The content is available as a PDF (1.9 MB).
REFERENCES
- Arumugham R.G., Tanzer M.L. Swainsonine inhibits macrophage receptor-mediated uptake and degradation of a mannosyl-oligosaccharide. Biochem. Biophys. Res. Commun. 1983;116:922–930. doi: 10.1016/s0006-291x(83)80230-7. [DOI] [PubMed] [Google Scholar]
- Arumugham R.G., Tanzer M.L. Abnormal glycosylation of human cellular fibronectin in the presence of swainsonine. J. Biol. Chem. 1983;258:11883–11889. [PubMed] [Google Scholar]
- Atkinson P.H., Lee J.T. Cotranslational excision of α-glucose and α-mannose in nascent vesicular stomatitis virus G protein. J. Cell Biol. 1984;98:2245–2249. doi: 10.1083/jcb.98.6.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bischoff, J. (1985). The identification and characterization of an α-mannosidase in the endoplasmic reticulum of rat liver. Ph.D. dissertation, Washington University, St. Louis, Missouri.
- Bischoff J., Kornfeld R. Evidence for an α-mannosidase in endoplasmic reticulum of rat liver. J. Biol. Chem. 1983;258:7907–7910. [PubMed] [Google Scholar]
- Bischoff J., Kornfeld R. The effect of 1-deoxymannojirimycin on rat liver α-mannosidases. Biochem. Biophys. Res. Commun. 1984;125:324–331. doi: 10.1016/s0006-291x(84)80371-x. [DOI] [PubMed] [Google Scholar]
- Bischoff J., Kornfeld R. The soluble form of rat liver α-mannosidase is immunologically related to the endoplasmic reticulum membrane α-mannosidase. J. Biol. Chem. 1986;261:4758–4765. [PubMed] [Google Scholar]
- Bischoff J., Liscum L., Kornfeld R. The use of 1-deoxymannojirimycin to evaluate the role of various α-mannosidases in oligosaccharide processing in intact cells. J. Biol. Chem. 1986;261:4766–4774. [PubMed] [Google Scholar]
- Bosch J.V., Tlusty A., McDowell W., Legler G., Schwarz R.T. The mannosidase inhibitors 1-deoxymannojirimycin and swainsonine have no effect on the biosynthesis and infectivity of Rous sarcoma virus. Virology. 1985;143:342–346. doi: 10.1016/0042-6822(85)90122-9. [DOI] [PubMed] [Google Scholar]
- Brada D., Dubach U. Isolation of a homogeneous glucosidase II from pig kidney microsomes. Eur. J. Biochem. 1984;141:149–156. doi: 10.1111/j.1432-1033.1984.tb08169.x. [DOI] [PubMed] [Google Scholar]
- Breitfeld P.P., Rup D., Schwartz A.L. Influence of the N-linked oligosaccharides on the biosynthesis, intracellular routing, and function of the human asialoglycoprotein receptor. J. Biol. Chem. 1984;259:10414–10421. [PubMed] [Google Scholar]
- Brown P.H., Hickman S. Oligosaccharide processing at individual glycosylation sites on MOPC 104E immunoglobulin M. J. Biol. Chem. 1986;261:2575–2582. [PubMed] [Google Scholar]
- Burke B., Matlin K., Bause E., Legler G., Peyrieras N., Ploegh H. Inhibition of N-linked oligosaccharide trimming does not interfere with surface expression of certain integral membrane proteins. EMBO J. 1984;3:551–556. doi: 10.1002/j.1460-2075.1984.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns D.M., Touster O. Purification and characterization of glucosidase II, an endoplasmic reticulum hydrolase involved in glycoprotein biosynthesis. J. Biol. Chem. 1982;257:9991–10000. [PubMed] [Google Scholar]
- Byrd J.C., Tarentino A.L., Maley F., Atkinson P.H., Trimble R.B. Glycoprotein synthesis in yeast. Identification of Man8GlcNAc2 as an essential intermediate in oligosaccharide processing. J. Biol. Chem. 1982;257:14657–14666. [PubMed] [Google Scholar]
- Cheng S.H., Malcolm S., Pemble S., Winchester B. Purification and comparison of the structure of human liver acidic α-D-mannosidases A and B. Biochem. J. 1986;233:65–72. doi: 10.1042/bj2330065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin D.L., Luskey K.L., Anderson R.G., Faust J.R., Goldstein J.L., Brown M.S. Appearance of crystalloid endoplasmic reticulum in compactin-resistant Chinese hamster cells with a 500-fold increase in 3-hydroxy-3-methyglutaryl-coenzyme A reductase. Proc. Natl. Acad. Sci. U.S.A. 1982;79:1185–1189. doi: 10.1073/pnas.79.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung K., Shepherd V.L., Stahl P. Swainsonine and castanospermine blockade of mannose glycoprotein uptake by macrophages. Apparent inhibition of receptor-mediated endocytosis by endogenous ligands. J. Biol. Chem. 1984;259:14637–14641. [PubMed] [Google Scholar]
- Cohen R.E., Ballou C.E. Linkage and sequence analysis of mannose-rich glycoprotein core oligosaccharides by proton nuclear magnetic resonance spectroscopy. Biochemistry. 1980;19:4345–4358. doi: 10.1021/bi00559a031. [DOI] [PubMed] [Google Scholar]
- Colegate S.M., Dorling P.R., Huxtable C.R. A spectroscopic investigation of swainsonine: An α-mannosidase inhibitor isolated from Swainsona canescens. Aust. J. Chem. 1979;32:2257–2264. [Google Scholar]
- Daniel P.F., Warren C.D., James L.F. Swainsonine-induced oligosaccharide excretion in sheep. Time dependent changes in oligosaccharide profile. Biochem. J. 1984;221:601–607. doi: 10.1042/bj2210601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danielsen E.M., Cowell G.M., Noren O., Sjostrom H. Biosynthesis of intestinal microvillar proteins. The effect of swainsonine on posttranslational processing of aminopeptidase N. Biochem. J. 1983;216:325–331. doi: 10.1042/bj2160325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeDuve C., Pressman B.C., Gianetto R., Wattiaux R., Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 1955;60:604–621. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dewald B., Touster O. A new α-D-mannosidase occurring in Golgi membranes. J. Biol. Chem. 1973;248:7223–7233. [PubMed] [Google Scholar]
- Docherty P.A., Kuranda M.J., Aronson N.N., BeMiller J.N., Myers R.W., Bohn J.A. Effect of α-D-mannopyranosylmethyl-p-nitrophenyltriazene on hepatic degradation and processing of the N-linked oligosaccharide chains of α1-acid glycoprotein. J. Biol. Chem. 1986;261:3457–3463. [PubMed] [Google Scholar]
- Dorling P.R., Huxtable C.R., Vogel P. Lysosomal storage in Swainsona spp. toxicosis: An induced mannosidosis. Neuropathol. Appl. Neurobiol. 1978;4:285–295. doi: 10.1111/j.1365-2990.1978.tb00547.x. [DOI] [PubMed] [Google Scholar]
- Dorling P.R., Huxtable C.R., Colegate S.M. Inhibition of lysosomal α-mannosidase by swainsonine, an indolizidine alkaloid isolated from Swainsona canescens. Biochem. J. 1980;191:649–651. doi: 10.1042/bj1910649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunphy W.G., Rothman J.E. Compartmental organization of the Golgi stack. Cell. 1985;42:13–21. doi: 10.1016/s0092-8674(85)80097-0. [DOI] [PubMed] [Google Scholar]
- Dunphy W.G., Fries E., Urbani L.J., Rothman J.E. Early and late functions associated with the Golgi apparatus reside in distinct compartments. Proc. Natl. Acad. Sci. U.S.A. 1981;78:7453–7457. doi: 10.1073/pnas.78.12.7453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duronio V., Jacobs S., Cuatrecasas P. Complete glycosylation of the insulin and insulin-like growth factor I receptors is not necessary for their biosynthesis and function. J. Biol. Chem. 1986;261:970–975. [PubMed] [Google Scholar]
- Elbein A.D., Solf R., Dorling P.R., Vosbeck K. Swainsonine: An inhibitor of glycoprotein processing. Proc. Natl. Acad. Sci. U.S.A. 1981;78:7393–7397. doi: 10.1073/pnas.78.12.7393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elbein A.D., Dorling P.R., Vosbeck K., Horisberger M. Swainsonine prevents the processing of the oligosaccharide chains of influenza virus hemagglutinin. J. Biol. Chem. 1982;257:1573–1576. [PubMed] [Google Scholar]
- Elbein A.D., Legler G., Tlusty A., McDowell W., Schwarz R. The effect of deoxymannojirimycin on the processing of the influenza viral glycoproteins. Arch. Biochem. Biophys. 1984;235:579–588. doi: 10.1016/0003-9861(84)90232-7. [DOI] [PubMed] [Google Scholar]
- Esmon B., Esmon P.C., Schekman R. Early steps in processing of yeast glycoproteins. J. Biol. Chem. 1984;259:10322–10327. [PubMed] [Google Scholar]
- Farquhar M.G. Progress in unraveling pathways of Golgi traffic. Annu. Rev. Cell Biol. 1985;1:447–488. doi: 10.1146/annurev.cb.01.110185.002311. [DOI] [PubMed] [Google Scholar]
- Forsee W.T., Schutzbach J.S. Purification and characterization of a phospho-lipid-dependent α-mannosidase from rabbit liver. J. Biol. Chem. 1981;256:6577–6582. [PubMed] [Google Scholar]
- Forsee W.T., Schutzbach J.S. Interaction of α-1,2-mannosidase with anionic phospholipids. Eur. J. Biochem. 1983;136:577–582. doi: 10.1111/j.1432-1033.1983.tb07779.x. [DOI] [PubMed] [Google Scholar]
- Forsee W.T., Springfield J.D., Schutzbach J.S. Effect of phospholipids on α-1,2-mannosidase activity. J. Biol. Chem. 1982;257:9963–9967. [PubMed] [Google Scholar]
- Fuhrmann U., Bause E., Legler G., Ploegh H. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Nature (London) 1984;307:755–758. doi: 10.1038/307755a0. [DOI] [PubMed] [Google Scholar]
- Gabel C.A., Bergmann J.E. Processing of the asparagine-linked oligosaccharides of secreted and intracellular forms of the vesicular stomatitis virus G protein: In vivo evidence of Golgi apparatus compartmentalization. J. Cell Biol. 1985;101:460–469. doi: 10.1083/jcb.101.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godelaine D., Spiro M.J., Spiro R.G. Processing of the carbohydrate units of thyroglobulin. J. Biol. Chem. 1981;256:10161–10168. [PubMed] [Google Scholar]
- Goldberg D.E., Kornfeld S. Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation. J. Biol. Chem. 1983;258:3159–3165. [PubMed] [Google Scholar]
- Gross V., Tran-Thi T., Vosbeck K., Heinrich P.C. Effect of swainsonine on the processing of the asparagine-linked carbohydrate chains of α1-antitrypsin in rat hepatocytes. Evidence for the formation of hybrid oligosaccharides. J. Biol. Chem. 1983;258:4032–4036. [PubMed] [Google Scholar]
- Hakimi J., Atkinson P.H. Glycosylation of intracellular Sindbis virus glycoproteins. Biochemistry. 1982;21:2140–2145. doi: 10.1021/bi00538a024. [DOI] [PubMed] [Google Scholar]
- Harpaz N., Schachter H. Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:α-D-mannoside β2-N-acetylglucosaminlytransferase I. Separation from UDP-N-acetylglucosamine:α-D-mannoside α2-N-acetylglucosaminlytransferase II, partial purification, and substrate specificity. J. Biol. Chem. 1980;255:4885–4893. [PubMed] [Google Scholar]
- Harpaz N., Schachter H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine:α-D-mannosidase β2-N-acetylglucosaminyltransferase I. J. Biol. Chem. 1980;255:4894–4902. [PubMed] [Google Scholar]
- Hercz A., Harpaz N. Characterization of the oligosaccharides of the liver Z variant α1-antitrypsin. Can. J. Biochem. 1980;58:644–648. doi: 10.1139/o80-089. [DOI] [PubMed] [Google Scholar]
- Hettkamp H., Legler G., Bause E. Purification by affinity chromotography of glucosidase 1, an endoplasmic reticulum hydrolase involved in the procession of asparagine-linked oligosaccharides. Eur. J. Biochem. 1984;142:85–90. doi: 10.1111/j.1432-1033.1984.tb08253.x. [DOI] [PubMed] [Google Scholar]
- Hickman S., Theodorakis J.L., Greco J.M., Brown P.H. Processing of MOPC 315 immunoglobulin A oligosaccharides: Evidence for endoplasmic reticulum and trans Golgi α-1,2-mannosidase activity. J. Cell Biol. 1984;98:407–416. doi: 10.1083/jcb.98.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hino M., Nakayama O., Tsurumi Y., Adachi K., Shibata T., Terano H., Kohsaka M., Aoki H., Imanaki H. Studies of an immunomodulator, swainsonine. I. Enhancement of immune response by swainsonine in vitro. J. Antibiot. 1985;38:926–935. doi: 10.7164/antibiotics.38.926. [DOI] [PubMed] [Google Scholar]
- Hino Y., Rothman J.E. Glucosidase II, a glycoprotein of the endoplasmic reticulum membrane. Proteolytic cleavage into enzymatically active fragments. Biochemistry. 1985;24:800–805. doi: 10.1021/bi00324a040. [DOI] [PubMed] [Google Scholar]
- Hsieh P., Rosner M.R., Robbins P.W. Selective cleavage by endo-β-N-acetylglucosaminidase H at individual glycosylation sites of Sindbis virion envelope glycoproteins. J. Biol. Chem. 1983;258:2555–2561. [PubMed] [Google Scholar]
- Hsieh P., Rosner M.R., Robbins P.W. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins. J. Biol. Chem. 1983;258:2548–2554. [PubMed] [Google Scholar]
- Hubbard S.C., Ivatt R.J. Synthesis and processing of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
- Jelinek-Kelly S., Akiyama T., Saunier B., Tkacz J.S., Herscovics A. Characterization of a specific α-mannosidase involved in oligosaccharide processing in Saccharomyces cerevisiae. J. Biol. Chem. 1985;260:2253–2257. [PubMed] [Google Scholar]
- Kabcenell A.K., Atkinson P.H. Processing of the rough endoplasmic reticulum membrane glycoproteins of rotavirus SA11. J. Cell Biol. 1985;101:1270–1280. doi: 10.1083/jcb.101.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang M.S., Elbein A.D. Alterations in the structure of the oligosaccharide of vesicular stomatitis virus G protein by swainsonine. J. Virol. 1983;46:60–69. doi: 10.1128/jvi.46.1.60-69.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kedersha N.L., Tkacz J.S., Berg R.A. Characterization of the oligosaccharides of prolyl hydroxylase, a microsomal glycoprotein. Biochemistry. 1985;24:5952–5960. doi: 10.1021/bi00342a040. [DOI] [PubMed] [Google Scholar]
- Kilker R.D., Saunier B., Tkacz J.S., Herscovics A. Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal glucose from the oligosaccharide Glc3Man9GlcNAc2. J. Biol. Chem. 1981;256:5299–5303. [PubMed] [Google Scholar]
- Kino T., Inamura N., Nakahara K., Kiyoto S., Goto T., Terano H., Kohsaka M., Aoki H., Imanaka H. Studies on an immunomodulator, swainsonine. J. Antibiot. 1985;38:936–940. doi: 10.7164/antibiotics.38.936. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
- Kornfeld S., Li E., Tabas I. The synthesis of complex-type oligosaccharides. J. Biol. Chem. 1978;253:7771–7778. [PubMed] [Google Scholar]
- Kreibich G., Ulrich B.L., Sabatini D.D. Proteins of rough microsomal membranes related to ribosome binding. J. Cell Biol. 1978;77:464–487. doi: 10.1083/jcb.77.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liscum L., Cummings R.D., Anderson R.G.W., De Martino G.N., Goldstein J.L., Brown M.S. 3-Hydroxy-3-methylglutaryl-CoA reductase: A transmembrane glycoprotein of the endoplasmic reticulum with N-linked “high-mannose” oligosaccharides. Proc. Natl. Acad. Sci. U.S.A. 1983;80:7165–7169. doi: 10.1073/pnas.80.23.7165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lodish H.F., Kong N. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J. Cell Biol. 1984;98:1720–1729. doi: 10.1083/jcb.98.5.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh C.A., Gourlay G.C. Evidence for a non-lysosomal α-mannosidase in rat liver homogenates. Biochim. Biophys, Acta. 1971;235:142–148. doi: 10.1016/0005-2744(71)90041-6. [DOI] [PubMed] [Google Scholar]
- Matsuura F.H., Nunez A., Grabowski G.A., Sweeley C.C. Structure studies of urinary oligosaccharides for patients with mannosidosis. Arch. Biochem. Biophys. 1981;207:337–353. doi: 10.1016/0003-9861(81)90041-2. [DOI] [PubMed] [Google Scholar]
- Moremen K.W., Touster O. Biosynthesis and modification of Golgi mannosidase II in HeLa and 3T3 cells. J. Biol. Chem. 1985;260:6654–6662. [PubMed] [Google Scholar]
- Moremen K.W., Touster O. Topology of mannosidase I1 in rat liver Golgi membranes and release of the catalytic domain by selective proteolysis. J. Biol. Chem. 1986;261:10945–10951. [PubMed] [Google Scholar]
- Moremen K.W., Touster O. A novel purification of the catalytic domain of Golgi mannosidase II: comparison with the intact enzyme. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1986;45:1680. [PubMed] [Google Scholar]
- Nauerth A., Lemansky P., Hasilik A., von Figura K., Bause E., Legler G. Cell type dependent inhibitor of transport of cathepsin D in HepG2 cells and fibroblasts exposed to deoxymannonorjirimycin and deoxynorjirimycin. Biol. Chem. Hoppe-Seyler. 1985;366:1009–1016. doi: 10.1515/bchm3.1985.366.2.1009. [DOI] [PubMed] [Google Scholar]
- Novikoff P.M., Tulsiani D.R.P., Touster O., Yam A., Novikoff A.B. Immunocytochemical localization of α-D-mannosidase II in the Golgi apparatus of rat liver. Proc. Natl. Acad. Sci. U.S.A. 1983;80:4364–4368. doi: 10.1073/pnas.80.14.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opheim D.J., Touster O. Lysosomal α-D-mannosidase of rat liver. J. Biol. Chem. 1978;253:1017–1023. [PubMed] [Google Scholar]
- Oppenheimer C.L., Hill R.L. Purification and characterization of a rabbit liver α1–3 mannoside β1–2 N-acetylglucosaminyltransferase. J. Biol. Chem. 1981;256:799–804. [PubMed] [Google Scholar]
- Peyrieras N., Bause E., Legler G., Vasilov R., Claeson L., Peterson P., Ploegh H. Effects of the glucosidase inhibitors norjirimycin and deoxynorjirimycin on the biosynthesis of membrane and secretory glycoproteins. EMBO J. 1983;2:823–832. doi: 10.1002/j.1460-2075.1983.tb01509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powell L.D., Bause E., Legler G., Molyneux R.J., Hart G.W. Influence of asparagine-linked oligosaccharides on tumor cell recognition in the mixed lymphocyte reaction. J. Immunol. 1985;135:714–724. [PubMed] [Google Scholar]
- Repp R., Tamura T., Boschek C.B., Wege H., Schwarz R., Niemann H. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of corona virus particles. J. Biol. Chem. 1985;260:15873–15879. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rizzolo L.J., Kornfeld R. Posttranslational modifications of a growth hormone-HA hybrid protein that accumulates in a pre-Golgi region of the endoplasmic reticulum. J. Cell. Biol. 1987;105:2672. [Google Scholar]
- Romero P.A., Herscovics A. Transfer of nonglucosylated oligosaccharide from lipid to protein in a mammalian cell. J. Biol. Chem. 1986;261:15936–15940. [PubMed] [Google Scholar]
- Rosenfeld M.G., Marcantonio E.E., Hakimi J., Ort V.M., Atkinson D.H., Sabatini D., Kreibich G. Biosynthesis and processing of ribophorins in the endoplasmic reticulum. J. Cell Biol. 1984;99:1076–1082. doi: 10.1083/jcb.99.3.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth J., Berger E.G. Immunocytochemical localization of galactosyltransferase in HeLa: Codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J. Cell Biol. 1982;93:223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman J.E. The Golgi apparatus: Two organelles in tandem. Science. 1981;213:1212–1220. doi: 10.1126/science.7268428. [DOI] [PubMed] [Google Scholar]
- Savvidou G., Klein M., Grey A.A., Dorrington K.J., Carver J.D. Possible role for peptide-oligosaccharide interactions in differential oligosaccharide processing at asparagine-107 of the light chain and asparagine-297 of the heavy chain in a monoclonal IgGIK. Biochemistry. 1984;23:3736–3740. doi: 10.1021/bi00311a026. [DOI] [PubMed] [Google Scholar]
- Schachter H., Narasimhan S., Gleeson P., Vella G.J., Brockhausen I. Oligosaccharide branching of glycoproteins: Biosynthetic mechanisms and possible biological functions. Philos. Trans. R. Soc. London, Ser. B. 1982;300:145–159. doi: 10.1098/rstb.1982.0162. [DOI] [PubMed] [Google Scholar]
- Schachter H., Narasimhan S., Gleeson P., Vella G. Control of branching during the biosynthesis of asparagine-linked oligosaccharides. Can. J. Biochem. Cell Biol. 1983;61:1049–1066. doi: 10.1139/o83-134. [DOI] [PubMed] [Google Scholar]
- Schmidt J.A., Beug H., Hayman M.J. Effects of inhibitors of glycoprotein processing on the synthesis and biological activity of the erbB oncogene. EMBO J. 1985;4:105–112. doi: 10.1002/j.1460-2075.1985.tb02323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweden J., Legler G., Bause E. Purification and characterization of a neutral processing mannosidase from calf liver acting on (Man)9(GlcNAc)2 oligosaccharides. Eur. J. Biochem. 1986;157:563–570. doi: 10.1111/j.1432-1033.1986.tb09703.x. [DOI] [PubMed] [Google Scholar]
- Sheares B.T., Robbins P.W. Glycosylation of ovalbumin in a heterologous cell: Analysis of oligosaccharide chains of the cloned glycoprotein in mouse L cells. Proc. Natl. Acad. Sci. U.S.A. 1986;83:1993–1997. doi: 10.1073/pnas.83.7.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shoup V.A., Touster O. Purification and characterization of the α-D-mannosidase of rat liver cytosol. J. Biol. Chem. 1976;251:3845–3852. [PubMed] [Google Scholar]
- Soderquist A.M., Carpenter G. Glycosylation of the epidermal growth factor receptor in A-431 cells. The contribution of carbohydrate to receptor function. J. Biol. Chem. 1984;259:12586–12594. [PubMed] [Google Scholar]
- Struck D.K., Lennarz W.J. The function of saccharide-lipids in synthesis of glycoproteins. In: Lennarz W.J., editor. “The Biochemistry of Glycoproteins and Proteoglycans”. Plenum; New York: 1980. pp. 35–83. [Google Scholar]
- Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. III. Identification of an α-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J. Biol. Chem. 1978;253:7779–7786. [PubMed] [Google Scholar]
- Tabas I., Kornfeld S. Purification and characterization of a rat liver Golgi α-mannosidase capable of processing asparagine-linked oligosaccharides. J. Biol. Chem. 1979;254:11655–11663. [PubMed] [Google Scholar]
- Tabas I., Schlesinger S., Kornfeld S. Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of vesicular stomatitis virus G protein and the IgG heavy chain. J. Biol. Chem. 1978;253:716–722. [PubMed] [Google Scholar]
- Tartakoff A., Vassali P. Plasma cell immunoglobulin M molecules. Their biosynthesis, assembly, and intracellular transport. J. Cell Biol. 1979;83:284–299. doi: 10.1083/jcb.83.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trimble R.B., Maley F., Chu F.K. Glycoprotein biosynthesis in yeast. Protein conformation affects processing of high mannose oligosaccharides on carboxypeptidase Y and invertase. J. Biol. Chem. 1983;258:2562–2567. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Touster O. Swainsonine causes the production of hybrid glycoproteins by human skin fibroblasts and rat liver Golgi preparations. J. Biol. chem. 1983;258:7578–7585. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Touster O. Characterization of a novel α-D-mannosidase from rat brain microsomes. J. Biol. Chem. 1985;260:13081–13087. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Touster O. Purification of α1,2-specific mannosidase from rat liver Golgi membranes. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1986;45:1680. [Google Scholar]
- Tulsiani D.R.P., Touster O. Substrate specificities of rat kidney lysosomal and cytosolic α-D-mannosidases and effects of swainsonine suggest a role of the cytosolic enzyme in glycoprotein catabolism. J. Biol. Chem. 1987;262:6506–6514. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Opheim D.J., Touster O. Purification and characterization of α-D-mannosidase from rat liver Golgi membranes. J. Biol. Chem. 1977;252:3227–3233. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Harris T.M., Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J. Biol. Chem. 1982;257:7936–7939. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Hubbard S.C., Robbins D.W., Touster O. α-D-Mannosidases of rat liver Golgi membranes. Mannosidase II is the GlcNAcMan5-cleaving enzyme in glycoprotein biosynthesis and mannosidases IA and IB are the enzymes converting Man9 precursors to Man5 intermediates. J. Biol. Chem. 1982;257:3660–3668. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Broquist H.P., James L.F., Touster O. The similar effects of swainsonine and locoweed on tissue glycosidases and oligosaccharides of the pig indicate that the alkaloid is the principal toxin responsible for the indication of locoism. Arch. Biochem. Biophys. 1984;232:76–85. doi: 10.1016/0003-9861(84)90522-8. [DOI] [PubMed] [Google Scholar]
- Van Diggelen O.P., Galjaard H., Sinnott M.L., Smith P.J. Specific inactivation of lysosomal glycosidases in living fibroblasts by the corresponding glyco-sylmethyl-p-nitrophenyltriazines. Biochem. J. 1980;188:337–343. doi: 10.1042/bj1880337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Diggelen O.P., Schram A.W., Sinnott M.L., Smith P.J., Robinson D., Galjaard H. Turnover of β-galactosidase in fibroblasts from patients with genetically different types of β-galactosidase deficiency. Biochem. J. 1981;200:143–151. doi: 10.1042/bj2000143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner D.D., Mayadas T., Urban-Pickering M., Lewis B.H., Marder V.J. Inhibition of disulfide bonding of von Willebrand protein by monensin results in small, functionally defective multimers. J. Cell Biol. 1985;101:112–120. doi: 10.1083/jcb.101.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitsett J.A., Ross G., Weaver T., Rice W., Dion C., Hull W. Glycosylation and secretion of surfactant-associated glycoprotein A. J. Biol. Chem. 1985;260:15273–15279. [PubMed] [Google Scholar]
- Wickner W.T., Lodish H.F. Multiple mechanisms of protein insertion into and across membranes. Science. 1985;230:400–407. doi: 10.1126/science.4048938. [DOI] [PubMed] [Google Scholar]
- Williams D.B., Lennarz W.J. Control of asparagine-linked oligosaccharide chain processing studies on bovine ribonuclease B. An in vitro system for the processing of exogenous glycoproteins. J. Biol. Chem. 1984;259:5104–5114. [PubMed] [Google Scholar]
- Yamashita K., Tachibana Y., Kobata A. The structures of the galactose-containing sugar chains of ovalbumin. J. Biol. Chem. 1978;253:3862–3869. [PubMed] [Google Scholar]
- Yeo T., Yeo K., Parent J.B., Olden K. Swainsonine treatment accelerates intracellular transport and secretion of glycoproteins in human hepatoma cells. J. Biol. Chem. 1985;260:2565–2569. [PubMed] [Google Scholar]
- Zanetta, J. P., Roussel, G., Dontenwill, M., and Vincendon, G. (1983). Immunohistochemical localization of α-mannosidase during postnatal development of the rat cerebellum. [DOI] [PubMed]
