Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2006 Dec 23;22(6):871–877. doi: 10.1016/S1872-2075(06)60061-7

Research progress in SELDI-TOF MS and its clinical applications

William Chi-Shing CHO 1,*
PMCID: PMC7148935  PMID: 17168305

Abstract

Proteinchip profiling is a powerful and innovative proteomic technology for the discovery of biomarkers and the development of diagnostic/prognostic assays. On the basis of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), Ciphergen’s proteinchip system offers a single, unified, and high throughput platform for a multitude of proteomic research applications. Proteins are the major functional components of the cell. The study of proteomics helps to better understand the mechanism of a disease. Remarkable findings in disease biomarkers have shed light on the early diagnosis, monitoring, and prognosis of various diseases, especially for cancer. In this paper, the development and technology of SELDI-TOF MS are introduced. The research progress and encouraging research results in malignancies, infectious diseases, neurological diseases, and diabetes mellitus using SELDI-TOF MS are reviewed. This paper concludes by evaluating the pros and cons, and the future perspectives are also expounded.

Key Words: proteinchip profiling, proteomics, tumor biomarker, surface–enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS)

References

  • 1.Hutchens TW, Yip TT. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Communications in Mass Spectrometry. 1993;7:576–580. [Google Scholar]
  • 2.Cho WC. Oncoproteomics and its research progress. Contemporary Academic Research. 2006;2:8–12. [Google Scholar]
  • 3.Petricoin EF, Ardekani AM, Hitt BA. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572–577. doi: 10.1016/S0140-6736(02)07746-2. [DOI] [PubMed] [Google Scholar]
  • 4.Zhang Z, Bast RC, Jr, Yu Y. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Research. 2004;64(16):5882–5890. doi: 10.1158/0008-5472.CAN-04-0746. [DOI] [PubMed] [Google Scholar]
  • 5.Petricoin EF, III, Ornstein DK, Paweletz CP. Serum proteomic patterns for detection of prostate cancer. Journal of the National Cancer Institute. 2002;94(20):1576–1578. doi: 10.1093/jnci/94.20.1576. [DOI] [PubMed] [Google Scholar]
  • 6.Li J, Zhang Z, Rosenzweig J. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry. 2002;48(8):1296–1304. [PubMed] [Google Scholar]
  • 7.Xiao X, Liu D, Tang Y. Development of proteomic patterns for detecting lung cancer. Disease Markers. 2003-2004;19(1):33–39. doi: 10.1155/2003/278152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Cho WC, Yip TT, Yip C. Identification of serum amyloid A protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clinical Cancer Research. 2004;10(1):43–52. doi: 10.1158/1078-0432.ccr-0413-3. [DOI] [PubMed] [Google Scholar]
  • 9.Cho WC, Yip TT, Ngan RK, et al. Proteinchip array profiling for identification of disease-and chemotherapy-associated biomarkers of nasopharyngeal carcinoma. Clinical Chemistry, in press. [DOI] [PubMed]
  • 10.Lee IN, Chen CH, Sheu JC. Identification of complement C3a as a candidate biomarker in human chronic hepatitis C and HCV-related hepatocellular carcinoma using a proteomics approach. Proteomics. 2006;6(9):2865–2873. doi: 10.1002/pmic.200500488. [DOI] [PubMed] [Google Scholar]
  • 11.Yu JK, Chen YD, Zheng S. An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics. World Journal of Gastroenterology. 2004;10(21):3127–3131. doi: 10.3748/wjg.v10.i21.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Melle C, Ernst G, Schimmel B. Different expression of calgizzarin (S100A11) in normal colonic epithelium, adenoma and colorectal carcinoma. International Journal of Oncology. 2006;28(1):195–200. [PubMed] [Google Scholar]
  • 13.Vermeulen R, Lan Q, Zhang L. Decreased levels of CXC-chemokines in serum of benzene-exposed workers identified by array-based proteomics. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(47):17041–17046. doi: 10.1073/pnas.0508573102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Yip TT, Chan JW, Cho WC. Proteinchip array profiling analysis in patients with severe acute respiratory syndrome identified serum amyloid A protein as a biomarker potentially useful in monitoring the extent of pneumonia. Clinical Chemistry. 2005;51(1):47–55. doi: 10.1373/clinchem.2004.031229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Austen BM, Frears ER, Davies H. The use of SELDI proteinchip arrays to monitor production of Alzheimer's beta amyloid in transfected cells. Journal of Peptide Science. 2000;6(9):459–469. doi: 10.1002/1099-1387(200009)6:9<459::AID-PSC286>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  • 16.Ruetschi U, Zetterberg H, Podust VN. Identification of CSF biomarkers for frontotemporal dementia using SELDITOF. Experimental Neurology. 2005;196(2):273–281. doi: 10.1016/j.expneurol.2005.08.002. [DOI] [PubMed] [Google Scholar]
  • 17.de Seny D, Fillet M, Meuwis MA. Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry ProteinChip approach. Arthritis and Rheumatism. 2005;52(12):3801–3812. doi: 10.1002/art.21607. [DOI] [PubMed] [Google Scholar]
  • 18.Cho WC, Yip TT, Chung WS. Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic rats. Journal of Cellular Biochemistry. 2006;99(1):256–268. doi: 10.1002/jcb.20923. [DOI] [PubMed] [Google Scholar]
  • 19.Cho WC, Yip TT, Chung WS. Potential biomarkers found by proteomic profiling may provide insight for the macrovascular pathogenesis of diabetes mellitus. Disease Markers. 2006;22(3):153–166. doi: 10.1155/2006/450762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Cho WC, Yip TT, Chung WS. Altered expression of serum protein in ginsenoside Re treated diabetic rats detected by SELDI-TOF MS. Journal of Ethnopharmacology. 2006;108(2):272–279. doi: 10.1016/j.jep.2006.05.009. [DOI] [PubMed] [Google Scholar]
  • 21.Jin M, Cataland S, Bissell M. A rapid test for the diagnosis of thrombotic thrombocytopenic purpura using surface enhanced laser desorption/ionization time-of-flight (SELDI-TOF)-mass spectrometry. Journal of Thrombosis and Haemostasis. 2006;4(2):333–338. doi: 10.1111/j.1538-7836.2006.01758.x. [DOI] [PubMed] [Google Scholar]
  • 22.Bouamrani A, Ternier J, Ratel D. Direct-tissue SELDI-TOF mass spectrometry analysis: a new application for clinical proteomics. Clinical Chemistry. 2006;52(11):2103–2106. doi: 10.1373/clinchem.2006.070979. [DOI] [PubMed] [Google Scholar]
  • 23.Fung ET, Thulasiraman V, Weinberger SR. Protein biochips for differential profiling. Current Opinion in Biotechnology. 2001;12(1):65–69. doi: 10.1016/s0958-1669(00)00167-1. [DOI] [PubMed] [Google Scholar]
  • 24.Issaq HJ, Veenstra TD, Conrads TP. The SELDITOF MS approach to proteomics: protein profiling and biomarker identification. Biochemical and Biophysical Research Communications. 2002;292(3):587–592. doi: 10.1006/bbrc.2002.6678. [DOI] [PubMed] [Google Scholar]
  • 25.Yanagisawa K, Shyr Y, Xu BJ. Proteomic patterns of tumor subsets in nonsmallcell lung cancer. Lancet. 2003;362(9382):433–439. doi: 10.1016/S0140-6736(03)14068-8. [DOI] [PubMed] [Google Scholar]
  • 26.Henderson NA, Steele RJ. SELDITOF proteomic analysis and cancer detection. Surgeon. 2005;3(6):383–390. doi: 10.1016/s1479-666x(05)80048-4. 422. [DOI] [PubMed] [Google Scholar]
  • 27.Wong DT. Salivary diagnostics powered by nanotechnologies, proteomics and genomics. Journal of the American Dental Association. 2006;137(3):313–321. doi: 10.14219/jada.archive.2006.0180. [DOI] [PubMed] [Google Scholar]
  • 28.Annalisa C, Daniela C, Lau S. Exploring the hidden human urinary proteome via ligand library beads. Journal of Proteome Research. 2005;4(6):1917–1930. doi: 10.1021/pr050153r. [DOI] [PubMed] [Google Scholar]
  • 29.Chen EI, Hewel J, Felding-Habermann B. Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT) Molecular and Cellular Proteomics. 2006;5(1):53–56. doi: 10.1074/mcp.T500013-MCP200. [DOI] [PubMed] [Google Scholar]
  • 30.Thulasiraman V, Lin S, Gheorghiu L. Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands. Electrophoresis. 2005;26(18):3561–3571. doi: 10.1002/elps.200500147. [DOI] [PubMed] [Google Scholar]
  • 31.Cho WC. Innovative trend of modern medicine–personalized medicine. Popular Medicine. 2004;10:74–75. [Google Scholar]
  • 32.Cho WC, Yue KM, Leung WN. Proteomics–leading the post-genome era. Journal of Chinese Biotechnology. 2005;25(1):33–38. [Google Scholar]
  • 33.Mueller J, von Eggeling F, Driesch D. ProteinChip technology reveals distinctive protein expression profiles in the urine of bladder cancer patients. European Urology. 2005;47(6):885–894. doi: 10.1016/j.eururo.2005.02.016. [DOI] [PubMed] [Google Scholar]
  • 34.Mahnert B, Tauber S, Kriegmair M. Measurements of complement factor H-related protein (BTA-TRAK assay) and nuclear matrix protein (NMP22 assay)–useful diagnostic tools in the diagnosis of urinary bladder cancer. Clinical Chemistry and Laboratory Medicine. 2003;41(1):104–110. doi: 10.1515/CCLM.2003.018. [DOI] [PubMed] [Google Scholar]
  • 35.Li J, Zhang Z, Rosenzweig J. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry. 2002;48(8):1296–1304. [PubMed] [Google Scholar]
  • 36.Ciambellotti E, Coda C, Lanza E. Determination++ of CA 15-3 in the control of primary and metastatic breast carcinoma. Minerva Medica. 1993;84(3):107–112. [PubMed] [Google Scholar]
  • 37.Chen YD, Zheng S, Yu JK. Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clinical Cancer Research. 2004;10(24):8380–8385. doi: 10.1158/1078-0432.CCR-1162-03. [DOI] [PubMed] [Google Scholar]
  • 38.Grotowski M, Wojtun S. CEA, CA-19-9 and IL-8, sTNFRII and sIL-2R in persons at high risk of colorectal cancer. Polski Merkuriusz Lekarski. 2003;14(82):327–330. [PubMed] [Google Scholar]
  • 39.Poon TC, Sung JJ, Chow SM. Diagnosis of gastric cancer by serum proteomic fingerprinting. Gastroenterology. 2006;130(6):1858–1864. doi: 10.1053/j.gastro.2006.02.011. [DOI] [PubMed] [Google Scholar]
  • 40.Lai IR, Lee WJ, Huang MT. Comparison of serum CA72-4, CEA, TPA, CA19-9 and CA125 levels in gastric cancer patients and correlation with recurrence. Hepatogastroenterology. 2002;49(46):1157–1160. [PubMed] [Google Scholar]
  • 41.Ward DG, Cheng Y, N'Kontchou G. Changes in the serum proteome associated with the development of hepatocellular carcinoma in hepatitis C-related cirrhosis. British Journal of Cancer. 2006;94(2):287–292. doi: 10.1038/sj.bjc.6602923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.de Masi S, Tosti ME, Mele A. Screening for hepatocellular carcinoma. Digestive and Liver Disease. 2005;37(4):260–268. doi: 10.1016/j.dld.2004.11.005. [DOI] [PubMed] [Google Scholar]
  • 43.Yang SY, Xiao XY, Zhang WG. Application of serum SELDI proteomic patterns in diagnosis of lung cancer. BMC Cancer. 2005;5:83. doi: 10.1186/1471-2407-5-83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Li R, Li R, Wang Y. Clinical usefulness of a new tumor marker CYFRA21-1 in patients with lung cancer. Chinese Journal of Tuberculosis and Respiratory Diseases. 1998;21(1):26–29. [PubMed] [Google Scholar]
  • 45.Zhang Z, Bast RC, Jr, Yu Y. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Research. 2004;64(16):5882–5890. doi: 10.1158/0008-5472.CAN-04-0746. [DOI] [PubMed] [Google Scholar]
  • 46.Brazert J, Pietryga M, Szablonski W. Diagnostic value of the morphological ultrasound score system and the serum concentration of CA 125 in the diagnosis of malignant ovarian cancer. Ginekologia Polska. 2003;74(12):1542–1548. [PubMed] [Google Scholar]
  • 47.Koopmann J, Zhang Z, White N. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clinical Cancer Research. 2004;10(3):860–868. doi: 10.1158/1078-0432.ccr-1167-3. [DOI] [PubMed] [Google Scholar]
  • 48.Yamaguchi K, Nagano M, Torada N. Urine diacetylspermine as a novel tumor marker for pancreatobiliary carcinomas. Rinsho Byori. 2004;52(4):336–339. [PubMed] [Google Scholar]
  • 49.Adam BL, Qu Y, Davis JW. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Research. 2002;62(13):3609–3614. [PubMed] [Google Scholar]
  • 50.Gann PH, Hennekens CH, Stampfer MJ. A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. Journal of the American Medical Association. 1995;273(4):289–294. [PubMed] [Google Scholar]

Articles from Sheng Wu Gong Cheng Xue Bao are provided here courtesy of Elsevier

RESOURCES