Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2009 May 15;1:491–513. doi: 10.1016/S1877-1823(09)70132-8

Chapter 16 Production and gene expression of brush border disaccharidases and peptidases during development in pigs and calves

I Le Huërou-Luron 1
PMCID: PMC7148966

Abstract

This chapter reviews the expression of intestinal brush-border disaccharidases (maltase-glucoamylase, sucrase-isomaltase, lactase, and trehalase) and peptidases (aminopeptidases A and N and dipeptidyl peptidase IV) during development in growing animals. It describes the roles of intestinal enzymes, focussing on complementarity with salivary, gastric, and pancreatic digestive enzymes and their hydrolytic function in the process of absorption. Gene expression of the enzymes and nutritional regulation of their expression appear during postnatal development up to maturity. After translation of the specific mRNA, a single precursor of maltaseglucoamylase (pro-MG), rich in mannose, is produced in the rough endoplasmic reticulum (RER). In contrast to the relatively small number of carbohydrases, the number of peptidases found in enterocytes in the small intestine is large, because of the large number of different peptide bonds in oligopeptides produced by the action of pancreatic proteases. The digestive function (disaccharidase and peptidase activities) of the enterocytes and their microvilli begins when structural differentiation is complete, that is, during the period of migration over the cryptvillus junction. Modern techniques and investigations are expected to yield relevant data for elaborating feeding strategies that take into account the complex interactions between the diet, the microflora, the luminal milieu and the physiology of the small intestine, including the optimal functioning of the immunological and endocrine systems.

References

  1. Arndt M., Lendeckel U., Spiess A., Faust J., Neubert K., Reinhold D., Ansorge S. Dipeptidyl peptidase IV (DP IV/CD26) mRNA expression in PWM-stimulated T-cells is suppressed by specific DP IV inhibition, an effect mediated by TGF-beta (1) Biochem. Biophys. Res. Commun. 2000;274:410–414. doi: 10.1006/bbrc.2000.3144. [DOI] [PubMed] [Google Scholar]
  2. Aumaitre A., Corring T. Development of digestive enzymes in the piglet from birth to 8 weeks. II- Intestine and intestinal disaccharidases. Nutr. Metab. 1978;22:244–255. doi: 10.1159/000300539. [DOI] [PubMed] [Google Scholar]
  3. van Beers E.H., Buller H.A., Grand R.J., Einerhand A.W.C., Dekker J. Intestinal brush border glycohydrolases: Structure, function, and development. Crit. Rev. Biochem. Mol. Biol. 1995;30:197–262. doi: 10.3109/10409239509085143. [DOI] [PubMed] [Google Scholar]
  4. Bustamante S.A., Goda T., Koldovsky O. Dietary regulation of intestinal glucohydrolases in adult rats: comparison of the effect of solid and liquid diets containing glucose polymers, starch, or sucrose. Amer. J. Clin. Nutr. 1986;43:891–897. doi: 10.1093/ajcn/43.6.891. [DOI] [PubMed] [Google Scholar]
  5. Cera K.R., Mahan D.C., Cross R.F., Reinhart G.A., Whitmoyer R.E. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci. 1988;66:574–584. doi: 10.2527/jas1988.662574x. [DOI] [PubMed] [Google Scholar]
  6. Cowell G.M., Tranum-Jensen J., Sjostrom H., Noren O. Topology and quaternary structure of pro-sucrase/isomaltase and final-form sucrase/isomaltase. Biochem. J. 1986;237:455–461. doi: 10.1042/bj2370455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cranwell P.D. Development of the neonatal gut and enzyme systems. In: Varley MA., editor. The neonatal pig: development and survival. CAB International; Oxon: 1995. pp. 99–154. [Google Scholar]
  8. Danielsen E.M. Tyrosine sulfation, a post-translational modification of microvillar enzymes in the small intestinal enterocyte. EMBO J. 1987;6:2891–2896. doi: 10.1002/j.1460-2075.1987.tb02592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danielsen E.M. Post-translational suppression of expression of intestinal brush border enzymes by fructose. J. Biol. Chem. 1989;264:13726–13729. [PubMed] [Google Scholar]
  10. Danielsen E.M. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase. Biochemistry. 1990;29:305–308. doi: 10.1021/bi00453a042. [DOI] [PubMed] [Google Scholar]
  11. Danielsen E.M. Dimeric assembly of enterocyte brush border enzymes. Biochemistry. 1994;33:1599–1605. doi: 10.1021/bi00172a041. [DOI] [PubMed] [Google Scholar]
  12. Danielsen E.M., Noren O., Sjostrom H. Biosynthesis of intestinal microvillar proteins. Translational evidence in vitro that aminopeptidase N is synthesized as a Mr 115, 000 polypeptide. Biochem. J. 1982;204:323–327. doi: 10.1042/bj2040323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Danielsen E.M., Sjostrom H., Noren O. Biosynthesis of microvillar proteins. Pulse chase labeling studies on maltase-glucoamylase, aminopeptidase A, and dipeptidyl peptidase IV. Biochem. J. 1984;210:389–393. doi: 10.1042/bj2100389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Darmoul D., Rouyerfessard C., Blais A., Voisin T., Sapin C., Baricault L., Cibert C., Geraud G., Couvineau A., Laburthe M., Trugnan G. Dipeptidyl peptidase IV expression in rat jejunal crypt-villus axis is controlled at messenger RNA level. Amer. J. Physiol. 1991;261:G763–G769. doi: 10.1152/ajpgi.1991.261.5.G763. [DOI] [PubMed] [Google Scholar]
  15. Delmas B., Gelfi J., Kut E., Sjostrom H., Noren O., Laude H. Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J. Virol. 1994;68:5216–5224. doi: 10.1128/jvi.68.8.5216-5224.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Delmas B., Gelfi J., Lharidon R., Vogel L.K., Sjostrom H., Noren O., Laude H. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature. 1992;357:417–420. doi: 10.1038/357417a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Deprez P., Deroose P., van den Hende C., Muylle E., Oyaert W. Liquid versus dry feeding in weaned piglets: the influence on small intestinal morphology. J. Vet. Med. B. 1987;34:254–259. doi: 10.1111/j.1439-0450.1987.tb00395.x. [DOI] [PubMed] [Google Scholar]
  18. Deyholos M.K., Galbraith D.W. High-density microarrays for gene expression analysis. Cytometry. 2001;43:229–238. [PubMed] [Google Scholar]
  19. Dudley M.A., Hachey D.L., Quaroni A., Hutchens T.W., Nichols B.L., Rosenberger J., Perkinson J.S., Cook G., Reeds P.J. In vivo sucrase-isomaltase and lactasephlorizin hydrolase turnover in the fed adult rat. J. Biol. Chem. 1993;268:13609–13616. [PubMed] [Google Scholar]
  20. Dudley M.A., Wykes L., Dudley A.W., Fiorotto M., Burrin D.G., Rosenberger J., Jahoor F., Reeds P.J. Lactase phlorizin hydrolase synthesis is decreased in protein-malnourished pigs. J. Nutr. 1997;127:687–693. doi: 10.1093/jn/127.5.687. [DOI] [PubMed] [Google Scholar]
  21. Duluc I., Jost B., Freund J.N. Multiple levels of control of the stage-specific and region-specific expression of rat intestinal lactase. J. Cell Biol. 1993;123:1577–1586. doi: 10.1083/jcb.123.6.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Eckmann L., Smith J.R., Housley M.P., Dwinell M.B., Kagnoff M.F. Analysis by high density cDNA arrays of altered gene expression in human intestinal epithelial cells in response to infection with the invasive enteric bacteria Salmonella. J. Biol. Chem. 2000;275:14084–14094. doi: 10.1074/jbc.275.19.14084. [DOI] [PubMed] [Google Scholar]
  23. Fan M.Z., Stoll B., Jiang R., Burrin D.G. Enterocyte digestive enzyme activity along the crypt-villus and longitudinal axes in the neonatal pig small intestine. J. Anim. Sci. 2001;79:371–381. doi: 10.2527/2001.792371x. [DOI] [PubMed] [Google Scholar]
  24. Finn A.L., Kuzhikandathil E.V., Oxford G.S., Itoh-Lindstrom Y. Sucrase-isomaltase is an adenosine 3′,5′-cyclic monophosphate-dependent epithelial chloride channel. Gastroenterology. 2001;120:117–125. doi: 10.1053/gast.2001.20884. [DOI] [PubMed] [Google Scholar]
  25. Freeman T.C., Collins A.J., Heavens R.P., Tivey D.R. Genetic regulation of enterocyte function: a quantitative in situ hybridization study of lactase-phlorizin hydrolase and Na+ glucose cotransporter mRNAs in rabbit small intestine. Eur. J. Physiol. 1993;422:570–576. doi: 10.1007/BF00374004. [DOI] [PubMed] [Google Scholar]
  26. Freeman W.M., Robertson D.J., Vrana K.E. Fundamentals of DNA hybridisation arrays for gene expression analysis. Biotechniques. 2000;29:1042–1055. doi: 10.2144/00295rv01. [DOI] [PubMed] [Google Scholar]
  27. Galand G. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Comp. Biochem. Physiol. B. 1989;94:1–111. doi: 10.1016/0305-0491(89)90002-3. [DOI] [PubMed] [Google Scholar]
  28. Goda T., Raul F., Gosse F., Koldovsky O. Effects of a high-protein, low-carbohydrate diet on degradation of sucrase-isomaltase in rat jejunoileum. Amer. J. Physiol. 1988;254:G907–G912. doi: 10.1152/ajpgi.1988.254.6.G907. [DOI] [PubMed] [Google Scholar]
  29. Goda T., Yamada K., Bustamante S., Koldovsky O. Dietary-induced rapid decrease of microvillar carbohydrase activity in rat jejuno-ileum. Amer. J. Physiol. 1983;245:G418–G423. doi: 10.1152/ajpgi.1983.245.3.G418. [DOI] [PubMed] [Google Scholar]
  30. Goda T., Yasutake H., Suzuki Y., Takase S., Koldovsky O. Diet-induced changes in gene expression of lactase in rat jejunum. Amer. J. Physiol. 1995;31:G1066–G1073. doi: 10.1152/ajpgi.1995.268.6.G1066. [DOI] [PubMed] [Google Scholar]
  31. Hampson D.J., Kidder D.E. Influence of creep feeding and weaning on brush border enzyme activities in the piglet small intestine. Res. Vet. Sci. 1986;40:24–31. [PubMed] [Google Scholar]
  32. Hansen G.H., Nielschristiansen L.L., Poulsen M.D., Noren O., Sjostrom H. Distribution of three microvillar enzymes along the small intestinal crypt-villus axis. J. Submicrosc. Cytol. Pathol. 1994;26:453–460. [PubMed] [Google Scholar]
  33. Hauri H.P., Sterchi E.E., Bienz D., Fransen J.A.M., Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol. 1985;101:838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Henning S.J. Ontogeny of enzymes in the small intestine. Annu. Rev. Physiol. 1985;47:231–245. doi: 10.1146/annurev.ph.47.030185.001311. [DOI] [PubMed] [Google Scholar]
  35. Hertel S., Heinz F., Vogel M. Hydrolysis of low-molecular-weight oligosaccharides and oligosaccharide alditols by pig intestinal sucrase/isomaltase and glucosidase/maltase. Carbohyd. Res. 2000;326:264–276. doi: 10.1016/s0008-6215(00)00008-2. [DOI] [PubMed] [Google Scholar]
  36. Ishihara R., Taketani S., Sasaitakedatsu M., Kino M., Tokunaga R., Kobayashi Y. Molecular cloning, sequencing and expression of cDNA encoding human trehalase. Gene. 1997;202:69–74. doi: 10.1016/s0378-1119(97)00455-1. [DOI] [PubMed] [Google Scholar]
  37. Kelly D., King T.P., Mcfadyen M., Travis A.J. Effect of lactation on the decline of brush border lactase activity in neonatal pigs. Gut. 1991;32:386–392. doi: 10.1136/gut.32.4.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kelly D., Smyth J.A., McCracken K.J. Digestive development of the early-weaned pig. 1. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the 1st week post-weaning. Brit. J. Nutr. 1991;65:169–180. doi: 10.1079/bjn19910078. [DOI] [PubMed] [Google Scholar]
  39. Kelly D., Smyth J.A., McCracken K.J. Digestive development of the early-weaned pig. 2. Effect of level of food intake on digestive enzyme activity during the immediate post-weaning period. Brit. J. Nutr. 1991;65:181–188. doi: 10.1079/bjn19910079. [DOI] [PubMed] [Google Scholar]
  40. Khokhar S. Dietary fibers - their effects on intestinal digestive enzyme activities. J. Nutr. Biochem. 1994;5:176–180. [Google Scholar]
  41. Kidder D.E., Manners M.J. The level and distribution of carbohydrases in the small intestine mucosa of pigs from 3 weeks of age to maturity. Brit. J. Nutr. 1980;43:141–153. doi: 10.1079/bjn19800073. [DOI] [PubMed] [Google Scholar]
  42. Krasinski S.D., Estrada G., Yeh K.Y., Yeh M., Traber P.G., Verhave M., Rings E.H.H.M., Büller H.A., Montgomery R.K., Grand R.J. Lactase-phlorizin hydrolase and sucrase-isomaltase biosynthesis is transcriptional regulated during postnatal development in rat small intestine. Amer. J. Physiol. 1994;267:G584–G594. doi: 10.1152/ajpgi.1994.267.4.G584. [DOI] [PubMed] [Google Scholar]
  43. Le Huërou I., Guilloteau P., Wicker C., Mouats A., Chayvialle J.A., Bernard C., Burton J., Toullec R., Puigserver A. Activity distribution of seven digestive enzymes along small intestine in calves during development and weaning. Dig. Dis. Sci. 1992;37:40–46. doi: 10.1007/BF01308340. [DOI] [PubMed] [Google Scholar]
  44. Le Huërou-Luron I., Peiniau J., Guilloteau P., Aumaitre A. Are the activities of intestinal peptidases age- and diet-dependent in piglets? In: Lindberg J.E., Ogle B., editors. Digestive physiology of pigs. CABI Publishing; Oxon (UK): 2001. pp. 20–22. [Google Scholar]
  45. Leeper L.L., Henning S.J. Development and tissue distribution of sucrase-isomaltase mRNA in rats. Amer. J. Physiol. 1990;258:G52–G58. doi: 10.1152/ajpgi.1990.258.1.G52. [DOI] [PubMed] [Google Scholar]
  46. Lisanti M.P., Rodriguez Boulan E. Glycosphingolipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends Biochem. Sci. 1989;15:113–118. doi: 10.1016/0968-0004(90)90195-h. [DOI] [PubMed] [Google Scholar]
  47. Lizardo R., Peiniau J., Aumaitre A. Effect of sorghum on performance, digestibility of dietary components and activities of pancreatic and intestinal enzymes in the weaned piglet. Anim. Feed Sci. Tech. 1995;56:67–82. [Google Scholar]
  48. Manners M.J., Stevens J.A. Changes from birth to maturity in the pattern of distribution of lactase and sucrase activity in the mucosa of the small intestine of pigs. Brit. J. Nutr. 1972;28:113–127. doi: 10.1079/bjn19720014. [DOI] [PubMed] [Google Scholar]
  49. Marion J., Le Huërou-Luron I., Thomas F., Romé V., Le Dividich J. Weaning of supernumerary piglets at 7d of age: effects on digestive function. Preliminary results. In: Lindberg J.E., Ogle B., editors. Digestive physiology of pigs. CABI Publishing; Oxon (UK): 2001. pp. 34–36. [Google Scholar]
  50. Miller B.G., James P.S., Smith M.W., Bourne F.J. Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. J. Agr. Sci. 1986;107:579–589. [Google Scholar]
  51. Naim H.Y. Molecular and cellular aspects and regulation of intestinal lactase-phlorizin hydrolase. Histol. Histopathol. 2001;16:553–561. doi: 10.14670/HH-16.553. [DOI] [PubMed] [Google Scholar]
  52. Naim H.Y., Sterchi E.E., Lentze M.J. Structure, biosynthesis, and glycosylation of human small intestinal maltase-glucoamylase. J. Biol. Chem. 1988;263:19709–19717. [PubMed] [Google Scholar]
  53. Naim H.Y., Jacob R., Naim H., Sambrook J.F., Gething M.J.H. The pro region of human intestinal lactase-phlorizin hydrolase. J. Biol. Chem. 1994;269:26933–26943. [PubMed] [Google Scholar]
  54. Noren O., Dabelsteen E., Hoyer P.E., Olsen J., Sjostrom H., Hansen G.H. Onset of transcription of the aminopeptidase N (leukemia antigen CD 13) gene at the crypt/villus transition zone during rabbit enterocytic differentiation. FEBS Lett. 1989;259:107–112. doi: 10.1016/0014-5793(89)81506-6. [DOI] [PubMed] [Google Scholar]
  55. Noren O., Sjostrom H., Cowell G.M., Tranum-Jensen J., Hansen O.C., Welinder K.G. Pig intestinal micruvillar maltase-glucoamylase. Structure and membrane insertion. J. Biol. Chem. 1986;261:12306–12309. [PubMed] [Google Scholar]
  56. Nsi-Emvo E., Foltzer-Jourdaine C., Raul F., Gosse F., Duluc I., Koch B., Freund J.N. Precocious and reversible expression of sucrase-isomaltase unrelated to intestinal cell turnover. Amer. J. Physiol. 1994;266:G568–G575. doi: 10.1152/ajpgi.1994.266.4.G568. [DOI] [PubMed] [Google Scholar]
  57. Nunez M.C., Bueno J.D., Ayudarte M.V.A.A., Rios A., Suarez M.D., Gil A. Dietary restriction induces biochemical and morphometric changes in small intestine of nursing piglets. J. Nutr. 1996;126:933–944. doi: 10.1093/jn/126.4.933. [DOI] [PubMed] [Google Scholar]
  58. Petersen Y.M., Burrin D.G., Sangild P.T. GLP-2 has differential effects on small intestine growth and function in fetal and neonatal pigs. Amer. J. Physiol. 2001;281:R1986–R1993. doi: 10.1152/ajpregu.2001.281.6.R1986. [DOI] [PubMed] [Google Scholar]
  59. Rings E.H.H., Deboer P.A.J., Moorman A.F.M., Vanbeers E.H., Dekker J., Montgomery R.K., Grand R.J., Buller H.A. Lactase gene expression during early development of rat small intestine. Gastroenterology. 1992;103:1154–1161. doi: 10.1016/0016-5085(92)91498-s. [DOI] [PubMed] [Google Scholar]
  60. Sangild, P. T., Cranwell, P. D., Sorensen, H., Mortensen, K., Noren, O., Wetteberg, L., Sjostrom, H., 1991. Development of intestinal disaccharidases, intestinal peptidases and pancreatic proteases in sucking pigs. The effects of age and ACTH treatment. In: Verstegen, M. W. A., Huisman, J., den Hartog, L. A. (Eds.), Digestive physiology of pigs. EAAP-Publication N 54, Pudoc Wageningen (NL), pp. 73–78.
  61. Semenza G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu. Rev. Cell. Biol. 1986;2:255–313. doi: 10.1146/annurev.cb.02.110186.001351. [DOI] [PubMed] [Google Scholar]
  62. Sanderson I.R. Dietary regulation of genes expressed in the developing intestinal epithelium. Amer. J. Clin. Nutr. 1998;68:999–1005. doi: 10.1093/ajcn/68.5.999. [DOI] [PubMed] [Google Scholar]
  63. Shinohara H., Goda T., Takase S., Sugawa-Katayma Y. Feeding medium-chain triglycerides to rats decreases degradation of sucrase-isomaltase complex in the jejunum. J. Nutr. 1993;123:1161–1167. doi: 10.1093/jn/123.6.1161. [DOI] [PubMed] [Google Scholar]
  64. Smith M.W. Diet effects on enterocyte development. Proc. Nutr. Soc. 1992;51:173–178. doi: 10.1079/pns19920027. [DOI] [PubMed] [Google Scholar]
  65. Smith M.W., Meyer G., James P.S., Cremaschi D. Cellular aspects of intestinal adaptation. In: Smith M.W., Sepulveda F.V., editors. Adaptation and development of gastrointestinal function. Manchester University Press; Manchester (UK): 1989. pp. 64–75. [Google Scholar]
  66. Takesue Y., Yokota K., Nishi Y., Taguchi R., Ikewasa H. Solubilization of trehalase from rabbit renal and intestinal brush-border membranes by a phosphatidylinositol-specific phospholipase C. FEBS Lett. 1986;201:5–8. doi: 10.1016/0014-5793(86)80560-9. [DOI] [PubMed] [Google Scholar]
  67. Tang M., Laarveld B., Vankessel A.G., Hamilton D.L., Estrada A., Patience J.F. Effect of segregated early weaning on postweaning small intestinal development in pigs. J. Anim. Sci. 1999;77:3191–3200. doi: 10.2527/1999.77123191x. [DOI] [PubMed] [Google Scholar]
  68. Tarvid, I., Cranwell, P. D., Ma, L., Vavala, R., 1994. The early postnatal development of protein digestion in pigs. II- Small intestinal enzymes. In: Souffrant, W. B., Hagemeister, H. (Eds.), Digestive physiology in pigs. EAAP-Publication No 80, Dummerstorf (G), pp. 181–184.
  69. Tivey D.R., Smith M.W. Cytochemical analysis of single villus peptidase activities in pig intestine during neonatal development. Histochem. J. 1989;21:601–608. doi: 10.1007/BF01753361. [DOI] [PubMed] [Google Scholar]
  70. Traber P.G. Regulation of sucrase-isomaltase gene expression along the crypt-villus axis of rat small intestine. Biochem. Biophys. Res. Commun. 1990;173:765–773. doi: 10.1016/s0006-291x(05)80853-8. [DOI] [PubMed] [Google Scholar]
  71. Traber P.G., Yu L., Wu G.D., Judge T.A. Sucrase-isomaltase gene expression along crypt-villus axis of human small intestine is regulated at level of messenger RNA abundance. Amer. J. Physiol. 1992;262:G123–G130. doi: 10.1152/ajpgi.1992.262.1.G123. [DOI] [PubMed] [Google Scholar]
  72. Young G.P., Das L. Influence of duodenal secretion and its components on release and activities of human brush border enzymes. Biochim. Biophys. Acta. 1990;1022:393–400. doi: 10.1016/0005-2736(90)90290-5. [DOI] [PubMed] [Google Scholar]

Articles from Biology of Growing Animals are provided here courtesy of Elsevier

RESOURCES