Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 May 30;11:233–277. doi: 10.1016/S0070-2161(08)60750-9

Membrane Glycoproteins of Enveloped Viruses

Richard W Compans 1, Maurice C Kemp 1
PMCID: PMC7146817  PMID: 32287477

Abstract

This chapter focuses on the recent information of the glycoprotein components of enveloped viruses and points out specific findings on viral envelopes. Although enveloped viruses of different major groups vary in size and shape, as well as in the molecular weight of their structural polypeptides, there are general similarities in the types of polypeptide components present in virions. The types of structural components found in viral membranes are summarized briefly in the chapter. All the enveloped viruses studied to date possess one or more glycoprotein species and lipid as a major structural component. The presence of carbohydrate covalently linked to proteins is demonstrated by the incorporation of a radioactive precursor, such as glucosamine or fucose, into viral polypeptides, which is resolved by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. Enveloped viruses share many common features in the organization of their structural components, as indicated by several approaches, including electron microscopy, surface-labeling, and proteolytic digestion experiments, and the isolation of subviral components. The chapter summarizes the detailed structure of the glycoproteins of four virus groups: (1) influenza virus glycoproteins, (2) rhabdovirus G protein, (3) togavirus glycoprotein, and (4) paramyxovirus glycoproteins The information obtained includes the size and shape of viral glycoproteins, the number of polypeptide chains in the complete glycoprotein structure, and compositional data on the polypeptide and oligosaccharide portions of the molecules.

References

  1. Abodeely R.A., Lawson L.A., Randall C.C. Morphology and entry of enveloped and deenveloped equine abortion (herpes) virus. J. Virol. 1970;5:513–523. doi: 10.1128/jvi.5.4.513-523.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen A.K., Skehel J.J., Yuferov V. The amino acid and carbohydrate composition of the neuraminidase of B/Lee/40 influenza virus. J. Gen. Virol. 1977;37:625–628. [Google Scholar]
  3. Atkinson P.H., Moyer S.A., Summers D.F. Assembly of vesicular stomatitis virus glycoprotein and matrix protein into HeLa cell plasma membranes. J. Mol. Biol. 1976;102:613–631. doi: 10.1016/0022-2836(76)90338-7. [DOI] [PubMed] [Google Scholar]
  4. Bächi T., Gerhard W., Lindenmann J., Mühlethaler K. Morphogenesis of influenza A virus in Ehrlich ascites tumor cells as revealed by thin-sectioning and freeze-etching. J. Virol. 1969;4:769–776. doi: 10.1128/jvi.4.5.769-776.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barenholz Y., Moore N.F., Wagner R.R. Enveloped viruses as model membrane systems: Microviscosity of vesicular stomatitis virus and host cell membranes. Biochemistry. 1976;15:3563–3570. doi: 10.1021/bi00661a026. [DOI] [PubMed] [Google Scholar]
  6. Becht H., Hämmerling U., Rott R. Undisturbed release of influenza virus in the presence of univalent antineuraminidase antibodies. Virology. 1971;46:337–343. doi: 10.1016/0042-6822(71)90035-3. [DOI] [PubMed] [Google Scholar]
  7. Bikel I., Knight C.A. Differential action of Aspergillus glycosidase activities of influenza and Newcastle disease viruses. Virology. 1972;49:326–332. doi: 10.1016/s0042-6822(72)80038-2. [DOI] [PubMed] [Google Scholar]
  8. Birdwell C.R., Strauss J.H. Replication of Sindbis virus. IV. Electron microscopic study of the insertion of viral glycoproteins into the surface of infected cells. J. Virol. 1974;14:366–374. doi: 10.1128/jvi.14.2.366-374.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bishop D.H.L., Roy P. Dissociation of vesicular stomatitis virus and relation of the virion proteins to the viral transcriptase. J. Virol. 1972;10:234–243. doi: 10.1128/jvi.10.2.234-243.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bishop D.H.L., Repik P., Obijeski J.F., Moore N.F., Wagner R.R. Restitution of infectivity to spikeless vesicular stomatitis virus by solubilized viral components. J. Virol. 1975;16:75–84. doi: 10.1128/jvi.16.1.75-84.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Blough H.A., Tiffany J.M. Theoretical aspects of structure and assembly of viral envelopes. Curr. Top. Microbiol. Immunol. 1975;70:1–30. doi: 10.1007/978-3-642-66101-3_1. [DOI] [PubMed] [Google Scholar]
  12. Bolognesi D.P. Structural components of RNA tumor viruses. Adv. Virus Res. 1974;19:315–359. doi: 10.1016/s0065-3527(08)60663-6. [DOI] [PubMed] [Google Scholar]
  13. Brand C.M., Skehel J.J. Crystalline antigen from the influenza virus envelope. Nature (London), New Biol. 1972;238:145–147. doi: 10.1038/newbio238145a0. [DOI] [PubMed] [Google Scholar]
  14. Bratt M.A., Gallaher W.M. Biological parameters of fusion from without. In: Fox C.F., editor. “Membrane Research”. Academic Press; New York: 1972. pp. 383–406. [Google Scholar]
  15. Brown F., Smale C.J., Horzinek M.C. Lipid and protein organization in vesicular stomatitis and Sindbis viruses. J. Gen. Virol. 1974;22:455–458. doi: 10.1099/0022-1317-22-3-455. [DOI] [PubMed] [Google Scholar]
  16. Bucher D.J., Kilbourne E.D. A2(N2) neuraminidase of the X-7 influenza virus recombinant: Determination of molecular size and subunit composition of the active unit. J. Virol. 1972;10:60–66. doi: 10.1128/jvi.10.1.60-66.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bucher D., Palese P. The biologically active proteins of influenza virus: Neuraminidase. In: Kilbourne E.D., editor. “The Influenza Viruses and Influenza”. Academic Press; New York: 1975. pp. 83–123. [Google Scholar]
  18. Burge B.W., Huang A.S. Comparison of membrane protein glycopeptides of Sindbis virus and vesicular stomatitis virus. J. Virol. 1970;6:176–182. doi: 10.1128/jvi.6.2.176-182.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cartwright B., Smale C.J., Brown F., Hull R. Model for vesicular stomatitis virus. J. Virol. 1972;10:256–260. doi: 10.1128/jvi.10.2.256-260.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Choppin P.W., Compans R.W. Phenotypic mixing of envelope proteins of the parainfluenza virus SV5 and vesicular stomatitis virus. J. Virol. 1970;5:609–616. doi: 10.1128/jvi.5.5.609-616.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Choppin P.W., Compans R.W. Reproduction of paramyxoviruses. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 4. Plenum; New York: 1975. pp. 95–178. (“Comprehensive Virology”). [Google Scholar]
  22. Choppin P.W., Lazarowitz S.G., Goldberg A.R. Studies on proteolytic cleavage and glycosylation of the hemagglutinin of influenza A and B viruses. In: Barry R.D., Mahy B.W.J., editors. “Negative Strand Viruses”. Academic Press; New York: 1975. pp. 105–120. [Google Scholar]
  23. Compans R.W. Influenza virus proteins. II. Association with components of the cytoplasm. Virology. 1973;51:56–70. doi: 10.1016/0042-6822(73)90365-6. [DOI] [PubMed] [Google Scholar]
  24. Compans R.W. Distinct carbohydrate components of influenza virus glycopro-teins in smooth and rough cytoplasmic membranes. Virology. 1973;55:541–545. doi: 10.1016/0042-6822(73)90199-2. [DOI] [PubMed] [Google Scholar]
  25. Compans R.W., Choppin P.W. The structure and assembly of influenza and parainfluenza viruses. In: Maramorosch K., Kur-stak F., editors. “Comparative Virology”. Academic Press; New York: 1971. pp. 407–432. [Google Scholar]
  26. Compans R.W., Choppin P.W. Reproduction of myxoviruses. In: Fraenkel-Conrat H., Wagner R.R., editors. Zn “Comprehensive Virology”. Plenum; New York: 1975. pp. 179–252. [Google Scholar]
  27. Compans R.W., Pinter A. Incorporation of sulfate into influenza virus gly-coproteins. Virology. 1975;66:151–160. doi: 10.1016/0042-6822(75)90186-5. [DOI] [PubMed] [Google Scholar]
  28. Compans R.W., Holmes K.V., Dales S., Choppin P.W. An electron microscopic study of moderate and virulent virus-cell interactions of the parainfluenza virus SV5. Virology. 1966;30:411–426. doi: 10.1016/0042-6822(66)90119-x. [DOI] [PubMed] [Google Scholar]
  29. Compans R.W., Dimmock N.J., Meier-Ewert H. Effect of antibody to neuraminidase on the maturation and hemagglutinating activity of an influenza A2 virus. J. Virol. 1969;4:528–534. doi: 10.1128/jvi.4.4.528-534.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Compans R.W., Klenk H.-D., Caliguiri L.A., Choppin P.W. Influenza virus proteins. I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology. 1970;42:880–889. doi: 10.1016/0042-6822(70)90337-5. [DOI] [PubMed] [Google Scholar]
  31. Compans R.W., Content J., Duesburg P.H. Structure of the ribonucleo-protein of influenza virus. J. Virol. 1972;10:795–800. doi: 10.1128/jvi.10.4.795-800.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Compans R.W., Meier-Ewert H., Palese P. Assembly of lipid-containing viruses. J. Supramol. Struct. 1974;2:496–511. doi: 10.1002/jss.400020234. [DOI] [PubMed] [Google Scholar]
  33. Courtney R.J., Steiner S.M., Benyesh-Melnick M. Effects of 2-deoxy-D-glucose on herpes simplex virus replication. Virology. 1973;52:445–447. doi: 10.1016/0042-6822(73)90340-1. [DOI] [PubMed] [Google Scholar]
  34. Dales S., Mosbach E.H. Vaccinia as a model for membrane biogenesis. Virology. 1968;35:564–583. doi: 10.1016/0042-6822(68)90286-9. [DOI] [PubMed] [Google Scholar]
  35. Dalrymple J.M., Schlesinger S., Russell P.K. Antigenic characterization of two Sindbis envelope glycoproteins separated by isoelectric focusing. Virology. 1976;69:93–103. doi: 10.1016/0042-6822(76)90197-5. [DOI] [PubMed] [Google Scholar]
  36. Davenport F.M. Influenza virus. In: Evans A.S., editor. “Viral Infections of Humans”. Plenum; New York: 1976. pp. 273–296. [Google Scholar]
  37. David A.E. Assembly of the vesicular stomatitis virus envelope: Incorporation of viral polypeptides into the host plasma membrane. J. Mol. Biol. 1973;76:135–148. doi: 10.1016/0022-2836(73)90085-5. [DOI] [PubMed] [Google Scholar]
  38. DeLarco J., Todaro G.J. Membrane receptors for murine leukemia viruses: Characterization using the purified viral envelope glycoprotein, gp71. Cell. 1976;8:365–371. doi: 10.1016/0092-8674(76)90148-3. [DOI] [PubMed] [Google Scholar]
  39. Duff R.G., Vogt P.K. Characteristics of two new avian tumor virus subgroups. Virology. 1969;39:18–30. doi: 10.1016/0042-6822(69)90344-4. [DOI] [PubMed] [Google Scholar]
  40. Etchison J.R., Holland J.J. Carbohydrate composition of the membrane glycoprotein of vesicular stomatitis virus grown in mammalian cell lines. Proc. Natl. Acad. Sci. U.S.A. 1974;71:4011–4014. doi: 10.1073/pnas.71.10.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Etchison J.R., Holland J.J. Carbohydrate composition of the membrane glycoprotein of vesicular stomatitis virus. Virology. 1974;60:217–229. doi: 10.1016/0042-6822(74)90379-1. [DOI] [PubMed] [Google Scholar]
  42. Etchison J.R., Robertson J.S., Summers D.F. Partial structural analysis of the oligosaccharide moieties of the vesicular stomatitis virus glycoprotein by sequential chemical and enzymatic degradation. Virology. 1977;78:375–392. doi: 10.1016/0042-6822(77)90115-5. [DOI] [PubMed] [Google Scholar]
  43. Evans A.S. Epidemiological concepts and methods. In: Evans A.S., editor. “Viral Infections of Humans”. Plenum; New York: 1976. pp. 1–32. [Google Scholar]
  44. Famulari N.G., Buchhagen D.L., Klenk H.-D., Fleissner E. Presence of murine leukemia virus envelope proteins gp70 and pl5(E) in a common polypro-tein of infected cells. J. Virol. 1976;20:501–508. doi: 10.1128/jvi.20.2.501-508.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Fischinger P.J., Schafer W., Bolognesi D.P. Neutralization of homologous and heterologous oncornaviruses by antisera against the p 15(E) and gp71 polypeptides of Friend murine leukemia virus. Virology. 1976;71:169–184. doi: 10.1016/0042-6822(76)90103-3. [DOI] [PubMed] [Google Scholar]
  46. Gahmberg C.G., Uterman G., Simons K. The membrane proteins of Sem-liki Forest virus have a hydrophobic part attached to the viral membrane. FEBS Lett. 1972;28:179–182. doi: 10.1016/0014-5793(72)80706-3. [DOI] [PubMed] [Google Scholar]
  47. Gard G.P., Vezza A.L., Bishop D.H.L., Compans R.W. Structural proteins of Tacaribe and Tamiami virions. Virology. 1977;83:84–95. doi: 10.1016/0042-6822(77)90212-4. [DOI] [PubMed] [Google Scholar]
  48. Garoff H. Cross-linking of the spike glycoproteins in Semliki Forest virus with dimethyl suberimidate. Virology. 1974;62:385–392. doi: 10.1016/0042-6822(74)90400-0. [DOI] [PubMed] [Google Scholar]
  49. Garoff H., Simons K. Location of the spike glycoproteins in the Semliki Forest virus membrane. Proc. Natl. Acad. Sci. U.S.A. 1974;71:3988–3992. doi: 10.1073/pnas.71.10.3988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Garoff H., Simons K., Renkonen O. Isolation and characterization of the membrane proteins of Semliki Forest virus. Virology. 1974;61:493–504. doi: 10.1016/0042-6822(74)90285-2. [DOI] [PubMed] [Google Scholar]
  51. Hanafusa H. Analysis of the defectiveness of Rous sarcoma virus. III. Determining influence of helper virus on the host range and susceptibility to interference of RSV. Virology. 1965;25:248–255. doi: 10.1016/0042-6822(65)90203-5. [DOI] [PubMed] [Google Scholar]
  52. Harrison S.C., David A., Jumblatt J., Darnell J.E. Lipid and protein organization in Sindbis virus. J. Mol. Biol. 1971;60:523–528. doi: 10.1016/0022-2836(71)90186-0. [DOI] [PubMed] [Google Scholar]
  53. Haslam E.A., Hampson A.W., Egan J.A., White D.O. The polypeptides of influenza virus. II. Interpretation of polyacrylamide gel electrophoresis patterns. Virology. 1970;42:555–565. doi: 10.1016/0042-6822(70)90302-8. [DOI] [PubMed] [Google Scholar]
  54. Hay A.J. Studies on the formation of the influenza virus envelope. Virology. 1974;60:348–418. doi: 10.1016/0042-6822(74)90335-3. [DOI] [PubMed] [Google Scholar]
  55. Haywood A.M. Characteristics of Sendai virus receptors in a model membrane. J. Mol. Biol. 1974;83:427–436. doi: 10.1016/0022-2836(74)90504-x. [DOI] [PubMed] [Google Scholar]
  56. Haywood A.M. Model membranes and Sendai virus: Surface-surface interactions. In: Barry R., Mahy B., editors. “Negative Strand Viruses”. Academic Press; New York: 1975. pp. 923–928. [Google Scholar]
  57. Heine J.W., Honess R.W., Cassai E., Roizman B. Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains. J. Virol. 1974;14:640–651. doi: 10.1128/jvi.14.3.640-651.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Hierholzer J.C., Palmer E.L., Whitfield S.G., Kaye H.S., Dowdle W.R. Protein composition of coronavirus OC-43. Virology. 1972;48:516–527. doi: 10.1016/0042-6822(72)90062-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hirano H., Parkhouse B., Nicolson G.C., Lennox E.S., Singer S.J. Distribution of saccharide residues on membrane fragments from a myeloma-cell ho-mogenate: Its implications for membrane biogenesis. Proc. Natl. Acad. Sci. U.S.A. 1972;69:2945–2949. doi: 10.1073/pnas.69.10.2945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Homma M., Ohuchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J. Virol. 1973;12:1457–1465. doi: 10.1128/jvi.12.6.1457-1465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Honess R.W., Roizman B. Regulation of herpes virus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J. Virol. 1974;14:8–19. doi: 10.1128/jvi.14.1.8-19.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Hummeler K., Koprowski H., Wiktor T.J. Structure and development of rabies virus in tissue culture. J. Virol. 1967;1:152. doi: 10.1128/jvi.1.1.152-170.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Hunt L.A., Summers D.F. Glycosylation of vesicular stomatitis virus gly-coprotein in virus-infected HeLa cells. J. Virol. 1976;20:646. doi: 10.1128/jvi.20.3.646-657.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Hunter E., Friis R.R., Vogt P.K. Inhibition of avian sarcoma virus replication by glucosamine. Virology. 1974;58:449–456. doi: 10.1016/0042-6822(74)90079-8. [DOI] [PubMed] [Google Scholar]
  65. Ishizaki R., Vogt W.K. Immunological relationships among envelope antigens of avian tumor viruses. Virology. 1966;30:375–387. doi: 10.1016/0042-6822(66)90116-4. [DOI] [PubMed] [Google Scholar]
  66. Johnson I., Clamp J.R. The oligosaccharide units of human type L immu-noglobulin M (macroglobulin) Biochem. J. 1971;123:739–745. doi: 10.1042/bj1230739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Jones K.J., Scupham R.K., Pfeil J.A., Wan K., Sagik P., Bose H.R. Interaction of Sindbis virus glycoproteins during morphogenesis. J. Virol. 1977;21:778–787. doi: 10.1128/jvi.21.2.778-787.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kaluza G., Scholtissek C., Rott R. Inhibition of the multiplication of enveloped RNA-viruses by glucosamine and 2-deoxy-D-glucose. J. Gen. Virol. 1972;14:251–259. doi: 10.1099/0022-1317-14-3-251. [DOI] [PubMed] [Google Scholar]
  69. Kaplan A.S., Ben-Porat T. Synthesis of proteins in cells infected with herpes virus. XI. Sulfated structural proteins. Virology. 1976;70:561–563. doi: 10.1016/0042-6822(76)90300-7. [DOI] [PubMed] [Google Scholar]
  70. Katz F.N., Rothman J.E., Lingappa V.R., Blobel G., Lodish H.F. Membrane assembly In Vitro: Synthesis, glycosylation, and asymmetric insertion of a transmembrane protein. Proc. Natl. Acad. Sci. U.S.A. 1977;74:3278–3282. doi: 10.1073/pnas.74.8.3278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Kawai S., Hanafusa H. Isolation of defective mutant of avian sarcoma virus. Proc. Natl. Acad. Sci. U.S.A. 1973;70:3493–3497. doi: 10.1073/pnas.70.12.3493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Keegstra K., Sefton B., Burke D. Sindbis virus glycoproteins: Effect of the host cell on the oligosaccharides. J. Virol. 1975;16:613–620. doi: 10.1128/jvi.16.3.613-620.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Kennedy S.I.T. The effects of enzymes on structural and biological properties of Semliki Forest virus. J. Gen. Virol. 1974;23:129–143. doi: 10.1099/0022-1317-23-2-129. [DOI] [PubMed] [Google Scholar]
  74. Kilboume E.D. Inhibition of influenza virus multiplication with a glucose anti-metabolite (2-deoxy-D-glucose) Nature (London) 1959;183:271–272. doi: 10.1038/183271b0. [DOI] [PubMed] [Google Scholar]
  75. Klenk H.-D. Viral envelopes and their relationship to cellular membranes. Curr. Top. Microbiol. Immunol. 1974;68:29–58. doi: 10.1007/978-3-642-66044-3_2. [DOI] [PubMed] [Google Scholar]
  76. Klenk H.-D., Choppin P.W. Lipids of plasma membranes of monkey and hamster kidney cells and of parainfluenza virions grown in these cells. Virology. 1969;38:255–268. doi: 10.1016/0042-6822(69)90367-5. [DOI] [PubMed] [Google Scholar]
  77. Klenk H.-D., Choppin P.W. Glycosphingolipids of plasma membranes of cultured cells and an enveloped virus (SV5) grown in these cells. Proc. Natl. Acad. Sci. U.S.A. 1970;66:57–64. doi: 10.1073/pnas.66.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Klenk H.-D., Caliguiri L.A., Choppin P.W. The proteins of the parainfluenza virus SV5 II. The carbohydrate content and glycoproteins of the virion. Virology. 1970;42:473–481. doi: 10.1016/0042-6822(70)90290-4. [DOI] [PubMed] [Google Scholar]
  79. Klenk H.-D., Compans R.W., Choppin P.W. An electron microscope study of the presence or absence of neuraminic acid in enveloped viruses. Virology. 1970;42:1158–1162. doi: 10.1016/0042-6822(70)90368-5. [DOI] [PubMed] [Google Scholar]
  80. Klenk H.-D., Rott R., Becht H. On the structure of the influenza virus envelope. Virology. 1972;47:579–597. doi: 10.1016/0042-6822(72)90547-8. [DOI] [PubMed] [Google Scholar]
  81. Klenk H.-D., Scholtissek C., Rott R. Inhibition of glycoprotein biosynthesis of influenza virus by D—glucosamine and 2—deoxy—D—glucose. Virology. 1972;49:723–734. doi: 10.1016/0042-6822(72)90529-6. [DOI] [PubMed] [Google Scholar]
  82. Klenk H.-D., Wbllert W., Rott R., Scholtissek C. Association of influenza virus proteins with cytoplasmic fractions. Virology. 1974;57:28–41. doi: 10.1016/0042-6822(74)90105-6. [DOI] [PubMed] [Google Scholar]
  83. Klenk H.-D., Rott R., Orlich M., Blodorn J. Activation of influenza A viruses by trypsin treatment. Virology. 1975;68:426–439. doi: 10.1016/0042-6822(75)90284-6. [DOI] [PubMed] [Google Scholar]
  84. Knight C.A. A sedimentable component of allantoic fluid and its relationship to influenza viruses. J. Exp. Med. 1944;80:83–99. doi: 10.1084/jem.80.2.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Knipe D.M., Baltimore D., Lodish H.F. Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus. J. Virol. 1977;21:1128–1139. doi: 10.1128/jvi.21.3.1128-1139.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Lafferty K.J., Oerblis S. The interaction between virus and antibody. III. Examination of virus-antibody complexes with the electron microscope. Virology. 1963;21:91–99. [Google Scholar]
  87. Lamb R.A., Mahy B.W.J. The polypeptides and RNA of Sendai virus. In: Many B.W.J., Barry R.D., editors. “Negative Strand Viruses”. Academic Press; New York: 1975. pp. 65–87. [Google Scholar]
  88. Lampert P.W., Joseph B.S., Oldstone M.B.A. Antibody—induced capping of measles virus antigens on plasma membrane studied by electron microscopy. J. Virol. 1975;15:1248–1255. doi: 10.1128/jvi.15.5.1248-1255.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Landsberger F.R., Compans R.W. Effect of membrane protein on the lipid bilayer structure: A spin label ESR study of vesicular stomatitis virus. Biochemistry. 1976;15:2356–2360. doi: 10.1021/bi00656a017. [DOI] [PubMed] [Google Scholar]
  90. Landsberger F.R., Lenard J., Paxton J., Compans R.W. Spin label ESR study of the lipid-containing membrane of influenza virus. Proc. Natl. Acad. Sci. U.S.A. 1971;68:2579–2583. doi: 10.1073/pnas.68.10.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Landsberger F.R., Compans R.W., Paxton J., Lenard J. Structure of the lipid phase of Rauscher murine leukemia virus. J. Supratnol. Struct. 1972;1:50–54. doi: 10.1002/jss.400010107. [DOI] [PubMed] [Google Scholar]
  92. Landsberger F.R., Compans R.W., Choppin P.W., Lenard J.L. Organization of the lipid phase in viral membranes: Effects of independent variation of the lipid and the protein composition. Biochemistry. 1973;12:4498–4502. doi: 10.1021/bi00746a030. [DOI] [PubMed] [Google Scholar]
  93. Laver W.G. Separation of two polypeptide chains from the hemagglutinin sub-unit of influenza virus. Virology. 1971;45:275–288. doi: 10.1016/0042-6822(71)90134-6. [DOI] [PubMed] [Google Scholar]
  94. Laver W.C., Baker N. Ammo acid composition of polypeptides from influenza virus particles. J. Gen. Virol. 1972;17:61–67. doi: 10.1099/0022-1317-17-1-61. [DOI] [PubMed] [Google Scholar]
  95. Laver W.G., Valentine R.C. Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus. Virology. 1969;38:105–119. doi: 10.1016/0042-6822(69)90132-9. [DOI] [PubMed] [Google Scholar]
  96. Laver W.G., Webster R.G. Studies on the origin of pandemic influenza. II. Peptide maps of the light and heavy polypeptide chains from the hemagglutinin subunits of A2 influenza viruses isolated before and after the appearance of Hong Kong influenza. Virology. 1972;48:445–455. doi: 10.1016/0042-6822(72)90055-4. [DOI] [PubMed] [Google Scholar]
  97. Lazarowitz S.G., Choppin P.W. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology. 1975;68:440–454. doi: 10.1016/0042-6822(75)90285-8. [DOI] [PubMed] [Google Scholar]
  98. Lazarowitz S.G., Compans R.W., Choppin P.W. Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes. Virology. 1971;46:830–843. doi: 10.1016/0042-6822(71)90084-5. [DOI] [PubMed] [Google Scholar]
  99. Lazarowitz S.G., Gompans R.W., Choppin P.W. Proteolytic cleavage of the hemagglutinin polypeptide of influenza virus. Function of the uncleaved polypeptide HA. Virology. 1973;52:199–212. doi: 10.1016/0042-6822(73)90409-1. [DOI] [PubMed] [Google Scholar]
  100. Lazdins I., Haslam E.A., White D.O. The polypeptide of influenza virus. VI. Composition of the neuraminidase. Virology. 1972;49:758–765. doi: 10.1016/0042-6822(72)90532-6. [DOI] [PubMed] [Google Scholar]
  101. Leavitt R., Kornfeld Schlesinger S. Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis viruses. J. Virol. 1977;21:375–385. doi: 10.1128/jvi.21.1.375-385.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Lenard J., Compans R.W. The membrane structure of lipid-containing viruses. Biochim. Biophys. Ada. 1974;344:51–94. doi: 10.1016/0304-4157(74)90008-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Lenard J., Tsai D., Compans R.W., Landsberger F.R. Organization of the membrane of standard and incomplete influenza virus. Virology. 1976;71:389–394. doi: 10.1016/0042-6822(76)90366-4. [DOI] [PubMed] [Google Scholar]
  104. Lodish H.F., Small B. Membrane proteins synthesized by rabbit reticulo-cytesj. Cell Biol. 1975;65:51–64. doi: 10.1083/jcb.65.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. McSharry J.J., Wagner R.R. Carbohydrate composition of vesicular stomatitis virus. J. Virol. 1971;7:412–415. doi: 10.1128/jvi.7.3.412-415.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. McSharry J.J., Compans R.W., Choppin P.W. Proteins of vesicular stomatitis virus and of phenotypically mixed vesicular stomatitis virus-simian virus 5 virions. J. Virol. 1971;8:722–729. doi: 10.1128/jvi.8.5.722-729.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Maeda T., Asano A., Okada Y., Ohnishi S.-I. Transmembrane phospholi-pid motions induced by F glycoprotein in hemagglutinating virus of Japan. J. Virol. 1977;21:232–241. doi: 10.1128/jvi.21.1.232-241.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Mattila K., Luukkonen A., Renkonen O. Protein-bound oligosaccharides of Semliki Forest virus. Biochim. Biophys. Ada. 1976;419:435–444. doi: 10.1016/0005-2736(76)90257-1. [DOI] [PubMed] [Google Scholar]
  109. Meier-Ewert H., Compans R.W. Time course of synthesis and assembly of influenza virus proteins. J. Virol. 1974;14:1083–1091. doi: 10.1128/jvi.14.5.1083-1091.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Moore N.F., Barenholz Y., Wagner R.R. Microviscosity of togavirus membranes studied by fluorescence depolarization: Influence of envelope proteins and the host cell. J. Virol. 1976;19:126–135. doi: 10.1128/jvi.19.1.126-135.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Summers Moyer S.A. Vesicular stomatitis virus envelope glycoprotein alterations induced by host cell transformation. Cell. 1974;2:63–70. doi: 10.1016/0092-8674(74)90009-9. [DOI] [PubMed] [Google Scholar]
  112. Moyer S.A., Tsang J.M., Atkinson P.H., Summers D.F. Oligosaccharide moieties of the glycoprotein of Vesicular Stomatitis virus. J. Virol. 1976;18:167–175. doi: 10.1128/jvi.18.1.167-175.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Mudd J.A. Glycoprotein fragment associated with vesicular stomatitis virus after proteolytic digestion. Virology. 1974;62:573–577. doi: 10.1016/0042-6822(74)90419-x. [DOI] [PubMed] [Google Scholar]
  114. Murphy F.A., Harrison A.K., Whitfield S.G. Bunyaviridae: Morphologic and morphogenetic similarities of Bunyamwera serologic supergroup viruses and several other arthropod-borne viruses. Intervirology. 1973;1:297–316. doi: 10.1159/000148858. [DOI] [PubMed] [Google Scholar]
  115. Nagai Y., Klenk H.-D. Activation of precursor to both glycoproteins of Newcastle disease virus by proteolytic cleavage. Virology. 1977;77:125–134. doi: 10.1016/0042-6822(77)90412-3. [DOI] [PubMed] [Google Scholar]
  116. Nagai Y., Ogura H., Klenk H.-D. Studies on the assembly of the envelope of Newcastle disease virus. Virology. 1976;69:523–538. doi: 10.1016/0042-6822(76)90482-7. [DOI] [PubMed] [Google Scholar]
  117. Nagai Y., Klenk H.-D., Rott R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology. 1976;72:494–508. doi: 10.1016/0042-6822(76)90178-1. [DOI] [PubMed] [Google Scholar]
  118. Nakamura K., Compans R.W. The cellular site of sulfation of influenza virus glycoproteins. Virology. 1977;79:381–392. doi: 10.1016/0042-6822(77)90365-8. [DOI] [PubMed] [Google Scholar]
  119. Nakamura K., Compans R.W. Effects of inhibitors on glycosylation sulfation, and assembly of influenza virus glycoproteins. Virology. 1978;84:303–319. doi: 10.1016/0042-6822(78)90250-7. [DOI] [PubMed] [Google Scholar]
  120. K. Nakamura R.W. Compans (1978b). Glycopeptide components of influenza viral glycoproteins. Virology (in press) [DOI] [PubMed]
  121. K. Nakamura R.W. Compans (1978c). Host cell dependent glycosylation of influenza virus glycoproteins. Submitted for publication
  122. Nakashima Y., Wiseman R.L., Kongburg W., Marvin D.A. Primary structure and side chain interactions of PFX filamentous bacterial virus coat protein. Nature (London) 1975;253:68–71. doi: 10.1038/253068a0. [DOI] [PubMed] [Google Scholar]
  123. Obijeski J.F., Bishop D.H.L., Murphy F.A., Palmer E.L. The structural proteins of La Crosse virus. J. Virol. 1976;19:985–997. doi: 10.1128/jvi.19.3.985-997.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. O'Callaghan D.J., Randall C.C. Molecular anatomy of herpes viruses: Recent studies. Prog. Med. Virol. 1976;22:152–210. [PubMed] [Google Scholar]
  125. Okada Y. The fusion of Ehrlich's tumor cells caused by HVJ virus in vitro. BikenJ. 1958;1:103–110. [Google Scholar]
  126. Oshiro L.S. Coronaviruses. In: Dalton A.J., Haguenau F., editors. “Ultrastructure of Animal Viruses and Bacterio-phages”. Academic Press; New York: 1973. pp. 331–343. [Google Scholar]
  127. Palese P., Compans R.W. Inhibition of influenza virus replication in tissue culture by 2-deoxy-2, 3-dehydro-iV-trifluoracetylneuraminic acid. (FANA): Mechanism of action.; Gen. Virol. 1976;33:159–163. doi: 10.1099/0022-1317-33-1-159. [DOI] [PubMed] [Google Scholar]
  128. Palese P., Schulman J.L. Isolation and characterization of influenza virus recombinants with high and low neuraminidase activity: Use of 2-(3'-methoxy-phenyl)-N-acetylneuraminic acid to identify cloned populations. Virology. 1974;57:227–237. doi: 10.1016/0042-6822(74)90123-8. [DOI] [PubMed] [Google Scholar]
  129. Palese P., Tobita K., Ueda M., Compans R.W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology. 1974;61:397–410. doi: 10.1016/0042-6822(74)90276-1. [DOI] [PubMed] [Google Scholar]
  130. Pinter A., Compans R.W. Sulfated glycoproteins and polysaccharides of enveloped viruses. J. Virol. 1975;16:859–866. doi: 10.1128/jvi.16.4.859-866.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Quigley J.P., Rifkin D.B., Reich E. Phospholipid composition of Rous sarcoma virus, host cell membranes, and other enveloped viruses. Virology. 1971;46:106–116. doi: 10.1016/0042-6822(71)90010-9. [DOI] [PubMed] [Google Scholar]
  132. Roizman B., Furlong D. The replication of herpes viruses. In: Fraenkel-Conrat H., Wagner R.R., editors. Vol. 3. Plenum; New York: 1974. pp. 229–403. (“Comprehensive Virology”). [Google Scholar]
  133. Rothman J.E., Tsai D.K., Dawidowicz E.A., Lenard J. Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus. Biochemistry. 1976;15:2361–2370. doi: 10.1021/bi00656a018. [DOI] [PubMed] [Google Scholar]
  134. Schäfer W., Fischinger P.J., Collins J.J., Bolognesi D.P. Role of carbohydrate in biological functions of Friend murine leukemia virus gp71J. Virol. 1977;21:35–40. doi: 10.1128/jvi.21.1.35-40.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Scheid A., Choppin P.W. Isolation and purification of the envelope proteins of Newcastle disease virus. J. Virol. 1973;11:263–271. doi: 10.1128/jvi.11.2.263-271.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Scheid A., Choppin P.W. Identification of biological activity of paramyxo-virus glycoproteins: Activation of cell fusion, hemolysis and infectivity by proteo-lytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974;57:475–490. doi: 10.1016/0042-6822(74)90187-1. [DOI] [PubMed] [Google Scholar]
  137. Scheid A., Caliguiri L.A., Compans R.W., Choppin P.W. Isolation of paramyxovirus glycoproteins: Association of both hemagglutinating and neuramini—dase activities with the larger SV5 glycoprotein. Virology. 1972;50:640–652. doi: 10.1016/0042-6822(72)90418-7. [DOI] [PubMed] [Google Scholar]
  138. Schlesinger M.J., Schlesinger S., Burge B.W. Identification of a second glycoprotein in Sindbis virus. Virology. 1972;47:539–541. doi: 10.1016/0042-6822(72)90298-x. [DOI] [PubMed] [Google Scholar]
  139. Schlesinger S., Gottlieb C., Feil D., Gelb N., Komfeld S. Growth of enveloped RNA viruses in a line of Chinese hamster ovary cells with deficient N-acetyl-glucosaminyl transferase activity. J. Virol. 1976;17:239–246. doi: 10.1128/jvi.17.1.239-246.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Schloemer R.H., Wagner R.R. Sialoglycoprotein of vesicular stomatitis virus: Role of the neuraminic acid in infection. J. Virol. 1974;14:270–281. doi: 10.1128/jvi.14.2.270-281.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Schloemer R.H., Wagner R.R. Mosquito cells infected with VSV yield unsialylated virions of low infectivity. J. Virol. 1975;15:1029–1032. doi: 10.1128/jvi.15.4.1029-1032.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Schloemer R.H., Wagner R.R. Association of vesicular stomatitis virus glycoproteins with virion membrane: Characterization of the lipophilic tail fragment. J. Virol. 1975;16:237–249. doi: 10.1128/jvi.16.2.237-240.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Scholtissek C. Detection of an unstable RNA in chick fibroblasts after reduction of the UTP pool by glucosamine. Eur. J. Biochem. 1971;24:358–365. doi: 10.1111/j.1432-1033.1971.tb19694.x. [DOI] [PubMed] [Google Scholar]
  144. Schulze I.T. The structure of influenza virus. I. The polypeptides of the virion. Virology. 1970;42:890–904. doi: 10.1016/0042-6822(70)90338-7. [DOI] [PubMed] [Google Scholar]
  145. Schulze I.T. The biologically active proteins of influenza virus: The hemagglu-rinin. In: Kilbourne E.D., editor. “Thelnfluenza Viruses and Influenza”. Academic Press; New York: 1975. pp. 53–82. [Google Scholar]
  146. Schwarz H., Hunsmann G., Moenning V., Schafer W. Properties of mouse leukemia virus. XI. Immunoelectron microscopic studies on viral antigens on the cell surface. Virology. 1976;69:169–178. doi: 10.1016/0042-6822(76)90204-x. [DOI] [PubMed] [Google Scholar]
  147. Schwarz R.T., Klenk H.-D. Inhibition of glycosylation of influenza virus hemagglutinin. J. Virol. 1974;14:1023–1034. doi: 10.1128/jvi.14.5.1023-1034.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Schwarz R.T., Schmidt M.F.G., Anwer U., Klenk H.-D. Carbohydrates of influenza vims I. Glycopeptides derived from viral glycoproteins after labeling with radioactive sugars. J. Virol. 1977;23:217–226. doi: 10.1128/jvi.23.2.217-226.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest, influenza, and avian sarcoma virus by tunica-mycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Sefton B.M., Gaffney B.J. Effect of the viral proteins on the fluidity of the membrane lipids in Sindbis virus. J. Mol. Biol. 1974;90:343–358. doi: 10.1016/0022-2836(74)90378-7. [DOI] [PubMed] [Google Scholar]
  151. Segrest J.P., Jackson R.L., Marchesi V.T. Red cell membrane glycoprotein: Amino acid sequence of an intramembranous region. Biochem. Biophys. Res. Commun. 1972;49:964–969. doi: 10.1016/0006-291x(72)90306-3. [DOI] [PubMed] [Google Scholar]
  152. Seto J.T., Rott R. Functional significance of sialidase during influenza virus multiplication. Virology. 1966;30:731–737. doi: 10.1016/0042-6822(66)90178-4. [DOI] [PubMed] [Google Scholar]
  153. Shimizu K., Shimizu Y.K., Kohama T., Ishida N. Isolation and characterization of two distinct types of HVJ (Sendai virus) spikes. Virology. 1974;62:90–101. doi: 10.1016/0042-6822(74)90305-5. [DOI] [PubMed] [Google Scholar]
  154. Singer S.J., Nicolson G.L. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  155. Skehel J.J., Waterfield M.D. Studies on the primary structure of the influenza virus hemagglutinin. Proc. Natl. Acad. Sci. U.S.A. 1975;72:93–97. doi: 10.1073/pnas.72.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Spear P.H., Roizman B. The proteins specified by herpes simplex virus. IV. The site of glycosylation and accumulation of viral membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 1970;66:730–737. doi: 10.1073/pnas.66.3.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Stanley P., Gandhi S.S., White D.O. The polypeptides of influenza virus. VII. Synthesis of the hemagglutinin. Virology. 1973;53:92–106. doi: 10.1016/0042-6822(73)90468-6. [DOI] [PubMed] [Google Scholar]
  158. Stitz L., Reinacher M., Becht H. Studies on the inhibitory effect of lectins on myxovirus release. J. Gen. Virol. 1977;34:523–530. doi: 10.1099/0022-1317-34-3-523. [DOI] [PubMed] [Google Scholar]
  159. Stoffel W., Bister K. 13C nuclear magnetic resonance studies on the lipid organization of enveloped virions (vesicular stomatitis virus) Biochemistry. 1975;14:2841–2847. doi: 10.1021/bi00684a008. [DOI] [PubMed] [Google Scholar]
  160. Stollar V., Stollar D., Koo R., Harrep K.A., Schlesinger R.W. Sialic acid content of Sindbis virus from vertebrate and mosquito cells. Virology. 1976;69:104–115. doi: 10.1016/0042-6822(76)90198-7. [DOI] [PubMed] [Google Scholar]
  161. Strand M., August J.T. Structural proteins of ribonucleic acid tumor viruses. J. Biol. Chem. 1976;251:559–564. [PubMed] [Google Scholar]
  162. Strauss J.H., Jr., Burge B.W., Darnell J.E. Carbohydrate content of membrane protein of Sindbis virus. J. Mol. Biol. 1970;47:437–438. doi: 10.1016/0022-2836(70)90313-x. [DOI] [PubMed] [Google Scholar]
  163. Tkacz J.S., Lampens J.O. Tunicamycin inhibition of polyisoprenyl N-ace-tylglucosaminyl pyrophosphate formation in calf liver microsomes. Biochem. Biophys. Res. Commun. 1975;65:248–257. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
  164. Tozawa H., Bauer H., Graf T., Gelderblom H. Strain-specific antigen of the avian leukosis sarcoma virus group. Virology. 1970;40:530–539. doi: 10.1016/0042-6822(70)90196-0. [DOI] [PubMed] [Google Scholar]
  165. Tsai K.H., Lenard J. Asymmetry of influenza virus membrane bilayer demonstrated with phospholipase C. Nature (London) 1975;255:554–555. doi: 10.1038/253554a0. [DOI] [PubMed] [Google Scholar]
  166. Utermann G., Simons K. Studies on the amphipathic nature of the membrane proteins in Semliki Forest virus. J. Mol. Biol. 1974;85:569–587. doi: 10.1016/0022-2836(74)90316-7. [DOI] [PubMed] [Google Scholar]
  167. Vezza A.C., Gard C.P., Compans R.W., Bishop D.H.L. Structural components of the arenavirus Pichinde. J. Virol. 1977;23:776–786. doi: 10.1128/jvi.23.3.776-786.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Vogt P.K. A heterogeneity of Rous sarcoma virus revealed by selectively resistant chick embryo cells. Virology. 1965;25:237–247. doi: 10.1016/0042-6822(65)90202-3. [DOI] [PubMed] [Google Scholar]
  169. Vogt P.K., Ishizaki R. Patterns of viral interference in the avian leukosis and sarcoma complex. Virology. 1966;30:368–374. doi: 10.1016/0042-6822(66)90115-2. [DOI] [PubMed] [Google Scholar]
  170. von Bonsdorff C.H., Harrison S.C. Sindbis virus glycoproteins form a regular surface lattice. J. Virol. 1975;16:141–145. doi: 10.1128/jvi.16.1.141-145.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. von Bonsdorff C.H., Pettersson R. Surface structure of Uukuniemi virus. J. Virol. 1975;16:1296–1307. doi: 10.1128/jvi.16.5.1296-1307.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Wagner R.W. Reproduction of rhabdoviruses. In: Fraenkal-Conrat H., Wagner R.R., editors. Vol. 4. Plenum; New York: 1975. pp. 1–93. (“Comprehensive Virology”). [Google Scholar]
  173. Webster R.G. Estimation of the molecular weights of the polypeptide chains from the isolated hemagglutinin and neuraminidase subunits of influenza viruses. Virology. 1970;40:643–654. doi: 10.1016/0042-6822(70)90209-6. [DOI] [PubMed] [Google Scholar]
  174. Webster R.G., Laver W.G. Studies on the origin of pandemic influenza. I. Antigenic analysis of A2 influenza viruses isolated before and after the appearance of Hong Kong influenza using antisera to the isolated hemagglutinin subunits. Virology. 1972;48:433–444. doi: 10.1016/0042-6822(72)90054-2. [DOI] [PubMed] [Google Scholar]
  175. Webster R.G., Laver W.G. Antigenic variation of influenza viruses. In: Kilbourne E.D., editor. “The Influenza Viruses and Influenza”. Academic Press; New York: 1975. pp. 270–314. [Google Scholar]
  176. White D.O. Influenza viral proteins: Identification and synthesis. Curr. Top. Microbiol. Immunol. 1974;63:2–48. [Google Scholar]
  177. Wiley D.C., Skehel J.J., Waterfield M. Evidence from studies with a cross-linking reagent that the haemagglutinin of influenza virus is a trimer. Virology. 1977;79:446–448. doi: 10.1016/0042-6822(77)90371-3. [DOI] [PubMed] [Google Scholar]
  178. Wrigley N.G., Skehel J.J., Charlwood P.A., Brand C.M. The size and shape of influenza virus neuraminidase. Virology. 1973;51:525–529. doi: 10.1016/0042-6822(73)90457-1. [DOI] [PubMed] [Google Scholar]
  179. Yagi M.J., Compans R.W. Structural components of mouse mammary tumor virus. I. Polypeptides of the virion. Virology. 1977;76:751–766. doi: 10.1016/0042-6822(77)90256-2. [DOI] [PubMed] [Google Scholar]
  180. Zee Y.C., Hackett A.J., Talens L. Vesicular stomatitis virus maturation sites in six different host cells. J. Gen. Virol. 1970;7:95–102. doi: 10.1099/0022-1317-7-2-95. [DOI] [PubMed] [Google Scholar]

Articles from Current Topics in Membranes and Transport are provided here courtesy of Elsevier

RESOURCES