-3016(96)85011-5. [DOI] [PubMed] [Google Scholar]
- 8.Belkacémi Y, Ozsahin M, Rio B, et al. Is veno-occlusive disease influenced by the total-body irradiation technique. Strahlenther Onkol. 1995;171:694–7. [PubMed] [Google Scholar]
- 9.Brauner R, Fontoura M, Zucker JM, et al. Growth and growth hormone secretion after bone marrow transplantation. Arch Dis Child. 1993;68:458–63. doi: 10.1136/adc.68.4.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Brochstein JA, Kernan NA, Groshen S, et al. Allogeneic bone marrow transplantation after hyperfractionated total-body irradiation and cyclophosphamide in children with acute leukemia. N Engl J Med. 1987;317:1618–24. doi: 10.1056/NEJM198712243172602. [DOI] [PubMed] [Google Scholar]
- 11.Calissendorff BM, Bolme P. Cataract development and outcome of surgery in bone marrow transplanted children. Br J Ophthalmol. 1993;77:36–8. doi: 10.1136/bjo.77.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Chalmers EA, Sproul AM, Mills KI, et al. Effect of radiation dose on the development of mixed haemopoietic chimerism following T cell-depleted allogeneic bone marrow transplantation. Bone Marrow Transplant. 1992;10:425–30. [PubMed] [Google Scholar]
- 13.Clift RA, Buckner CD, Appelbaum FR, et al. Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood. 1991;77:1660–65. [PubMed] [Google Scholar]
- 14.Cordonnier C, Bernaudin JF, Bierling P, et al. Pulmonary complications occurring after allogeneic bone marrow transplantation: a study of 130 consecutive transplanted patients. Cancer. 1986;58:1047–54. doi: 10.1002/1097-0142(19860901)58:5<1047::AID-CNCR2820580512>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- 15.Cosset JM, Baume D, Pico JL, et al. Single dose versus hyperfractionated total body irradiation before allogeneic bone marrow transplantation: a non-randomized comparative study of 54 patients at the Institut Gustave-Roussy. Radiother Oncol. 1989;15:151–60. doi: 10.1016/0167-8140(89)90129-1. [DOI] [PubMed] [Google Scholar]
- 16.Cox D. R. Regression models and life tables. J R Stat Soc. 1972;34:187–220. [Google Scholar]
- 17.Deeg HJ. Interstitial pneumonitis. In: Deeg HJ, Klingemann HG, Phillips GL, editors. A Guide to Bone Marrow Transplantation. 2nd edn. Berlin: Springer-Verlag; 1992. pp. 175–86. [Google Scholar]
- 18.Deeg HJ, Flournoy N, Sullivan KM, et al. Cataracts after total body irradiation and marrow transplantation: a sparing effect of dose fractionation. Int J Radiat Oncol Biol Phys. 1984;10:957–64. doi: 10.1016/0360-3016(84)90163-9. [DOI] [PubMed] [Google Scholar]
- 19.Deeg JH, Storb R, Longton G, et al. Single dose or fractionated total body irradiation and autologous marrow transplantation in dogs: effects of exposure rate, fraction size and fractionation interval on acute and delayed toxicity. Int J Radiat Oncol Biol Phys. 1988;15:647–53. doi: 10.1016/0360-3016(88)90307-0. [DOI] [PubMed] [Google Scholar]
- 20.Deeg HJ, Sullivan KM, Buckner CD, et al. Marrow transplantation for acute nonlymphoblastic leukemia in first remission: toxicity and long-term follow-up of patients conditioned with single dose or fractionated total body irradiation. Bone Marrow Transplant. 1986;1:151–7. [PubMed] [Google Scholar]
- 21.Dutreix J, Gluckman E, Brule JM. Biological problems of total body irradiation. J Eur Radiother. 1982;3:163–73. [Google Scholar]
- 22.Evans RG, Wheatley CL, Nielsen JR. Modification of radiation-induced damage to bone marrow stem cells by dose rate, dose fractionation, and prior exposure to Cytoxan as judged by the survival of CFUs: Application to BMT. Int J Radiat Oncol Biol Phys. 1988;14:491–5. doi: 10.1016/0360-3016(88)90265-9. [DOI] [PubMed] [Google Scholar]
- 23.Ganem G, Saint-Marc Girardin MF, Kuentz M, et al. Venocclusive disease of the liver after allogeneic bone marrow transplantation in man. Int J Radiat Oncol Biol Phys. 1988;14:879–84. doi: 10.1016/0360-3016(88)90009-0. [DOI] [PubMed] [Google Scholar]
- 24.Gorin NC, Aegerter P, Auvert B, et al. Autologous bone marrow transplantation for acute myelocytic leukemia in first remission: a European survey of the role of marrow purging. Blood. 1990;75:1606–14. [PubMed] [Google Scholar]
- 25.Kaplan EL, Meier P. Non-parametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81. doi: 10.2307/2281868. [DOI] [Google Scholar]
- 26.Kim TH, McGlave PB, Ramsay N, et al. Comparison of two total body irradiation regimens in allogeneic bone marrow transplantation for acute non-lymphoblastic leukemia in first remission. Int J Radiat Oncol Biol Phys. 1990;19:889–97. doi: 10.1016/0360-3016(90)90009-9. [DOI] [PubMed] [Google Scholar]
- 27.Kimler BF, Park CH, Yakar D, et al. Radiation response of human normal and leukemic hematopoietic cells assayed by in vitro colony formation. Int J Radiat Oncol Biol Phys. 1985;11:809–16. doi: 10.1016/0360-3016(85)90315-3. [DOI] [PubMed] [Google Scholar]
- 28.Laver J. Radiobiological properties of human hematopoietic and stromal marrow cells. Int J Cell Cloning. 1989;7:203–12. doi: 10.1002/stem.5530070402. [DOI] [PubMed] [Google Scholar]
- 29.Lazarus HM, Vogelsang GB, Rowe JM. Prevention and treatment of acute graft-versus-host disease: the old and the new. A report from the Eastern Cooperative Oncology Group (ECOG) Bone Marrow Transplant. 1997;19:577–600. doi: 10.1038/sj.bmt.1700710. [DOI] [PubMed] [Google Scholar]
- 30.Maraninchi D, Vernant JP, Gluckman E, et al. Greffes de moelle allogéniques dans les leucémies aiguës myéloïdes: étude rétrospective chez 111 malades greffés en première rémission complète. Presse Méd. 1986;1:2093–96. [PubMed] [Google Scholar]
- 31.McDonald GB, Sharma P, Matthews DE, et al. Venocclusive disease of the liver after bone marrow transplantation: diagnosis, incidence and predisposing factors. Hepatology. 1984;4:116–22. doi: 10.1002/hep.1840040121. [DOI] [PubMed] [Google Scholar]
- 32.McDonald GB, Sharma P, Matthews DE, et al. The clinical course of 53 patients with venocclusive disease of the liver after marrow transplantation. Transplantation. 1985;39:603–8. doi: 10.1097/00007890-198506000-00005. [DOI] [PubMed] [Google Scholar]
- 33.Ozsahin M, Belkacémi Y, Pène F, et al. Total-body irradiation and cataract incidence: a randomized comparison of two instantaneous dose rates. Int J Radiat Oncol Biol Phys. 1994;28:343–7. doi: 10.1016/0360-3016(94)90056-6. [DOI] [PubMed] [Google Scholar]
- 34.Ozsahin M, Belkacémi Y, Pène F, et al. Interstitial pneumonitis following bone-marrow transplantation conditioned with cyclophosphamide and total-body irradiation. Int J Radiat Oncol Biol Phys. 1996;34:71–7. doi: 10.1016/0360-3016(95)02063-2. [DOI] [PubMed] [Google Scholar]
- 35.Ozsahin M, Pène F, Cosset JM, et al. Morbidity after total body irradiation. Semin Radiat Oncol. 1994;4:95–102. doi: 10.1016/S1053-4296(05)80036-0. [DOI] [PubMed] [Google Scholar]
- 36.Ozsahin M, Pène F, Touboul E, et al. Total-body irradiation before bone marrow transplantation: results of two randomized instantaneous dose rates in 157 patients. Cancer. 1992;69:2853–65. doi: 10.1002/1097-0142(19920601)69:11<2853::AID-CNCR2820691135>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
- 37.Ozsahin M, Schwartz LH, Pène F, et al. Is body weight a risk factor of interstitial pneumonitis after bone marrow transplantation? Bone Marrow Transplant. 1992;10:97–97. [PubMed] [Google Scholar]
- 38.Peto P, Pike MC, Armitage P, et al. Design and analysis of randomised clinical trials requiring prolonged observation of each patient: Part II. Br J Cancer. 1977;35:1–39. doi: 10.1038/bjc.1977.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Rhee JG, Song CW, Kim TH, et al. Effect of fractionation and rate of radiation dose on human leukemic cells, HL-60. Radiat Res. 1985;101:519–27. doi: 10.2307/3576511. [DOI] [PubMed] [Google Scholar]
- 40.Ringdén O, Baryd I, Johansson B, et al. Increased mortality by septicemia, interstitial pneumonitis and pulmonary fibrosis among bone marrow transplant recipients receiving an increased mean dose rate of total body irradiation. Acta Radiol Oncol. 1983;22:423–8. doi: 10.3109/02841868309135965. [DOI] [PubMed] [Google Scholar]
- 41.Ringdén O, Ruutu T, Remberger M, et al. A randomized trial comparing busulfan with total-body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: A report from the Nordic Bone Marrow Transplantation Group. Blood. 1994;83:2723–30. [PubMed] [Google Scholar]
- 42.Ryalls M, Spoudeas HA, Hindmarsh PC, et al. Short-term endocrine consequences of total body irradiation and bone marrow transplantation in children treated for leukemia. J Endocrinol. 1993;136:331–8. doi: 10.1677/joe.0.1360331. [DOI] [PubMed] [Google Scholar]
- 43.Sanders JE, Buckner CD, Amos D, et al. Ovarian function following marrow transplantation for aplastic anemia or leukemia. J Clin Oncol. 1988;6:813–8. doi: 10.1200/JCO.1988.6.5.813. [DOI] [PubMed] [Google Scholar]
- 44.Scarpati D, Frassoni F, Vitale V, et al. Total body irradiation in acute myeloid leukemia and chronic myelogenous leukemia: influence of dose and dose-rate on leukemia relapse. Int J Radiat Oncol Biol Phys. 1989;17:547–52. doi: 10.1016/0360-3016(89)90105-3. [DOI] [PubMed] [Google Scholar]
- 45.Schmidt GM, Niland JC, Forman SJ, et al. Extended follow-up in 212 long-term allogeneic bone marrow transplant survivors. Transplantation. 1993;55:551–7. doi: 10.1097/00007890-199303000-00018. [DOI] [PubMed] [Google Scholar]
- 46.Shank B. Hyperfractionation versus single dose irradiation in human acute lymphocytic leukemia cells: application to TBI for marrow transplantation. Radiother Oncol. 1993;27:30–5. doi: 10.1016/0167-8140(93)90041-6. [DOI] [PubMed] [Google Scholar]
- 47.Shank B, Chu FCH, Dinsmore R, et al. Hyperfractionated total body irradiation for bone marrow transplantation: results in seventy leukemia patients with allogeneic transplants. Int J Radiat Oncol Biol Phys. 1983;9:1607–11. doi: 10.1016/0360-3016(83)90412-1. [DOI] [PubMed] [Google Scholar]
- 48.Shank B, O’Reilly RJ, Cunningham I, et al. Total body irradiation for bone marrow transplantation: the Memorial Sloan-Kettering Cancer Center experience. Radiother Oncol Suppl. 1990;1:68–71. doi: 10.1016/0167-8140(90)90180-5. [DOI] [PubMed] [Google Scholar]
- 49.Sierra J, Grañena A, García J, et al. Autologous bone marrow transplantation for acute leukemia: results and prognostic factors in 90 consecutive patients. Bone Marrow Transplant. 1993;12:517–23. [PubMed] [Google Scholar]
- 50.Song CW, Kim TH, Khan FM, et al. Radiobiological basis of total body irradiation with different dose rate and fractionation: repair capacity of hematopoietic cells. Int J Radiat Oncol Biol Phys. 1981;7:1695–1701. doi: 10.1016/0360-3016(81)90195-4. [DOI] [PubMed] [Google Scholar]
- 51.Sutton L, Kuentz M, Cordonnier C, et al. Allogeneic bone marrow transplantation for adult acute lymphoblastic leukemia in first complete remission: factors predictive of transplant-related mortality and influence of total body irradiation. Bone Marrow Transplant. 1993;12:583–9. [PubMed] [Google Scholar]
- 52.Tarbell NJ, Amato DA, Down JD, et al. Fractionation and dose rate effects in mice: a model for bone marrow transplantation. Int J Radiat Oncol Biol Phys. 1987;13:1065–69. doi: 10.1016/0360-3016(87)90046-0. [DOI] [PubMed] [Google Scholar]
- 53.Tarbell NJ, Guinan EC, Niemeyer C, et al. Late onset of renal dysfunction in survivors of bone marrow transplantation. Int J Radiat Oncol Biol Phys. 1988;15:99–104. doi: 10.1016/0360-3016(88)90352-5. [DOI] [PubMed] [Google Scholar]
- 54.Thomas ED. The use and potential of bone marrow allograft and whole-body irradiation in the treatment of leukemia. Cancer. 1982;50:1449–54. doi: 10.1002/1097-0142(19821015)50:8<1449::AID-CNCR2820500802>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- 55.Thomas ED, Clift RA, Hersman J, et al. Marrow transplantation for acute nonlymphoblastic leukemia in first remission using fractionated or single-dose irradiation. Int J Radiat Oncol Biol Phys. 1982;8:817–21. doi: 10.1016/0360-3016(82)90083-9. [DOI] [PubMed] [Google Scholar]
- 56.Thomas ED, Storb R, Buckner CD. Total body irradiation in preparation for marrow engraftment. Transplant Proc. 1976;8:591–3. [PubMed] [Google Scholar]
- 57.Tichelli A. Late ocular complications after bone marrow transplantation. Nouv Rev Fr Hematol. 1994;36(Suppl 1):S79–82. [PubMed] [Google Scholar]
- 58.Travis EL, Peters LJ, McNeill J, et al. Effect of dose-rate on total body irradiation: lethality and pathologic findings. Radiother Oncol. 1985;4:341–51. doi: 10.1016/S0167-8140(85)80122-5. [DOI] [PubMed] [Google Scholar]
- 59.Uckun FM, Chandan-Langlie M, Jaszez W, et al. Radiation damage repair capacity of primary clonogenic blasts in acute lymphoblastic leukemia. Cancer Res. 1994;53:1431–6. [PubMed] [Google Scholar]
- 60.Uckun FM, Song CW. Lack of CD24 antigen expression in B lincage acute lymphoblastic leukemia is associated with intrinsic radiation resistance of primary clonogenic blasts. Blood. 1993;81:1323–32. [PubMed] [Google Scholar]
- 61.van Os R, Thames H, Konings AWT, et al. Radiation-dose fractionation and dose-rate relationships for long-term repopulating hemopoietic stem cells in a murine bone marrow transplant model. Radiat Res. 1993;136:118–25. doi: 10.2307/3578648. [DOI] [PubMed] [Google Scholar]
- 62.Vriesendorp HM. Prediction of effects of therapeutic total body irradiation in man. Radiother Oncol Suppl. 1990;1:37–50. doi: 10.1016/0167-8140(90)90177-X. [DOI] [PubMed] [Google Scholar]
- 63.Vriesendorp HM. Radiobiological speculations on therapeutic total body irradiation. Crit Rev Oncol Hematol. 1990;10:211–24. doi: 10.1016/1040-8428(90)90032-N. [DOI] [PubMed] [Google Scholar]
- 64.Wagner JE, Voselgang GB, Beschorner WE. Pathogenesis and pathology of graft vs. host disease. Am J Pediatr Hematol Oncol. 1989;11:196–212. [PubMed] [Google Scholar]
- 65.Weiner RS, Bortin MM, Gale RP, et al. Interstitial pneumonitis after bone marrow transplantation: assessment of risk factors. Ann Intern Med. 1986;104:168–75. doi: 10.7326/0003-4819-104-2-168. [DOI] [PubMed] [Google Scholar]
- 66.Yan R., Peters LJ, Travis EL. Cyclophosphamide 24 hours before or after total body irradiation: effects on lung and bone marrow. Radiother Oncol. 1991;21:149–56. doi: 10.1016/0167-8140(91)90031-B. [DOI] [PubMed] [Google Scholar]
