Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 May 30;32:257–296. doi: 10.1016/S0070-2161(08)60137-9

Chapter 9 Fusion of Viral Envelopes with Cellular Membranes

Shun-Ichi Ohnishi 1
PMCID: PMC7146812  PMID: 32287479

Publisher Summary

This chapter reviews some characteristic features of membrane fusion activity for each virus and discusses the mechanisms of membrane fusion, especially low pH-induced membrane fusion. It concentrates on the interaction of the hydrophobic segment with the target cell membrane lipid bilayer and suggests the entrance of the segment into the lipid bilayer hydrophobic core as a key step in fusion. The envelope is a lipid bilayer membrane with the virus specific glycoproteins spanning it. The bilayer originates from the host cell membrane and has a lipid composition and transbilayer distribution quite similar to the host's. The viral glycoproteins have the functions of binding to the target cell surface and fusion with the cell membranes. The two functions are carried by a single glycoprotein in influenza virus (HA), vesicular stomatitis virus (VSV) G glycoprotein, and Semliki Forest virus SFV E glycoprotein. In Sendai virus (HVJ), the functions are carried by separate glycoproteins, hemagglutinin-neuraminidase (HN) for binding and fusion glycoprotein (F) for fusion. When viruses encounter target cells, they first bind to the cell surface through an interaction of the viral glycoprotein with receptors.

References

  1. Andersen K.B., Nexo B.A. Entry of murine retrovirus into mouse fibroblasts. Virology. 1983;125:85–98. doi: 10.1016/0042-6822(83)90065-x. [DOI] [PubMed] [Google Scholar]
  2. Asano A., Asano K. Molecular mechanisms of virus entry to target cells. Tumor Res. (Sapporo) 1984;19:1–20. [Google Scholar]
  3. Asano K., Asano A. Why is a specific amino acid sequence of F glycoprotein required for the membrane fusion reaction between envelope of HVJ. Sendai virus) and target cell membranes? Biochem. Int. 1985;10:115–122. [PubMed] [Google Scholar]
  4. Asano K., Murachi T., Asano A. Structural requirements for hemolytic activity of F-glycoprotein of HVJ. Sendai virus) studied by proteolytic dissection. J. Biochem. 1983;93:733–741. doi: 10.1093/jb/93.3.733. [DOI] [PubMed] [Google Scholar]
  5. Bächi T., Aguet M., Howe C. Fusion of erythrocytes by Sendai virus studied by immuno-freeze-etching. J. Virol. 1973;11:1004–1012. doi: 10.1128/jvi.11.6.1004-1012.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bedouelle H., Bassford P.J., Fowler A.V., Zabin I., Beckwith J., Hoffnung M. Mutations which alter the function of the signal sequence of the maltose binding protein of Escherichia coli. Nature (London) 1980;285:78–81. doi: 10.1038/285078a0. [DOI] [PubMed] [Google Scholar]
  7. Blumberg B.H., Giorgi C., Rose K., Kolakofsky D. Sequence determination of the Sendai virus fusion protein. J. Gen. Virol. 1985;66:317–331. doi: 10.1099/0022-1317-66-2-317. [DOI] [PubMed] [Google Scholar]
  8. Bucher D., Palese P. The biologically active proteins of influenza virus: Neuraminidase. In: Kilbourne E., editor. “The Influenza Viruses and Influenra”. Academic Press; New York: 1975. pp. 83–123. [Google Scholar]
  9. Cammack N., Gould E.A. Conditions for haemolysis by flaviviruses and characterization of the haemolysin. J. Gen. Virol. 1985;66:2291–2296. doi: 10.1099/0022-1317-66-10-2291. [DOI] [PubMed] [Google Scholar]
  10. Collins P.L., Huang Y.T., Wertz G.W. Nucleotide sequence of the gene encoding the fusion (F) glycoprotein of human respiratory syncytial virus. Proc. Natl. Acad. Sci. U.S.A. 1984;81:7683–7687. doi: 10.1073/pnas.81.24.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cullis P.R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochem. Biophys. Acta. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  12. Cullis P.R., Hope M.J. Effects of agents on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature (London) 1978;271:672–674. doi: 10.1038/271672a0. [DOI] [PubMed] [Google Scholar]
  13. Daniels R.S., Douglas A.R., Skehel J.J., Waterfield I.A., Wiley D.C. Studies of the influenza virus haemagglutinin in the pH S conformation. In: Laver W.G., editor. “The Origin of Pandemic Influenza Viruses”. Elsevier; Amsterdam: 1983. pp. 1–7. [Google Scholar]
  14. Daniels R.S., Downie J.C., Hay A.J., Knossow M., Skehel J.J., Wang M.L., Wiley D.C. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell. 1985;40:431–439. doi: 10.1016/0092-8674(85)90157-6. [DOI] [PubMed] [Google Scholar]
  15. Dawes E.A. “Quantitative Problems in Biochemistry.”. 6th Ed. Churchill Livingstone; Edinburgh: 1980. p. 57. [Google Scholar]
  16. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., van Hoot F. Lysosomotropic agents. Biochem. Pharmcaol. 1974;23:2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]
  17. Dimmock N.J. Initial stages in infection with animal viruses. J. Gen. Virol. 1982;99:1–22. doi: 10.1099/0022-1317-59-1-1. [DOI] [PubMed] [Google Scholar]
  18. Doms R.W., Gething M.-J., Henneberry J., White J., Helenius A. Variant influenza virus hemmagglutinin that induces fusion at elevated pH. J. Virol. 1986;57:603–613. doi: 10.1128/jvi.57.2.603-613.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Düzgüneg N. Cholesterol and membrane fusion. In: Yangle P.L., editor. “Cholesterol in Biological Systems”. CRC Press; Boca Raton. Florida: 1988. in press. [Google Scholar]
  20. Edwards J., Brown D.T. Sindbis virus-mediated cell fusion from without is a two step event. J. Gen. Virol. 1986;67:377–380. doi: 10.1099/0022-1317-67-2-377. [DOI] [PubMed] [Google Scholar]
  21. Edwards J., Mann E., Brown D.T. Conformational changes in Sindbis virus envelope protein accompanying exposure to low pH. J. Virol. 1983;45:1090–1097. doi: 10.1128/jvi.45.3.1090-1097.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Eidelman O., Schlegel R., Tralka T.S., Blumenthal R. pH-dependent fusion induced by vesicular stomatitis virus glycoprotein reconstituted into phospholipid vesicles. J. Biol. Chem. 1984;259:4622–4628. [PubMed] [Google Scholar]
  23. Emr S.D., Hedgpeth J., Clement J.-M., Silhavy T.J., Hofnung M. Sequence analysis of mutations that prevent export of A receptor, an Escherichia coli outer membrane protein. Nature (London) 1980;285:82–85. doi: 10.1038/285082a0. [DOI] [PubMed] [Google Scholar]
  24. FitzGerald D.J., Padmanabhan R., Pastan I., Willingham M.C. Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell. 1983;32:607–617. doi: 10.1016/0092-8674(83)90480-4. [DOI] [PubMed] [Google Scholar]
  25. Gallione C.J., Rose J.K. Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. J. Virol. 1983;46:162–169. doi: 10.1128/jvi.46.1.162-169.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Garoff H., Frischauf A.-M., Simons K., Lehrach H., Delius H. Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoprotein. Nature (London) 1980;288:236–241. doi: 10.1038/288236a0. [DOI] [PubMed] [Google Scholar]
  27. Gething M.-J., White J.M., Waterfield M.D. Purification of the fusion protein of Sendai virus: Analysis of NH2-terminal sequence generated during precursor activation. Proc. Natl. Acad. Sci. U.S.A. 1978;75:2737–2740. doi: 10.1073/pnas.75.6.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gething M.-J., Bye J., Skehel J., Waterfield M. Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and H3 stains elucidates antigenic shift and drift in human influenza virus. Nature (London) 1980;287:301–306. doi: 10.1038/287301a0. [DOI] [PubMed] [Google Scholar]
  29. Gething M.-J., Doms R.W., York D., White J. Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the heamgglutinin of influenza virus. J. Cell Biol. 1986;102:11–23. doi: 10.1083/jcb.102.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Goldstein J.L., Brown M.S., Anderson R.G., Russell D.W., Schneider W.J. Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  31. Gollins S.W., Porterfield J.S. Flavivirus infection enhancement in macrophages: Radioactive and biological studies on the effect of antibody on viral fate. J. Gen. Virol. 1984;65:1261–1272. doi: 10.1099/0022-1317-65-8-1261. [DOI] [PubMed] [Google Scholar]
  32. Gollins S.W., Porterfield J.S. Flavivirus infection enhancement in macrophages: An electron microscope study of viral cellular entry. J. Gen. Virol. 1985;66:1969–1982. doi: 10.1099/0022-1317-66-9-1969. [DOI] [PubMed] [Google Scholar]
  33. Gollins S.W., Porterfield J.S. pH-dependent fusion between the flavivirus West Nile and liposomal model membranes. J. Gen. Virol. 1986;67:157–166. doi: 10.1099/0022-1317-67-1-157. [DOI] [PubMed] [Google Scholar]
  34. Gonzalez-Scarano F. La Crosse virus G 1 glycoprotein undergoes a conformational change at the pH of fusion. Virology. 1985;140:209–216. doi: 10.1016/0042-6822(85)90359-9. [DOI] [PubMed] [Google Scholar]
  35. Gonzalez-Scarano F., Pobjecky N., Nathanson N. La Crosse bunyavirus can mediate pH-dependent fusion from without. Virology. 1984;132:222–225. doi: 10.1016/0042-6822(84)90107-7. [DOI] [PubMed] [Google Scholar]
  36. Gruner S.M., Cullis P.R., Hope M.J., Tilcock C.P.S. Lipid polymorphism: The molecular basis of nonbilayer phases. Annu. Rev. Biophys. Chem. 1985;14:211–238. doi: 10.1146/annurev.bb.14.060185.001235. [DOI] [PubMed] [Google Scholar]
  37. Haywood A.M., Boyer B.P. Effect of lipid composition upon fusion of liposomes with Sendai virus membranes. Biochemistry. 1984;23:4161–4166. doi: 10.1021/bi00313a024. [DOI] [PubMed] [Google Scholar]
  38. Helenius A., Marsh M., White J. The entry of viruses into animal cells. Trends Biochem. Sci. 1980;5:104–106. [Google Scholar]
  39. Helenius A., Kartenbeck J., Simons K., Fries E. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol. 1980;84:404–420. doi: 10.1083/jcb.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984;23:5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
  41. Hoekstra D., Klappe K., de Boer T., Wilschut J. Characterization of the fusogenic properties of Sendai virus: Kinetics of fusion with erythrocyte membranes. Biochemistry. 1985;24:4739–4745. doi: 10.1021/bi00339a005. [DOI] [PubMed] [Google Scholar]
  42. Homma M., Ohuchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. J. Virol. 1973;12:1457–1465. doi: 10.1128/jvi.12.6.1457-1465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Homma M., Shimizu K., Shimizu Y.K., Ishida N. On the study of Sendaivirus hemolysis I. Complete Sendai virus lacking in hemolytic activity. Virology. 1976;71:41–47. doi: 10.1016/0042-6822(76)90092-1. [DOI] [PubMed] [Google Scholar]
  44. Hosaka Y., Shimizu Y.K. Artificial assembly of envelope particles of HVJ. Sendai virus) I. Assambly of hemolytic and fusion factors from envelopes solubilized by Nonidet P40. Virology. 1972;49:627–639. doi: 10.1016/0042-6822(72)90519-3. [DOI] [PubMed] [Google Scholar]
  45. Howe C., Morgan C. Interaction between Sendai virus and human erythrocytes. J. Virol. 1969;3:70–81. doi: 10.1128/jvi.3.1.70-81.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hsu M.-C., Choppin P.W. Analysis of Sendai virus mRNA with cDNA clones of viral genes and sequence of biologically important regions of the fusion protein. Proc. Natl. Acad. Sci. U.S.A. 1984;81:7732–7736. doi: 10.1073/pnas.81.24.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hsu M.-C., Scheid A., Choppin P.W. Fusion of Sendai virus with liposomes: Dependence on the viral fusion protein (F) and the lipid composition of liposomes. Virology. 1983;126:361–369. doi: 10.1016/0042-6822(83)90485-3. [DOI] [PubMed] [Google Scholar]
  48. Huang R.T.C., Rott R., Klenk H.-D. Infleunza viruses cause hemolysis and fusion of cells. Virology. 1981;110:243–247. doi: 10.1016/0042-6822(81)90030-1. [DOI] [PubMed] [Google Scholar]
  49. Imoto T., Johnson La N., North A.C.T., Phillips O.C., Rupley J.A. Vertebrate lysozymes. In: Boyer P.D., editor. 3rd Ed. Vol. 7. Academic Press; New York: 1972. pp. 665–868. (“The Enzymes”). [Google Scholar]
  50. Junankar P., Cherry R.J. Temperature and pH dependence of the haemolytic activity of influenza virus and of the rotational mobility of the spike glycoprotein. Biochim. Biophys. Acta. 1986;854:106–198. doi: 10.1016/0005-2736(86)90111-2. [DOI] [PubMed] [Google Scholar]
  51. Kawasaki K., Sato S.B., Ohnishi S. Membrane fusion activity of reconbtiluted vesicles of influenza virus hemagglutinin glycoprotein. Biochim. Biophys. Acta. 1983;733:286–290. doi: 10.1016/0005-2736(83)90534-5. [DOI] [PubMed] [Google Scholar]
  52. Kawasaki K., Murata M., Ohnishi S., Ikeuchi Y., Kanaseki T. Membrane fusion of influenza virus and liposomes studied by quick-frozen replica techniques. (Abstr.) Cell Struct. Funct. 1987;12:717. [Google Scholar]
  53. Kielian M.C., Keranen S., Kääriäinen L., Helenius A. Membrane fusion mutants of Semliki Forest virus. J. Cell Biol. 1984;98:139–145. doi: 10.1083/jcb.98.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kim J., Okada Y. Morphological chages in Ehrlich ascites tumor cells during the cell fusion reaction with HVJ.(Sendai virus) II. Cluster formation of intramembrane particles in the early stage of cell fusion. Exp. Cell Res. 1981;132:125–136. doi: 10.1016/0014-4827(81)90089-6. [DOI] [PubMed] [Google Scholar]
  55. Kim J., Hama K., Miyake Y., Okada Y. Transformation of intramembrane particles of HVJ.(Sendai virus) envelopes from an invisible to visible form on aging of virions. Virology. 1979;95:523–535. doi: 10.1016/0042-6822(79)90506-3. [DOI] [PubMed] [Google Scholar]
  56. Kitamae F., Sugawara K., Ohwada K., Homma M. Proteolytic activation of hemolysis and fusion by influenza C virus. Arch. Virol. 1982;73:357–361. doi: 10.1007/BF01318090. [DOI] [PubMed] [Google Scholar]
  57. Klenk H.-D., Rott R., Orlich M., Blodorn J. Activation ofinfluenza A viruses by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
  58. Knutton S. Studies of membrane fusion. V. Fusion oferythrocytes with non-haemolytic Sendai virus. J. Cell Sci. 1979;36:85–96. doi: 10.1242/jcs.36.1.85. [DOI] [PubMed] [Google Scholar]
  59. Knutton S., Bächi T. The role of cell swelling and haemolysis in Sendai virusinduced cell fusion and in the diffusion of incorporated viral antigens. J. Cell Sci. 1980;42:153–167. doi: 10.1242/jcs.42.1.153. [DOI] [PubMed] [Google Scholar]
  60. Kohama T., Shimizu K., Ishida N. Carbohydrate composition of the envelope glycoproteins of Sendai virus. Virology. 1978;90:226–234. doi: 10.1016/0042-6822(78)90306-9. [DOI] [PubMed] [Google Scholar]
  61. Krystal M., Elliot R., Benz E., Young J., Palese P. Evolution of influenza A and B viruses: Conservation of structural features in the hemagglutinin genes. Proc. Natl. Acad. Sci. U.S.A. 1982;79:4800–4808. doi: 10.1073/pnas.79.15.4800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Kundrot C.E., Spangler E.A., Kendall D.A., MacDonald R.C., MacDonald R.I. Sendai virus mediated-lysis of liposomes requires cholesterol. Proc. Natl. Acad. Sci. U.S.A. 1983;80:1608–1612. doi: 10.1073/pnas.80.6.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Kuroda K., Kawasaki K., Ohnishi S. Kinetic analysis of fusion of hemaggluti-nating virus of Japan with erythrocyte membrane using spin-labeled phosphatidylcholine. Biochemistry. 1985;24:4624–4629. doi: 10.1021/bi00338a022. [DOI] [PubMed] [Google Scholar]
  64. Lazarowitz S., Choppin P.W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440–454. doi: 10.1016/0042-6822(75)90285-8. [DOI] [PubMed] [Google Scholar]
  65. Lee P.M., Cherry R.J., Bächi T. Correlation of rotational mobility and flexibility of Sendai virus spike glycoproteins with fusion activity. Virology. 1983;128:65–76. doi: 10.1016/0042-6822(83)90319-7. [DOI] [PubMed] [Google Scholar]
  66. Lenard J., Miller D.K. pH-dependent hemolysis by influenza. Semliki Forest virus, and Sendai virus. Virology. 1981;110:479–482. doi: 10.1016/0042-6822(81)90079-9. [DOI] [PubMed] [Google Scholar]
  67. Lenz J., Crowther R., Straceki A., Haseltine W. Nucleotide sequence of the AKV env gene. J. Virol. 1982;42:519–529. doi: 10.1128/jvi.42.2.519-529.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Madshus I.H., Olsnes S., Sandvig K. Mechanism of entry into the cytosol of poliovirus Type 1: Requirement of low pH. J. Cell Biol. 1984;98:1194–1200. doi: 10.1083/jcb.98.4.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Maeda T., Ohnishi S. Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes. FEES Lett. 1980;122:283–287. doi: 10.1016/0014-5793(80)80457-1. [DOI] [PubMed] [Google Scholar]
  70. Maeda T., Asano A., Ohki K., Okada Y., Ohnishi S. A spin-label study on fusion of red blood cells induced by hemagglutinating virus of Japan. Biochemistry. 1975;14:3736–3741. doi: 10.1021/bi00688a003. [DOI] [PubMed] [Google Scholar]
  71. Maeda Y., Kim J., Koseki I., Mekada E., Shiokawa Y., Okada Y. Modification of cell membrane with viral envelopes during fusion of cells with HVJ. Sendai virus). III. Effects of mono- and disaccharides on cell fusion and membrane movement of fused cells. Exp. Cell Res. 1977;108:95–106. doi: 10.1016/s0014-4827(77)80014-1. [DOI] [PubMed] [Google Scholar]
  72. Maeda T., Kawasaki K., Ohnishi S. Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc. Natl. Acad. Sci. U.S.A. 1981;78:4133–4137. doi: 10.1073/pnas.78.7.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Marsh M. The entry of enveloped viruses into cells by endocytosis. Biochem. J. 1984;218:1–10. doi: 10.1042/bj2180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Marsh M., Bolzau E., White J., Helenius A. Interactions of Semliki Forest virus spike glycoprotein rosettes and vesicles with cultured cells. J. Cell Biol. 1983;96:455–461. doi: 10.1083/jcb.96.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Marsh M., Bolzau E., Helenius A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell. 1983;32:931–940. doi: 10.1016/0092-8674(83)90078-8. [DOI] [PubMed] [Google Scholar]
  76. Matlin K.S., Reggio H., Helenius A., Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 1981;91:601–613. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Matlin K.S., Reggio H., Helenius A., Simons K. Pathway of vesicular stomatitis virus entry leading to infection. J. Mol. Biol. 1982;156:609–631. doi: 10.1016/0022-2836(82)90269-8. [DOI] [PubMed] [Google Scholar]
  78. Metsikkö K., van Meer G., Simons K. Reconstitution of the fusogenic activity of vesicular stomatitis virus. EMBO J. 1986;5:3429–3435. doi: 10.1002/j.1460-2075.1986.tb04665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Mifune K., Ohuchi M., Mannen K. Hemolysis and cell fusion by rhabdovirus. FEBS Lett. 1982;137:293–297. doi: 10.1016/0014-5793(82)80370-0. [DOI] [PubMed] [Google Scholar]
  80. Murata M., Nagayama K., Ohnishi S. Membrane fusion activity of succinylated melittin is triggered by protonation of its carboxyl groups. Biochemistry. 1987;26:4056–4062. doi: 10.1021/bi00387a047. [DOI] [PubMed] [Google Scholar]
  81. Murata M., Sugahara Y., Takahashi S., Ohnishi S. pH-Dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment in influenza virus hemagglutinin. J. Biochem. 1987;102:957–962. doi: 10.1093/oxfordjournals.jbchem.a122137. [DOI] [PubMed] [Google Scholar]
  82. Nakada S., Creager R.S., Krystal M., Aaronson R.P., Palese P. Influenza C virus hemagglutinin: Comparison with influenza A and B virus hemagglutinins. J. Virol. 1984;50:118–124. doi: 10.1128/jvi.50.1.118-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Nir S., Stegmann T., Wilschut J. Fusion of influenza virus with cardio lipinliposomes at low pH: Mass action analysis of kinetics and extent. Biochcmistry. 1986;25:257–266. doi: 10.1021/bi00349a036. [DOI] [PubMed] [Google Scholar]
  84. Nir S., Klappe K., Hoekstra D. Kinetics and extent of fusion between Sendai virus and erythrocyte ghosts: Application of ti mass action kinetic model. Biochemistry. 1986;25:2155–2161. doi: 10.1021/bi00356a046. [DOI] [PubMed] [Google Scholar]
  85. Ohki S. Surface tension. hydration energy and membrane fusion. In: Ohki S., Doyle D., Flanagan T., Hui S.W., Mayhaw E., editors. “Molecular Mechanisms of Membrane Fusion”. Plenum; New York: 1987. in press. [Google Scholar]
  86. Ohkuma S., Poole B. Fluorescence probe measurement of the intl-alysosomal pH in living cells and the perturbaof pH by various agents. Proc. Ntal. Acad. Sci. U. S. A. 1978;75:3317–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Ohnishi S. Membrane fusion: Mechanism and role in cellular response to enveloped virus. In: Nagata C., Hatano M., Ttinaka J., Suruki H., editors. “Biomolecules: Electronic Aspects”. Japan Scientific Societies Press; Tokyo: 1985. pp. 227–252. Elsevier. Amsterdam. [Google Scholar]
  88. Ohnishi S. Interaction of hemagglutinin with target membranes. Vaccine. 1985;3:104. [Google Scholar]
  89. Ohnishi S., Yoshimura A. Infectious cell entry mechanism of enveloped viruses. Virus (Jpn.) 1984;34:11–24. [PubMed] [Google Scholar]
  90. Ohuchi M., Ohuchi R., Mifune K. Demonstration of hemolytic and fusion activities of influenza C virus. J. Virol. 1982;42:1076–1079. doi: 10.1128/jvi.42.3.1076-1079.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Okada Y. The fusion of Ehrlich's ascites tumor cells caused by HVJ virus in vitro. Biken J. 1958;1:103–110. [Google Scholar]
  92. Okada, Y., Koseki, I., Kim. J., Maeda, Y., Hashimoto, T., Matsui, Y., and Kanno, Y. (1975). Modification of cell membranes with viral envelopes during fusion of cells with HVJ. Sendai virus) I. Interaction between cell membranes and virus in the early stage. [DOI] [PubMed]
  93. Ozawa M., Asano A. The preparation of cell fusion-inducing proteoliposomes from purified glycoproteins of HVJ. Sendai virus) and chemically defined lipids. J. Biol. Chem. 1981;256:5954–5956. [PubMed] [Google Scholar]
  94. Parsegian A. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature (London) 1969;221:844–846. doi: 10.1038/221844a0. [DOI] [PubMed] [Google Scholar]
  95. Pasternak C.A. How viruses damage cells: Alterations in plasma membrane function. J. Biosci. 1984;6:569–583. [Google Scholar]
  96. Porter A.G., Barber C., Carey N.H., Hallewell K.A., Threlfall G., Emtage J.S. Complete nucleotide sequence of an influenza virus haemagglutinin gene from cloned DNA. Nature (London) 1979;282:471–477. doi: 10.1038/282471a0. [DOI] [PubMed] [Google Scholar]
  97. Redmond S.M.S., Dickson C. Sequence and expression of the mouse mammary tumor virus env gene. EMBO J. 1983;2:125–131. doi: 10.1002/j.1460-2075.1983.tb01393.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Redmond S., Peters G., Dickson C. Mouse mammary tumor virus can mediate cell fusion at reduced pH. Virology. 1984;133:393–402. doi: 10.1016/0042-6822(84)90405-7. [DOI] [PubMed] [Google Scholar]
  99. Rice C.M., Strauss J.H. Nucleotide sequence of the 26s mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins. Proc. Natl. Acad. Sci. U.S.A. 1981;78:2062–2066. doi: 10.1073/pnas.78.4.2062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Richardson C.D., Choppin P.W. Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: Studies on the site of action. Virology. 1983;131:518–532. doi: 10.1016/0042-6822(83)90517-2. [DOI] [PubMed] [Google Scholar]
  101. Richardson C.D., Scheid A., Choppin P.W. Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology. 1980;105:205–222. doi: 10.1016/0042-6822(80)90168-3. [DOI] [PubMed] [Google Scholar]
  102. Rose J.K., Gallione C.J. Nucleotide sequences of the mRNA's encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions. J. Virol. 1981;39:519–529. doi: 10.1128/jvi.39.2.519-528.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Rott R., Orlich M., Klenk H.-D., Wang M.L., Skehel J.J., Wiley D. Studies on the adaptation of influenza viruses to MDCK cells. EMEO J. 1984;3:3329–3332. doi: 10.1002/j.1460-2075.1984.tb02299.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Ruigrok R.W.H., Wrigley N.G., Calder L.J., Cusack S., Wharton S.A., Brown E.B., Skehel J.J. Electron microscopy of low pH structure of influenza virus huemagglutinin. EMBO J. 1986;5:41–49. doi: 10.1002/j.1460-2075.1986.tb04175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Sandvig K., Olsnes S. Diphtheria toxin entry into cells is facilitated by low pH. J. Cell Biol. 1980;87:828–832. doi: 10.1083/jcb.87.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Sato S.B., Kawasaki K., Ohnishi S. Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc. Natl. Acad. Sci. U.S.A. 1983;80:3153–3157. doi: 10.1073/pnas.80.11.3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Scheid A., Choppin P.W. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell Fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
  108. Schlegel R., Wade M. A synthetic peptide corresponding to the NH2 terminus of vesicular stomatitis virus glycoprotein is a pH-dependent hemolysin. J. Biol. Chem. 1984;259:4691–4694. [PubMed] [Google Scholar]
  109. Schlegel R., Wade M. Biologically active peptides of the vesicular stomatitis virus glycoprotein. J. Virol. 1985;53:319–323. doi: 10.1128/jvi.53.1.319-323.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Schlegel R., Tralka T.S., Willingham M.C., Pastan I. Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV binding site? Cell. 1983;32:639–647. doi: 10.1016/0092-8674(83)90483-x. [DOI] [PubMed] [Google Scholar]
  111. Schloemer R.H., Wagner R.R. Cellular adsorption function of the SialOglycoprotein of vesicular stomatitis virus and its neuraminic acid. J. Virol. 1975;15:882–893. doi: 10.1128/jvi.15.4.882-893.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Schmidt M.F.G. Fatty acid binding: A new kind of posttranslational modification of membrane protein. Curr. Top. Microbiol. Immunol. 1983;102:101–129. doi: 10.1007/978-3-642-68906-2_3. [DOI] [PubMed] [Google Scholar]
  113. Schmidt M.F.G., Lambrecht B. On the structure of the acyl linkage and the function of fatty acyl chains in the influenza virus haemagglutinin and the glycoproteins of Semliki Forest virus. J. Gen. Virol. 1985;66:2635–2647. doi: 10.1099/0022-1317-66-12-2635. [DOI] [PubMed] [Google Scholar]
  114. Seki M., Hattori S., Hirayama Y., Yoshida M. Human adult T-cell leukemia virus: Complete mucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc. Natl. Acad. Sci. U.S.A. 1983;80:3618–3622. doi: 10.1073/pnas.80.12.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Sekiguchi K., Asano A. Participation of spectrin in Sendai virus-induced fusion of human erythrocyte ghosts. Proc. Nutl. Acad. Sci. U.S.A. 1978;75:1740–1744. doi: 10.1073/pnas.75.4.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Shibata M., Maeno K., Tsurumi T., Aoki H., Nishiyama Y., Ito Y., Isomura S., Suzuki S. Role of viral glycoproteins in hemolysis by influenza B viruses. J. Gen. Virol. 1982;59:183–186. doi: 10.1099/0022-1317-59-1-183. [DOI] [PubMed] [Google Scholar]
  117. Shimizu Y.K., Shimizu K., Ishida N., Homma M. On the study of Sendai virus hemolysis II. Morphological study of envelope fusion and hemolysis. Virology. 1976;71:48–60. doi: 10.1016/0042-6822(76)90093-3. [DOI] [PubMed] [Google Scholar]
  118. Shinnick T.M., Lerner R.A., Sutcliffe J.G. Nucleotide sequence of Moloney murine leukemia virus. Nature (London) 1981;293:543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  119. Skehel J.J., Bayley P.M., Brown E.B., Martin S.R., Waterfield M.D., White J.M., Wilson I.A., Wiley D.C. Changes in the conformation of influenza virus haemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. Natl. Sci. U.S.A. 1982;79:968–972. doi: 10.1073/pnas.79.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochemistry. 1985;79:968–972. doi: 10.1021/bi00334a006. [DOI] [PubMed] [Google Scholar]
  121. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles. J. Biol. Chem. 1986;261:10966–10969. [PubMed] [Google Scholar]
  122. Struck D.K., Hoekstra D., Pagano P.E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981;20:4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  123. Sturman L.S., Ricard C.S., Holmeh K.V. Proteolytic cleavage of the E2 glycoprotein of murine Coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Tanaka K., Ohnishi S. Heterogeneity in the tiuidity of intact erythrocyte membrane and its homogenization upon hemolysih. Biochim. Biophys. Acta. 1974;426:218–231. doi: 10.1016/0005-2736(76)90333-3. [DOI] [PubMed] [Google Scholar]
  125. Tsuji A., Ohnishi S. Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: Dependence on spectrin association state. Biochemistry. 1986;25:6133–6139. doi: 10.1021/bi00368a045. [DOI] [PubMed] [Google Scholar]
  126. Tycko B., Maxfield F.R. Rapid aciditication of endocytic vesicles containing α-macroglobulin. Cell. 1982;28:643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  127. Väänanen P., Käärilainen L. Haemolysis hy two alphaviruses: Semliki Forest and Sindhis virus. J. Gen. Virol. 1979;43:593–601. doi: 10.1099/0022-1317-43-3-593. [DOI] [PubMed] [Google Scholar]
  128. Väänänen P., Kääriäinen L. Fusion and haemolysis of erythrocytes caused by three togaviruses: Semliki Forest Sindbih, and rubella. J. Gen. Virol. 1980;46:467–475. doi: 10.1099/0022-1317-46-2-467. [DOI] [PubMed] [Google Scholar]
  129. van Renswoude J., Bridges K.R., Harford J.B., Klausner R.D. Receptormediated endocytosis of transferrin and the uptake of Fe in K562 cell: Identification of a nonlysosomal acidic compartment. Proc. Natl. Acad. Sci. U.S.A. 1982;79:6186–6190. doi: 10.1073/pnas.79.20.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Verhoeyen M., Fang R., Min Jou W., Devos R., Huylebroeck D., Saman E., Fiers W. Antigenic drift between the heemagglutinin of the Hong Kong influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature. (London) 1980;286:771–776. doi: 10.1038/286771a0. [DOI] [PubMed] [Google Scholar]
  131. Volsky D.J., Loyter A. An efficient method for reassembly of fusogenic Sendni virus envelopes after solubilization of intact virions with Triton X-100. FERS Lett. 1978;92:190–194. doi: 10.1016/0014-5793(78)80751-0. [DOI] [PubMed] [Google Scholar]
  132. Volsky D.J., Loyter A. Role ofCa2+ in virus-induced membrane fusion. Ca2+ accumulation and ultrastructural changes induced by Sendai virus in chicken erythrocytes. J. cell Biol. 1978;78:465–479. doi: 10.1083/jcb.78.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. von Heijne G. On the hydrophobic nature of signal sequence. Eur. J. Biochem. 1981;116:419–422. doi: 10.1111/j.1432-1033.1981.tb05351.x. [DOI] [PubMed] [Google Scholar]
  134. Wharton S.A., Skehel J.J., Wiley D.C. Studies of inlluenza haemagglutininmediated membrane fusion. Virology. 1986;149:27–35. doi: 10.1016/0042-6822(86)90083-8. [DOI] [PubMed] [Google Scholar]
  135. White J., Helenius A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc. Natl. Acad. Sci. U.S.A. 1980;77:3273–3277. doi: 10.1073/pnas.77.6.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. White J., Kartenbeck J., Helenius A. Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH. J. Cell Biol. 1980;87:264–272. doi: 10.1083/jcb.87.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. White J., Matlin K., Helenius A. Cell fusion by Semliki Forest. influenza and vesicular stomatitis virus. J. Cell Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. White J., Kartenbeck J., Helenius A. Membrane fusion activity of influenza virus. EMBO J. 1982;1:217–222. doi: 10.1002/j.1460-2075.1982.tb01150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
  140. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the haemagglutinin memhrane glycoprotein of influenza virus at 3 Ä resolution. Nature(Londan) 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  141. Winter G., Fields S., Brownlee G.G. Nucleotide sequence of the haemagglutinin gene of a human influenza virus HI subtype. Nature(Londan) 1981;292:72–75. doi: 10.1038/292072a0. [DOI] [PubMed] [Google Scholar]
  142. Wyke A.M., Impraim C.C., Knutton S., Pasternak C.A. Components involved in virally mediated membrane fusion and permeability changes. Biochm. J. 1980;190:625–638. doi: 10.1042/bj1900625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Yamada S., Ohnishi S. Vesicular stomatitis virus binds and fuses with phospholipid domain in target cell membranes. Biocemistry. 1986;25:3703–3708. doi: 10.1021/bi00360a034. [DOI] [PubMed] [Google Scholar]
  144. Yamamoto K., Suzuki K., Shimizu B. Hemolytic activity of the envelope glycoproteins of Western equine encephalitis virus in reconstitution experiments. Virology. 1981;109:452–454. doi: 10.1016/0042-6822(81)90518-3. [DOI] [PubMed] [Google Scholar]
  145. Yasuda Y., Hosaka Y., Fukami Y., Fukai K. Immunoelectron microscopic study on interactions of noninfectious Sendai virus and murine cells. J. Virol. 1981;39:273–281. doi: 10.1128/jvi.39.1.273-281.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Yoshimurd A. Adenovirus-induced leakage of co-endocytosed macromolecules into the cytosol. Cell Struct. Funct. 1985;10:391–404. doi: 10.1247/csf.10.391. [DOI] [PubMed] [Google Scholar]
  147. Yoshimura A., Ohnishi S. Uncoating of influenza virus in endosomes. J. Virol. 1984;51:489–496. doi: 10.1128/jvi.51.2.497-504.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Yoshimura A., Kuroda K., Kawasaki K., Yamashina S., Maeda T., Ohnishi S. Infectious cell entry mechanism of influenza virus. J. Viral. 1982;43:284–293. doi: 10.1128/jvi.43.1.284-293.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Yoshimura A., Yamashina S., Ohnishi S. Mobilization and aggregation of integral membrane proteins in erythrocytes induced by interaction with influenza virus at acidic pH. Exp. Cell Res. 1985;160:126–137. doi: 10.1016/0014-4827(85)90242-3. [DOI] [PubMed] [Google Scholar]

Articles from Current Topics in Membranes and Transport are provided here courtesy of Elsevier

RESOURCES