Abstract
Monensin, a monovalent ion-selective ionophore, facilitates the transmembrane exchange of principally sodium ions for protons. The outer surface of the ionophore-ion comples is composed largely of nonpolar hydrocarbon, which imparts a high solubility to the complexes in nonpolar solvents. In biological systems, these complexes are freely soluble in the lipid components of membranes and, presumably, diffuse or shuttle through the membranes from one aqueous membrane interface to the other. The net effect for monensin is a trans-membrane exchange of sodium ions for protons. However, the interaction of an ionophore with biological membranes, and its ionophoric expression, is highly dependent on the biochemical configuration of the membrane itself.
One apparent consequence of this exchange is the neutralization of acidic intracellular compartments such as the trans Golgi apparatus cisternae and associated elements, lysosomes, and certain endosomes. This is accompanied by a disruption of trans Golgi apparatus cisternae and of lysosome and acidic endosome function. At the same time, Golgi apparatus cisternae appear to swell, presumably due to osmotic uptake of water resulting from the inward movement of ions.
Monensin effects on Golgi apparatus are observed in cells from a wide range of plant and animal species. The action of monensin is most often exerted on the trans half of the stacked cisternae, often near the point of exit of secretory vesicles at the trans face of the stacked cisternae, or, especially at low monensin concentrations or short exposure times, near the middle of the stacked cisternae. The effects of monensin are quite rapid in both animal and plant cells; i.e., changes in Golgi apparatus may be observed after only 2–5 min of exposure. It is implicit in these observations that the uptake of osmotically active cations is accompanied by a concomitant efflux of H+ and that a net influx of protons would be required to sustain the ionic exchange long enough to account for the swelling of cisternae observed in electron micrographs.
In the Golgi apparatus, late processing events such as terminal glycosylation and proteolytic cleavages are most susceptible to inhibition by monensin. Yet, many incompletely processed molecules may still be secreted via yet poorly understood mechanisms that appear to bypass the Golgi apparatus.
In endocytosis, monensin does not prevent internalization. However, intracellular degradation of internalized ligands may be prevented. It is becoming clear that endocytosis involves both acidic and non-acidic compartments and that monensin inhibits those processes that normally occur in acidic compartments.
Thus, monensin, which is capable of collapsing Na+ and H+ gradients, has gained wide-spread acceptance as a tool for studying Golgi apparatus function and for localizing and identifying the molecular pathways of subcellular vesicular traffic involving acid compartments. Among its advantages are the low concentrations at which inhibitions are produced (0.01–1.0 μM), a minimum of troublesome side effects (e.g., little or no change of protein synthesis or ATP levels) and a reversible action. Because the affinity of monensin for Na+ is ten times that for K+, its nearest competitor, monensin mediates primarily a Na+-H+ exchange. Monensin has little tendency to bind calcium.
Not only is monensin of importance as an experimental tool, it is of great commercial value as a coccidiostat for poultry and to promote more efficient utilization of feed in cattle. The mechanisms by which monensin interact with coccidia and rumen microflora to achieved these benefits are reasonably well documented. However, the interactions between monensin and the tissues of the host animal are not well understood although the severe toxicological manifestations of monensin poisoning are well known. Equine species are particularly susceptible to monensin poisoning, and a common effect of monensin poisoning is vacuolization and/or swelling of mitochondria in striated muscle. Other pathological injuries to striated muscle, spleen, lung, liver and kidney also have been noted. A consistent observation is cardiac myocyte degeneration as well as vacuolization. Differences in cellular response resulting from exposure to monensin (i.e., Golgi apparatus swelling in cultured cells, isolated tissues, and plants vs.mitochondrial swelling in animals fed monensin) suggest that myocardial damage is due either to a monensin metabolite or is a secondary response to some other derivation. However, as pointed out by Bergen and Bates [26], the underlying mode of action of ionophores is on transmembrane ion fluxes which dissipate cation and proton gradients. Consequently, some or all of the observed monensin effects in vivo in animals could be secondary phenomena caused by disruption of normal membrane physiology resulting from altered ion fluxes.
References
- 1.Ledger P.W., Tanzer M.L. Trends Biochem. Sci. 1984;9:313–314. [Google Scholar]
- 2.Pressman B.C. 3rd Edn. Vol. 27. 1968. pp. 1283–1288. (Fed. Proc.). [Google Scholar]
- 3.Reed P.W., Lardy H.A. In: The Role of Membranes in Metabolic Regulation. Mehlman M.A., Hanson R.W., editors. Academic Press; New York: 1972. pp. 111–131. [Google Scholar]
- 4.Reed P.W., Bokoch G.M. In: 3rd Edn. Westley J.W., editor. Vol. 1. Marcel Dekker; New York: 1982. pp. 369–395. (Polyether Antibiotics — Naturally Occurring Acid Ionophores). [Google Scholar]
- 5.Pressman B.C. 3rd Edn. Vol. 32. 1973. pp. 1698–1703. (Fed. Proc.). [Google Scholar]
- 6.Westley J.W. In: 3rd Edn. Westley J.W., editor. Vol. 1. Marcel Dekker; New York: 1982. pp. 1–20. (Polyether Antibiotics — Naturally Occurring Acid Ionophores). [Google Scholar]
- 7.Raun A.P., Cooley C.O., Potter E.L., Rathmacher R.P., Richardson L.F. J. Anim. Sci. 1976;43:670–677. [Google Scholar]
- 8.Ruff M.D. In: 3rd Edn. Westley J.W., editor. Vol. 1. Marcel Dekker; New York: 1982. pp. 303–332. (Polyether Antibiotics — Naturally Occurring Acid Ionophores). [Google Scholar]
- 9.Pressman B.C., Fahim M. Annu. Rev. Pharmacol. Toxicol. 1982;22:465–490. doi: 10.1146/annurev.pa.22.040182.002341. [DOI] [PubMed] [Google Scholar]
- 10.Taylor R.W., Kauffman R.F., Pfeiffer D.R. In: 3rd Edn. Westley J.W., editor. Vol. 1. Marcel Dekker; New York: 1982. pp. 103–184. (Polyether Antibiotics — Naturally Occurring Acid Ionophores). [Google Scholar]
- 11.Liu C.-m. In: 3rd Edn. Westley J.W., editor. Vol. 1. Marcel Dekker; New York: 1982. pp. 43–102. (Polyether Antibiotics — Naturally Occurring Acid Ionophores). [Google Scholar]
- 12.Calbiochem-Behring Technical Information Bulletin on Monensin. Doc. 8155.483, Calbiochem-Behring, La Jolla, CA.
- 13.Pressman B.C., deGuzman N.T. Adv. Exp. Med. Biol. 1977;84:285–300. doi: 10.1007/978-1-4684-3279-4_14. [DOI] [PubMed] [Google Scholar]
- 14.Hester R.K., Somani P., Pressman B.C. J. Cardiovas. Pharmacol. 1979;1:123–138. doi: 10.1097/00005344-197901000-00012. [DOI] [PubMed] [Google Scholar]
- 15.Pressman P.C. In: The Role of Membranes in Metabolic Regulation. Mehlman M.A., Hanson R.W., editors. Academic Press; New York: 1972. p. 149. [Google Scholar]
- 16.Jones N.D., Chaney M.O., Chamberlin J.W., Hamill R.L., Chen S. J. Am. Chem. Soc. 1973;95:3399–3408. doi: 10.1021/ja00791a062. [DOI] [PubMed] [Google Scholar]
- 17.Entman M.L., Gillette P.C., Wallich E.T., Pressman B.C. Biochem. Biophys. Res. Commun. 1972;48:847–853. doi: 10.1016/0006-291x(72)90685-7. [DOI] [PubMed] [Google Scholar]
- 18.Scarpa A., Baldassare J., Inesi G. J. Gen. Physiol. 1972;60:735–749. doi: 10.1085/jgp.60.6.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Pressman B.C. Annu. Rev. Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
- 20.Carafoli E., Tiozzo R., Lugli G., Crovetti F., Kratzing C. J. Mol. Cell. Cardiol. 1974;6:361–371. doi: 10.1016/0022-2828(74)90077-7. [DOI] [PubMed] [Google Scholar]
- 21.Mollenhauer H.H., Rowe L.D., Droleskey R.E. Tex. Soc. Electron Micros. J. 1986;17:11–13. [Google Scholar]
- 22.Hyne R.V. Biol. Reproduct. 1984;31:312–323. doi: 10.1095/biolreprod31.2.312. [DOI] [PubMed] [Google Scholar]
- 23.Schwartz A. Acta Med. Scand. 1976;587:71–72. doi: 10.1111/j.0954-6820.1976.tb05869.x. (Suppl.) [DOI] [PubMed] [Google Scholar]
- 24.Shlafer M., Somani P., Pressman B.C., Palmer R.F. J. Mol. Cell. Cardiol. 1978;10:333–346. doi: 10.1016/0022-2828(78)90382-6. [DOI] [PubMed] [Google Scholar]
- 25.Reed P.W. In: 3rd Edn. Westley J.W., editor. Vol. 1. Marcel Dekker; New York: 1982. pp. 185–302. (Polyether Antibiotics - Naturally Occurring Acid Ionophores). [Google Scholar]
- 26.Bergen W.G., Bates D.B. J. Anim. Sci. 1984;58:1465–1483. doi: 10.2527/jas1984.5861465x. [DOI] [PubMed] [Google Scholar]
- 27.Haynes D.H., Wiens T., Pressman B.C. J. Membr. Biol. 1974;18:23–38. doi: 10.1007/BF01870100. [DOI] [PubMed] [Google Scholar]
- 28.Kovac L., Poliachova V., Horvath I. Biochim. Biophys. Acta. 1982;721:349–356. doi: 10.1016/0167-4889(82)90089-1. [DOI] [PubMed] [Google Scholar]
- 29.Morf W.E., Ruprecht H., Simon W. Helv. Chim. Acta. 1985;68:2312–2323. [Google Scholar]
- 30.Grueter H.P., Elliston N.G., McAskill J.W., Potter E.L. Vet. Med. Small Anim. Clin. 1976;71:198–200. [PubMed] [Google Scholar]
- 31.Schelling G.T. J. Anim. Sci. 1984;58:1518–1527. doi: 10.2527/jas1984.5861518x. [DOI] [PubMed] [Google Scholar]
- 32.Langston V.C., Galey F., Lovell R., Buck W.B. Vet. Med. 1985;80:75–84. [Google Scholar]
- 33.Van Nevel C.J., Demeyer D.I. Appl. Environ. Microbiol. 1977;34:251–257. doi: 10.1128/aem.34.3.251-257.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Ledger P.W., Uchida N., Tanzer M.L. J. Cell Biol. 1980;87:663–671. doi: 10.1083/jcb.87.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Uchida N., Smilowitz H., Tanzer M.L. 3rd Edn. Vol. 76. 1979. pp. 1868–1872. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Uchida N., Smilowitz H., Ledger P.W., Tanzer M.L. J. Biol. Chem. 1980;255:8638–8644. [PubMed] [Google Scholar]
- 37.Tajiri K., Uchida N., Tanzer M.L. J. Biol. Chem. 1980;255:6036–6039. [PubMed] [Google Scholar]
- 38.Bumol T.F., Reisfeld R.A. J. Cell. Biochem. 1982;21:129–140. doi: 10.1002/jcb.240210204. [DOI] [PubMed] [Google Scholar]
- 39.Nishimoto S.K., Kajiwara T., Ledger P.W., Tanzer M.L. J. Biol. Chem. 1982;257:11712–11716. [PubMed] [Google Scholar]
- 40.Yanagishita M., Hascall V.C. J. Biol. Chem. 1985;260:5445–5455. [PubMed] [Google Scholar]
- 41.Tougard C., Picart R., Morin A., Tixier-Vidal A. J. Histochem. Cytochem. 1983;31:745–754. doi: 10.1177/31.6.6841970. [DOI] [PubMed] [Google Scholar]
- 42.Strous G.J.A.M., Lodish H.F. Cell. 1980;22:709–717. doi: 10.1016/0092-8674(80)90547-4. [DOI] [PubMed] [Google Scholar]
- 43.Orci L., Halban P., Amherdt M., Ravazzola M., Vassalli J.-D., Perrelet A. Cell. 1984;39:39–47. doi: 10.1016/0092-8674(84)90189-2. [DOI] [PubMed] [Google Scholar]
- 44.Liesi P., Dahl D., Veheri A. J. Cell Biol. 1983;96:920–924. doi: 10.1083/jcb.96.3.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Melroy D., Jones R.L. Planta. 1986;167:252–259. doi: 10.1007/BF00391423. [DOI] [PubMed] [Google Scholar]
- 46.Heupke H.-J., Robinson D.G. Eur. J. Cell Biol. 1985;39:265–272. [Google Scholar]
- 47.Kloppel T.M., Brown W.R., Reichen J. J. Cell. Biochem. 1986;32:235–245. doi: 10.1002/jcb.240320310. [DOI] [PubMed] [Google Scholar]
- 48.Flickinger C.J., Wilson K.M., Gray H.D. Anat. Rec. 1984;210:435–448. doi: 10.1002/ar.1092100304. [DOI] [PubMed] [Google Scholar]
- 49.Hammerschlag R., Stone G.C. Trends Neurosci. 1982;5:12–15. [Google Scholar]
- 50.Hammerschlag R., Stone G.C., Bolen F.A., Lindsey J.D., Ellisman M.H. J. Cell Biol. 1982;93:568–575. doi: 10.1083/jcb.93.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Bartalena L., Robbins J. J. Biol. Chem. 1984;259:13610–13614. [PubMed] [Google Scholar]
- 52.Smilowitz H. Mol. Pharmacol. 1979;16:202–214. [PubMed] [Google Scholar]
- 53.Smilowitz H. Cell. 1980;19:237–244. doi: 10.1016/0092-8674(80)90405-5. [DOI] [PubMed] [Google Scholar]
- 54.Peters B.P., Brooks M., Hartle R.J., Krzesicki R.F., Perini F., Ruddon R.W. J. Biol. Chem. 1983;23:14505–14514. [PubMed] [Google Scholar]
- 55.Chrispeels M.J. Planta. 1983;158:140–151. doi: 10.1007/BF00397707. [DOI] [PubMed] [Google Scholar]
- 56.Rustan A.C., Nossen J.O., Berg T., Drevon C.A. Biochem. J. 1985;227:529–536. doi: 10.1042/bj2270529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Shannon T.M., Steer M.W. J. Exp. Bot. 1984;35:1708–1714. [Google Scholar]
- 58.Sticher L., Jones R.L. Protoplasma. 1988;142:36–45. [Google Scholar]
- 59.Strous G.J., Van Kerkhof P., Willemsen R., Slot J.W., Geuze H.J. Eur. J. Cell Biol. 1985;36:256–262. [PubMed] [Google Scholar]
- 60.Sanders E.J., Chokka P. J. Cell Sci. 1987;87:389–398. doi: 10.1242/jcs.87.3.389. [DOI] [PubMed] [Google Scholar]
- 61.Tartakoff A.M. Cell. 1983;32:1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
- 62.Suchard S.J., Lattanzio F.A., Jr., Rubin R.W., Pressman B.C. J. Cell Biol. 1982;94:531–539. doi: 10.1083/jcb.94.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Pohlmann R., Kruger S., Hasilik A., Von Figura K. Biochem. J. 1984;217:649–658. doi: 10.1042/bj2170649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Oda K., Ikehara Y. Eur. J. Biochem. 1985;152:605–609. doi: 10.1111/j.1432-1033.1985.tb09238.x. [DOI] [PubMed] [Google Scholar]
- 65.Jacobs S., Kull F.C., Jr., Cuatrecasas P. 3rd Edn. Vol. 80. 1983. pp. 1228–1231. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Crine P., Dufour L. Biochem. Biophys. Res. Commun. 1982;109:500–506. doi: 10.1016/0006-291x(82)91749-1. [DOI] [PubMed] [Google Scholar]
- 67.Strömberg K., Persson A.-M., Olsson I. Eur. J. Cell Biol. 1985;39:424–431. [PubMed] [Google Scholar]
- 68.Srinivas R.V., Melsen L.R., Compans R.W. J. Virol. 1982;42:1067–1075. doi: 10.1128/jvi.42.3.1067-1075.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Ledger P.W., Nishimoto S.K., Hayashi S., Tanzer M.L. J. Biol. Chem. 1983;258:547–554. [PubMed] [Google Scholar]
- 70.Johnson D.C., Spear P.G. Cell. 1983;32:987–997. doi: 10.1016/0092-8674(83)90083-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Machamer C.E., Cresswell P. 3rd Edn. Vol. 81. 1984. pp. 1287–1291. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Niemann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H.-D. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Hubbard S.C., Ivatt R.J. Annu. Rev. Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
- 74.Kajiwara T., Tanzer M.L. FEBS Lett. 1981;134(1):43–46. doi: 10.1016/0014-5793(81)80546-7. [DOI] [PubMed] [Google Scholar]
- 75.Kajiwara T., Tanzer M.L. Arch. Biochem. Biophys. 1982;214:51–55. doi: 10.1016/0003-9861(82)90007-8. [DOI] [PubMed] [Google Scholar]
- 76.Hedin U., Thyberg J. Eur. J. Cell Biol. 1985;39:130–135. [PubMed] [Google Scholar]
- 77.Dickson R.B., Schlegel R., Willingham M.C., Pastan I. J. Cell Biol. 1981;91:409a. doi: 10.1083/jcb.89.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Marsh M., Wellsteed J., Kern H., Harms E., Helenius A. 3rd Edn. Vol. 79. 1982. pp. 5297–5301. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Wilcox D.K., Kitson R.P., Widnell C.C. J. Cell Biol. 1982;92:859–864. doi: 10.1083/jcb.92.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Harford J., Wolkoff A.W., Ashwell G., Klausner R.D. J. Cell Biol. 1983;96:1824–1828. doi: 10.1083/jcb.96.6.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Berg T., Kindberg G.M., Ford T., Blomhoff R. Exp. Cell Res. 1985;161:285–296. doi: 10.1016/0014-4827(85)90086-2. [DOI] [PubMed] [Google Scholar]
- 82.Robbins A.R., Oliver C., Bateman J.L., Krag S.S., Galloway C.J., Mellman I. J. Cell Biol. 1984;99:1296–1308. doi: 10.1083/jcb.99.4.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Merion M., Sly W.S. J. Cell Biol. 1983;96:644–650. doi: 10.1083/jcb.96.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Anderson R.G.W., Pathak R.K. Cell. 1985;40:635–643. doi: 10.1016/0092-8674(85)90212-0. [DOI] [PubMed] [Google Scholar]
- 85.Maxfield F.R. J. Cell Biol. 1982;95:676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Tycko B., Keith C.H., Maxfield F.R. J. Cell Biol. 1983;97:1762–1776. doi: 10.1083/jcb.97.6.1762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Marnell M.H., Stookey M., Draper R.K. J. Cell Biol. 1982;93:57–62. doi: 10.1083/jcb.93.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Basu S.K., Goldstein J.L., Anderson R.G.W., Brown M.S. Cell. 1981;24:493–502. doi: 10.1016/0092-8674(81)90340-8. [DOI] [PubMed] [Google Scholar]
- 89.Whittaker J., Hammond V.A., Taylor R., Alberti K.G.M.M. Biochem. J. 1986;234:463–468. doi: 10.1042/bj2340463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Grinde B. Exp. Cell Res. 1983;149:27–35. doi: 10.1016/0014-4827(83)90377-4. [DOI] [PubMed] [Google Scholar]
- 91.Frixione E., Pérez-Olvera O. Comp. Biochem. Physiol. 1985;82a:787–790. [Google Scholar]
- 92.Sato C., Schiftman M., Larocca J.N. Neurochem. Int. 1986;9:265–271. doi: 10.1016/0197-0186(86)90062-8. [DOI] [PubMed] [Google Scholar]
- 93.Linington C., Waehneldt T.V. J. Neurochem. 1983;41:426–433. doi: 10.1111/j.1471-4159.1983.tb04759.x. [DOI] [PubMed] [Google Scholar]
- 94.Domozych D.S., Korbusieski T.J. J. Exp. Bot. 1985;36:1304–1312. [Google Scholar]
- 95.El-Battari A., Muller J.M., Fantini J., Bellot F., Tirard A., Ducret F., Marvaldi J. J. Cell Sci. 1986;80:269–280. doi: 10.1242/jcs.80.1.269. [DOI] [PubMed] [Google Scholar]
- 96.Bourguignon L.Y.W., Pressman B.C. J. Membr. Biol. 1983;73:91–93. doi: 10.1007/BF01870343. [DOI] [PubMed] [Google Scholar]
- 97.Mollenhauer H.H., Morré D.J., Droleskey R.E. Bot. Gaz. 1986;147:432–436. [Google Scholar]
- 98.Morré D.J., Schnepf E., Deichgraber G. Bot. Gaz. 1986;147:252–257. [Google Scholar]
- 99.Kuismanen E., Saraste J., Pettersson R.F. J. Virol. 1985;55:813–822. doi: 10.1128/jvi.55.3.813-822.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Mitsui T., Akazawa T., Christeller J.T., Tartakoff A.M. Arch. Biochem. Biophys. 1985;241:315–328. doi: 10.1016/0003-9861(85)90388-1. [DOI] [PubMed] [Google Scholar]
- 101.Mitchell D., Hardingham T. Biochem. J. 1982;202:249–254. doi: 10.1042/bj2020249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Oka J.A., Weigel P.H. J. Cell Physiol. 1987;133:243–252. doi: 10.1002/jcp.1041330207. [DOI] [PubMed] [Google Scholar]
- 103.Alonso F.V., Compans R.W. J. Cell Biol. 1981;89:700–705. doi: 10.1083/jcb.89.3.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Kousoulas K.G., Bzik D.J., Person S. Intervirol. 1983;20:56–60. doi: 10.1159/000149375. [DOI] [PubMed] [Google Scholar]
- 105.Pesonen M., Kääriäinen L. J. Mol. Biol. 1982;158:213–230. doi: 10.1016/0022-2836(82)90430-2. [DOI] [PubMed] [Google Scholar]
- 106.Kääriäinen L., Hashimoto K., Saraste J., Virtanen I., Penttinen K. J. Cell Biol. 1980;87:783–791. doi: 10.1083/jcb.87.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Van Drunen Little-Van den Hurk S., Babiuk L.A. Virology. 1985;143:104–118. doi: 10.1016/0042-6822(85)90100-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Bihler I., Sawh P.C., Charles P. 3rd Edn. Vol. 42. 1983. p. 293. (Fed. Proc.). [Google Scholar]
- 109.Bihler I., Charles P., Sawh P.C. Biochim. Biophys. Acta. 1985;821:37–44. doi: 10.1016/0005-2736(85)90150-6. [DOI] [PubMed] [Google Scholar]
- 110.Bihler I., Sawh P.C., Charles P. Biochim. Biophys. Acta. 1985;821:30–36. doi: 10.1016/0005-2736(85)90149-x. [DOI] [PubMed] [Google Scholar]
- 111.Cecchelli R., Cacan R., Porchet-Hennere E., Verbert A. Biosci. Rep. 1986;6:227–234. doi: 10.1007/BF01115011. [DOI] [PubMed] [Google Scholar]
- 112.Craig S., Goodchild D.J. Protoplasma. 1984;122:91–97. [Google Scholar]
- 113.Matheke M.L., Kalff M., Holtzmann E. Tissue Cell. 1983;15:509–513. doi: 10.1016/0040-8166(83)90002-2. [DOI] [PubMed] [Google Scholar]
- 114.Van Vleet J.F., Runnels L.J., Cook J.R., Jr., Scheidt A.B. Am. J. Vet. Res. 1987;48:1520–1524. [PubMed] [Google Scholar]
- 115.Raso V., Fehrmann C., Solan V.C., Rosowsky A. Biochem. Biophys. Res. Commun. 1988;150:104–110. doi: 10.1016/0006-291x(88)90492-5. [DOI] [PubMed] [Google Scholar]
- 116.Griffin T.W., Pagnini P.G., Houston L.L. J. Biol. Response Modif. 1987;6:537–545. [PubMed] [Google Scholar]
- 117.Johnson D.C., Schlesinger M.J. Virology. 1980;102:407–424. doi: 10.1016/0042-6822(80)90200-7. [DOI] [PubMed] [Google Scholar]
- 118.Griffiths G., Quinn P., Warren G. J. Cell Biol. 1983;96:835–850. doi: 10.1083/jcb.96.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Cheng B., Horst I.A., Kowal J. Arch. Biochem. Biophys. 1985;239:508–516. doi: 10.1016/0003-9861(85)90719-2. [DOI] [PubMed] [Google Scholar]
- 120.Doeg K.A., Phillips A.H. J. Cell Biol. 1981;91:401a. [Google Scholar]
- 121.Tartakoff A., Vassalli P. J. Cell Biol. 1978;79:694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Mollenhauer H.H., Morré D.J., Norman J.O. Protoplasma. 1982;112:117–126. [Google Scholar]
- 123.Whaley W.G., Dauwalder M., Kephart J.E. Science. 1972;175:596–599. doi: 10.1126/science.175.4022.596. [DOI] [PubMed] [Google Scholar]
- 124.Dauwalder M., Whaley W.G., Kephart J.E. Sub-Cell. Biochem. 1972;1:225–276. [Google Scholar]
- 125.Mollenhauer H.H., Morré D.J. Annu. Rev. Plant Physiol. 1966;17:27–46. [Google Scholar]
- 126.Morré D.J., Creek K.E., Matyas G.R., Minnifield N., Sun I., Baudoin P., Morré D.M., Crane F.L. BioTechniques. 1984;2:224–233. [Google Scholar]
- 127.Mollenhauer H.H., Whaley W.G. J. Cell Biol. 1963;17:222–225. doi: 10.1083/jcb.17.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Rothman J.E. Sci. Am. 1985;253:74–89. doi: 10.1038/scientificamerican0985-74. [DOI] [PubMed] [Google Scholar]
- 129.Pfeffer S.R., Rothman J.E. Annu. Rev. Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
- 130.Griffiths G., Simons K. Science. 1986;234:438–443. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
- 131.Pesacreta J.C., Lucas W.J. Protoplasma. 1985;125:173–184. [Google Scholar]
- 132.Mollenhauer H.H., Morré D.J., Griffing L.R. Protoplasma. 1990 in press. [Google Scholar]
- 133.Kelly R.B. Science. 1985;230:25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
- 134.Farquhar M.G. 3rd Edn. Vol. 92. Pitman Books; London: 1982. pp. 157–183. (Ciba Found. Symp.). [Google Scholar]
- 135.Tartakoff A.M. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982;300:173–184. doi: 10.1098/rstb.1982.0164. [DOI] [PubMed] [Google Scholar]
- 136.Roth J., Tastjes T.J., Weinstein J., Paulson J.C. Cell. 1985;43:287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
- 137.Moe H. J. Ultrastruct. Res. 1960;4:58–63. doi: 10.1016/s0022-5320(60)80006-8. [DOI] [PubMed] [Google Scholar]
- 138.Zeigel R.F., Dalton A.J. J. Cell Biol. 1962;15:45–54. doi: 10.1083/jcb.15.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Morré D.J., Mollenhauer H.H., Bracker C.E. In: 3rd Edn. Reinert J., Urspring H., editors. Vol. 2. Springer-Verlag; Berlin: 1971. pp. 82–126. (Results and Problems in Cell Differentiation, Vol. 2, Origin and Continuity of Cell Organelles). [Google Scholar]
- 140.Orci L., Glick B.S., Rothman J.E. Cell. 1986;46:171–184. doi: 10.1016/0092-8674(86)90734-8. [DOI] [PubMed] [Google Scholar]
- 141.Mollenhauer H.H., Morré D.J. J. Electron Micros. Tech. 1990 doi: 10.1002/jemt.1060170103. In press. [DOI] [PubMed] [Google Scholar]
- 142.Fine R.E., Okleford C.D. Intern. Rev. Cytol. 1984;91:1–43. doi: 10.1016/s0074-7696(08)61313-3. [DOI] [PubMed] [Google Scholar]
- 143.Hilmer S., Freundt H., Robinson D.G. Eur. J. Cell Biol. 1988;47:206–212. [Google Scholar]
- 144.Robinson D.G., Depta H. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988;39:53–99. [Google Scholar]
- 145.Tartakoff A., Hoessli D., Vassalli P. J. Mol. Biol. 1981;150:525–535. doi: 10.1016/0022-2836(81)90378-8. [DOI] [PubMed] [Google Scholar]
- 146.Quinn P., Griffith G., Warren G. J. Cell Biol. 1983;96:851–856. doi: 10.1083/jcb.96.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Tartakoff A.M., Vassalli P., Détraz M. J. Exp. Med. 1977;146:1332–1345. doi: 10.1084/jem.146.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Lindsey J.D., Ellisman M.H. J. Cell Biol. 1981;91:96a. [Google Scholar]
- 149.Mollenhauer H.H., Morré D.J., Droleskey R. Protoplasma. 1983;114:119–124. [Google Scholar]
- 150.Mollenhauer H.H., Morré D.J., Rowe L.D. Tex. Soc. Electron Microsc. J. 1983;14:12–17. [Google Scholar]
- 151.Morré D.J., Minnifield N., Mollenhauer H.H. Eur. J. Cell Biol. 1985;37:107–110. [PubMed] [Google Scholar]
- 152.Morré D.J., Boss W.F., Grimes H., Mollenhauer H.H. Eur. J. Cell Biol. 1983;30:25–32. [PubMed] [Google Scholar]
- 153.Robinson D.G. Eur. J. Cell Biol. 1981;23:267–272. [PubMed] [Google Scholar]
- 154.Morré D.J., Morré D.M., Mollenhauer H.H., Reutter W. Eur. J. Cell Biol. 1987;43:235–242. [PubMed] [Google Scholar]
- 155.Ellinger A., Pavelka M. Cell Tissue Res. 1984;235:187–194. doi: 10.1007/BF00213739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Boss W.F., Morré D.J., Mollenhauer H.H. Eur. J. Cell Biol. 1984;34:1–8. [PubMed] [Google Scholar]
- 157.Geisow M.J., Burgoyne R.D. Cell Biol. Intern. Rep. 1982;6:353–359. doi: 10.1016/0309-1651(82)90037-6. [DOI] [PubMed] [Google Scholar]
- 158.Geisow M.J., Burgoyne R.D. Cell Biol. Intern. Rep. 1982;6:933–939. doi: 10.1016/0309-1651(82)90004-2. [DOI] [PubMed] [Google Scholar]
- 159.Gladstone S., Lewis P. D. Van Nostrand Co; New York: 1960. Elements of Physical Chemistry; p. 256. [Google Scholar]
- 160.Maxfield F.R. In: Endocytosis. Paston I., Willingham M.C., editors. Plenum Press; New York: 1985. pp. 235–257. [Google Scholar]
- 161.Zhang F., Schneider D.L. Biochem. Biophys. Res. Commun. 1983;114:620–625. doi: 10.1016/0006-291x(83)90825-2. [DOI] [PubMed] [Google Scholar]
- 162.Glickman J., Croen K., Kelly S., Al-Awqati Q. J. Cell Biol. 1983;97:1303–1308. doi: 10.1083/jcb.97.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Barr R., Safranski K., Sun I.L., Crane F.L., Morré D.J. J. Biol. Chem. 1984;259:14064–14067. [PubMed] [Google Scholar]
- 164.Chanson A., Taiz L. Plant Physiol. 1985;78:232–240. doi: 10.1104/pp.78.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Ali M.S., Akazawa T. Plant Physiol. 1986;81:222–227. doi: 10.1104/pp.81.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Griffing L.R., Ray P.M. Eur. J. Cell Biol. 1985;36:24–31. [Google Scholar]
- 167.Morré D.J., Morré D.M., Heidrich H.-G. Eur. J. Cell Biol. 1983;31:263–274. [PubMed] [Google Scholar]
- 168.Mollenhauer H.H., Morré D.J. J. Cell Sci. 1978;32:357–362. doi: 10.1242/jcs.32.1.357. [DOI] [PubMed] [Google Scholar]
- 169.Palade G. Science. 1975;189:347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- 170.Galloway C.J., Dean G.E., Marsh M., Rudnick G., Mellman I. 3rd Edn. Vol. 80. 1983. pp. 3334–3338. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Yamashiro D.J., Fluss S.R., Maxfield F.R. J. Cell Biol. 1983;97:929–934. doi: 10.1083/jcb.97.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Schneider D.L. J. Biol. Chem. 1981;256:3858–3864. [PubMed] [Google Scholar]
- 173.Ohkuma S., Moriyama Y., Takano T. 3rd Edn. Vol. 79. 1982. pp. 2758–2762. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Van Dyke R.W., Hornick C.A., Belcher J., Scharschmidt B.F., Havel R.J. J. Biol. Chem. 1985;260:11021–11026. [PubMed] [Google Scholar]
- 175.Stone D.K., Xie X.-S., Racker E. J. Biol. Chem. 1983;258:4059–4062. [PubMed] [Google Scholar]
- 176.Xie X.-S., Stone D.K. J. Biol. Chem. 1985;261:2492–2495. [PubMed] [Google Scholar]
- 177.Forgac M., Cantley L. J. Biol. Chem. 1984;259:8101–8105. [PubMed] [Google Scholar]
- 178.Moriyama Y., Takano T., Ohkuma S. J. Biochem. (Tokyo) 1984;95:995–1007. doi: 10.1093/oxfordjournals.jbchem.a134726. [DOI] [PubMed] [Google Scholar]
- 179.Randall S.K., Sze H. J. Biol. Chem. 1986;261:1364–1371. [PubMed] [Google Scholar]
- 180.Goffeau A., Slayman C.W. Biochim. Biophys. Acta. 1981;639:197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
- 181.Schwartz A.L., Strous G.J.A.M., Slot J.W., Geuze H.J. EMBO J. 1985;4:899–904. doi: 10.1002/j.1460-2075.1985.tb03716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Schnepf E. Naturwissenschaften. 1983;70:260. [Google Scholar]
- 183.Kubo R.T., Pigeon M.L. Mol. Immunol. 1983;20:345–348. doi: 10.1016/0161-5890(83)90074-3. [DOI] [PubMed] [Google Scholar]
- 184.Morré D.J. Eur. J. Cell Biol. 1981;26:21–25. [PubMed] [Google Scholar]
- 185.Twaddle M.L., Jersild R.A., Jr., Dileepan K.N., Morré D.J. Eur. J. Cell Biol. 1981;26:26–34. [PubMed] [Google Scholar]
- 186.Morré D.J., Ovtracht L. J. Ultrastruct. Res. 1981;74:284–295. doi: 10.1016/s0022-5320(81)80119-0. [DOI] [PubMed] [Google Scholar]
- 187.Franz C.P., Croze E.M., Morré D.J., Schreiber G. Biochim. Biophys. Acta. 1981;678:395–402. doi: 10.1016/0304-4165(81)90120-3. [DOI] [PubMed] [Google Scholar]
- 188.Stein B.S., Bensch K.G., Sussman H.H. J. Biol. Chem. 1984;259:14762–14772. [PubMed] [Google Scholar]
- 189.Ono M., Mifune K., Yoshimura A., Ohnishi S.-I., Kuwano M. J. Cell Biol. 1985;101:60–65. doi: 10.1083/jcb.101.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Howard L.L., Brunschwig J.P., Pressman B.C. Pharmacologist. 1976;1287:122. [Google Scholar]
- 191.Yarowsky P., Boyne A.F., Wierwille R., Brookes N. J. Neurosci. 1986;6:859–866. doi: 10.1523/JNEUROSCI.06-03-00859.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 192.Mollenhauer H.H., Morré D.J., Bracker C.E. Protoplasma. 1988;145:66–69. [Google Scholar]
- 193.Brightman A.H., Boss W.F., Morré D.J. Plant Physiol. 1985;77:71. (Suppl.) [Google Scholar]
- 194.Armentano L.E., Young J.W. J. Nutr. 1983;113:1265–1277. doi: 10.1093/jn/113.6.1265. [DOI] [PubMed] [Google Scholar]
- 195.Bartley E.E., Herod E.L., Bechtle R.M., Sapienza D.A., Brent B.E., Davidovich A. J. Anim. Sci. 1979;49:1066–1075. [Google Scholar]
- 196.Carlson J.R., Hammond A.C., Breeze R.G., Potchoiba M.J., Heinemann W.W. Am. J. Vet. Res. 1983;44:118–122. [PubMed] [Google Scholar]
- 197.Carlson J.R., Breeze R.G. J. Anim. Sci. 1984;58:1040–1049. doi: 10.2527/jas1984.5841040x. [DOI] [PubMed] [Google Scholar]
- 198.Daenicke R., Rohr K., Oslage H.J. Livestock Prod. Sci. 1982;8:479–488. [Google Scholar]
- 199.Hixon D.L., Fahey G.C., Jr., Kesler D.J., Neumann A.L. Theriogenology. 1982;17:515–525. doi: 10.1016/0093-691x(82)90177-7. [DOI] [PubMed] [Google Scholar]
- 200.Nagaraja T.G., Avery T.B., Bartley E.E., Roof S.K., Dayton A.D. J. Anim. Sci. 1982;54:649–658. doi: 10.2527/jas1982.543649x. [DOI] [PubMed] [Google Scholar]
- 201.Ricke S.C., Berger L.L., Van der Aar P.J., Fahey G.C., Jr. J. Anim. Sci. 1984;58:194–202. doi: 10.2527/jas1984.581194x. [DOI] [PubMed] [Google Scholar]
- 202.Ben-Asher A., Ilan D., Levy M., Holzer Z. Anim. Prod. 1982;35:163–164. [Google Scholar]
- 203.Anderson T.D., Van Alstine W.G., Ficken M.D., Miskimins D.W., Carson T.L., Osweiler G.D. Am. J. Vet. Res. 1984;45:1142–1147. [PubMed] [Google Scholar]
- 204.Raisbeck M.F., Miller R.B. 24th Ann. Proc. 1981. Am. Assoc. Vet. Lab. Diagn. pp. 373–384. [Google Scholar]
- 205.Beck B.E., Harries W.N. 22nd Annu. Proc. 1979. Am. Assoc. Vet. Lab. Diagn. pp. 269–282. [Google Scholar]
- 206.Janzen E.D., Radostits O.M., Orr J.P. Can. Vet. J. 1981;22:92–94. [PMC free article] [PubMed] [Google Scholar]
- 207.Lloyd W.E. In: 3rd Edn. Mansmann R.A., McAllister E.S., Pratt P.W., editors. Vol. 1. American Veterinary Publications; Santa Barbara: 1982. p. 198. (Equine Medicine and Surgery). [Google Scholar]
- 208.Muylle E., Van Den Hende C., Oyaert W., Thoonen H., Vlaeminck K. Equine Vet. J. 1981;13:107–108. doi: 10.1111/j.2042-3306.1981.tb04129.x. [DOI] [PubMed] [Google Scholar]
- 209.Matsuoka T. J. Am. Vet. Med. Assoc. 1976;169:1098–1100. [PubMed] [Google Scholar]
- 210.Nation P.N., Crowe S.P., Harries W.N. Can. Vet. J. 1982;23:323–326. [PMC free article] [PubMed] [Google Scholar]
- 211.Nuytten J., Bruynooghe D., Muylle E., Van Den Hende C., Vlaminck K., Oyaert W. Vlaams Diergeneesk Tijdschr. 1981;50:242–249. [Google Scholar]
- 212.Stuart J.C. Vet. Rec. 1978;102:303–304. doi: 10.1136/vr.102.14.303. [DOI] [PubMed] [Google Scholar]
- 213.Howell J., Hanson J., Onderka D., Harries W.N. Avian Dis. 1980;24:1050–1053. [PubMed] [Google Scholar]
- 214.Whitlock R.H., White N.A., Rowland G.N., Plue R. 8th Edn. Vol. 24. 1978. pp. 473–486. (Proc. Am. Assoc. Equine Pract.). [Google Scholar]
- 215.Novilla M.N., Folkerts T.M. In: Current Veterinary Therapy: Food Animal Practice. Howard J.L., editor. W.B. Saunders Co; Philadelphia: 1986. pp. 359–363. [Google Scholar]
- 216.Van Vleet J.F., Amstutz H.E., Weirich W.E., Rebar A.H., Ferrans V.J. Am. J. Vet. Res. 1983;44:1460–1468. [PubMed] [Google Scholar]
- 217.Van Vleet J.F., Amstutz H.E., Weirich W.E., Rebar A.H., Ferrans V.J. Am. J. Vet. Res. 1983;44:1469–1475. [PubMed] [Google Scholar]
- 218.Somani P., Pressman B.C., deGuzman N.T. Circulation. 1975;52(Suppl. II):242. [Google Scholar]
- 219.Hanrahan L.A., Corrier D.E., Naqi S.A. Vet. Pathol. 1981;18:665–671. doi: 10.1177/030098588101800511. [DOI] [PubMed] [Google Scholar]
- 220.Meyer A.M., Amend J.F., Freeland L.R., Mallon F.M., Stroup W.W. 8th Edn. Vol. 42. 1983. p. 637. (Fed. Proc.). [Google Scholar]
- 221.Mallon F.M., Amend J.F., Ramos A.S., Morrow C.J., Wren W.B. 8th Edn. Vol. 40. 1981. p. 752. (Fed. Proc.). [Google Scholar]
- 222.Van Vleet J.F., Ferrans V.J. Am. J. Vet. Res. 1983;44:1629–1636. [PubMed] [Google Scholar]
- 223.Van Vleet J.F., Ferrans V.J. Am. J. Pathol. 1984;114:367–379. [PMC free article] [PubMed] [Google Scholar]
- 224.Mollenhauer H.H., Rowe L.D., Witzel D.A. Vet. Hum. Toxicol. 1984;26:15–19. [PubMed] [Google Scholar]
- 225.Mollenhauer H.H., Rowe L.D., Cysewski S.J., Witzel D.A. Am. J. Vet. Res. 1981;42:35–40. [PubMed] [Google Scholar]
- 226.Fawcette D. W.B. Saunders Co; Philadelphia: 1966. An Atlas of Fine Structure. [Google Scholar]
- 227.Bonucci E., Derenzini M., Marinozzi V. J. Cell Biol. 1973;59:185–211. doi: 10.1083/jcb.59.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Jennings R.B. In: Calcium Antagonists and Cardiovascular Disease. Opie L.H., editor. Raven Press; New York: 1984. pp. 85–95. [Google Scholar]
- 229.Jennings R.B., Schaper J., Hill M.L., Steenberger C., Jr., Reimer K.A. Circulation Res. 1985;56:262–278. doi: 10.1161/01.res.56.2.262. [DOI] [PubMed] [Google Scholar]
- 230.Griffiths T., Evans M.C., Meldrum B.S. Neurosci. 1984;12:557–567. doi: 10.1016/0306-4522(84)90073-3. [DOI] [PubMed] [Google Scholar]
- 231.Ver Donck I., Runnels L.J., Cook J.R., Jr., Scheidt A.B. Am. J. Vet. Res. 1987;48:1520–1524. [PubMed] [Google Scholar]
- 232.Shen A.C., Jennings R.B. Am. J. Pathol. 1972;67:417–452. [PMC free article] [PubMed] [Google Scholar]
- 233.Farber J.L., El-Mofty S.K. Am. J. Pathol. 1975;81:237–250. [PMC free article] [PubMed] [Google Scholar]
- 234.Shine K.I., Douglas A.M., Ricchiuti Circ. Res. 1978;43:712–720. doi: 10.1161/01.res.43.5.712. [DOI] [PubMed] [Google Scholar]
- 235.Naylor W.G., Poole-Wilson P.A., Williams A. J. Mol. Cell. Cardiol. 1979;11:683–706. doi: 10.1016/0022-2828(79)90381-x. [DOI] [PubMed] [Google Scholar]
- 236.Bourdillon P.D.V., Poole-Wilson P.A. Cardiovascular Res. 1981;25:121–130. doi: 10.1093/cvr/15.3.121. [DOI] [PubMed] [Google Scholar]
- 237.Farber J.L. Lab. Invest. 1982;47:114–123. [PubMed] [Google Scholar]
- 238.Palmer R.F., Posey V.A. J. Gen. Physiol. 1967;50:2085–2095. doi: 10.1085/jgp.50.8.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 239.Harigaya S., Schwartz A. Circ. Res. 1969;25:781–794. doi: 10.1161/01.res.25.6.781. [DOI] [PubMed] [Google Scholar]
- 240.Holmberg T., Wierup M., Engström B. Poult. Sci. 1984;63:1144–1148. doi: 10.3382/ps.0631144. [DOI] [PubMed] [Google Scholar]
- 241.Gauthier G.F., Lowey S. J. Cell Biol. 1979;81:10–25. doi: 10.1083/jcb.81.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242.Ham A.W., Cormack D.H. 8th Edn. J.B. Lippincott Company; Philadelphia: 1979. Histology; pp. 547–548. [Google Scholar]
- 243.Rowe R.W.D. J. Cell Biol. 1973;57:261–277. doi: 10.1083/jcb.57.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 244.Gaide M.S., Gibson J.K., Bassett A.L. Eur. J. Pharmacol. 1984;99:349–352. doi: 10.1016/0014-2999(84)90145-6. [DOI] [PubMed] [Google Scholar]
- 245.Ghijsen W.E.J.M., De Jong M.D., Van Os C.H. Biochim. Biophys. Acta. 1983;730:85–94. doi: 10.1016/0005-2736(83)90320-6. [DOI] [PubMed] [Google Scholar]
- 246.Lattanzio F.A., Jr., Pressman B.C. Biochem. Biophys. Res. Commun. 1986;139:816–821. doi: 10.1016/s0006-291x(86)80063-8. [DOI] [PubMed] [Google Scholar]
- 247.Geisow M. Nature. 1982;298:515–516. doi: 10.1038/298515a0. [DOI] [PubMed] [Google Scholar]
- 248.Knapp H.R., Oelz O., Roberts L.J., Sweetman B.J., Oates J.A., Reed P.W. Vol. 74. 1977. pp. 4251–4255. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 249.Takahashi M., Sugino H., Kudo Y. Brain Res. 1986;382:332–338. doi: 10.1016/0006-8993(86)91342-9. [DOI] [PubMed] [Google Scholar]
- 250.Izumi F., Wada A., Yanagihara N., Kobayashi H., Toyohira Y. Biochim. Pharmacol. 1986;35:2937–2940. doi: 10.1016/0006-2952(86)90489-2. [DOI] [PubMed] [Google Scholar]
- 251.Sutko J.L., Besch H.R., Jr., Bailey J.C., Zimmerman G., Watanabe A.M. J. Pharmacol. Exp. Ther. 1977;203:685–700. [PubMed] [Google Scholar]
- 252.Bassett A.L., Wiggins J.R., Gelband H., Pressman B.C. J. Pharmacol. Exp. Ther. 1978;207:966–975. [PubMed] [Google Scholar]