Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2007 May 9:216–306. doi: 10.1016/B978-012498264-2/50012-8

Mechanisms of Cell and Tissue Damage

Cedric A Mims 1, Anthony Nash 2, John Stephen 3
PMCID: PMC7155570

Abstract

Cell damage has profound effects if it is the endothelial cells of small blood vessels that are involved. When bacteria invade tissues, they almost inevitably cause some damage, and this is also true for fungi and protozoa. Cell and tissue damage are sometimes due to the direct local action of the microorganism and microbial toxins. They either interfere with the transcription, translation, and DNA synthesis or change the permeability of the cell membrane. Some of the indirect damage brought about by these microbes is through inflammation and immune responses. Host cells are destroyed or blood vessels injured as a direct result of the action of microbes or their toxins. Inflammatory materials are liberated from necrotic cells, whatever the cause of the necrosis. Also many bacteria themselves liberate inflammatory products and certain viruses cause living infected cells to release inflammatory mediators. The expression of the immune response necessarily involves a certain amount of inflammation, cell infiltration, lymph node swelling, even tissue destruction. Sometimes they are very severe, leading to serious disease or death, but at other times they play a minimal part in the pathogenesis of disease. Other indirect mechanisms of damage include stress, hemorrhage, placental infection, and tumors.

References

  1. Alouf J.E., Freer J., editors. The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press; London: 1999. [Google Scholar]
  2. Borriello S.P. Pathogenesis of Clostridium difficile infection. J. Antimicrob. Chemother. 1998;41:13–19. doi: 10.1093/jac/41.suppl_3.13. [DOI] [PubMed] [Google Scholar]
  3. Buchmeier M.J. The virology and immunology of lymphocytic choriomeningitis virus infection. Adv. Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  4. Burke B., Desselberger U. Rotavirus pathogenicity. Virology. 1996;218:299–305. doi: 10.1006/viro.1996.0198. [DOI] [PubMed] [Google Scholar]
  5. Casali P., Oldstone M.B.A. Immune complexes in viral infection. Curr. Topics Microb. Immunol. 1983;104:7–48. doi: 10.1007/978-3-642-68949-9_2. [DOI] [PubMed] [Google Scholar]
  6. Dale J.B., Beachey E.H. Epitopes of streptococcal M proteins shared with cardiac myosin. J. Exp. Med. 1985;162:583–591. doi: 10.1084/jem.162.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fitzgerald T.J. Pathogenesis and immunology of Treponema pallidum. Annu. Rev. Microbiol. 1981;35:29–54. doi: 10.1146/annurev.mi.35.100181.000333. [DOI] [PubMed] [Google Scholar]
  8. Fleischer B., Hartwig U. T-lymphocyte stimulation by microbial antigens. In: Fleischer B., editor. Biological Significance of Superantigens. Vol. 55. Karger; Basel: 1992. pp. 36–64. (Chem. Immunol.). [PubMed] [Google Scholar]
  9. Fontaine A., Arondel J., Sansonetti P.J. Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Toxmutant of Shigella dysenteriae-1. Infect. Immun. 1988;56:3099–3109. doi: 10.1128/iai.56.12.3099-3109.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamilton P.J. Disseminated intravascular coagulation: A review. J. Clin. Path. 1977;31:609–619. doi: 10.1136/jcp.31.7.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirst T.R. Cholera toxin and Escherichia coli heat labile enterotoxin. In: Alouf J.E., Freer J., editors. The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press; London: 1999. pp. 104–129. [Google Scholar]
  12. Hormaeche C.E., Penn C.W., Smyth C.J., editors. Molecular Biology of Bacterial Infection. Current Status and Future Perspectives. Cambridge University Press; Cambridge: 1992. (Soc. Gen. Microbiology Symposium 49). [Google Scholar]
  13. Hornick R.B. Typhoid fever: pathogenesis and immunologic control. N. Engl. J. Med. 1970;283:739. doi: 10.1056/NEJM197009242831306. [DOI] [PubMed] [Google Scholar]
  14. Kaper J.B., Morris J.G., Levine M.M. Cholera. Clin. Microbiol. Rev. 1995;8:48–86. doi: 10.1128/cmr.8.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karaolis D.K.R., Somara S., Maneval D.R., Johnson J.A., Kaper J.B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature. 1999;399:375–379. doi: 10.1038/20715. [DOI] [PubMed] [Google Scholar]
  16. Ketley J.M. Pathogenesis of enteric infection by Campylobacter. Microbiology. 1997;143:5–21. doi: 10.1099/00221287-143-1-5. [DOI] [PubMed] [Google Scholar]
  17. Khan S.A. A lethal role for lipid A in Salmonella infections. Molec. Microbiol. 1998;29:571–579. doi: 10.1046/j.1365-2958.1998.00952.x. [DOI] [PubMed] [Google Scholar]
  18. Laforce F.M. Anthrax. Clin. Infect. Dis. 1994;19:1009–1114. doi: 10.1093/clinids/19.6.1009. [DOI] [PubMed] [Google Scholar]
  19. Levin J., van Deventer S.J.H., van der Poll T., Sturk A., editors. Bacterial Endotoxins. Basic Science to Anti-Sepsis Strategies. Vol. 388. John Wiley & Sons Inc.; New York: 1994. (Progress in Clinical and Biological Research). [Google Scholar]
  20. Levin J., Alving C.R., Munford R.S., Redl H., editors. Bacterial Endotoxins. Lipopolysaccharides From Genes to Therapy. Vol. 392. John Wiley & Sons Inc.; New York: 1995. (Progress in Clinical and Biological Research). [Google Scholar]
  21. Lencer W.I., Hirst T.R., Holmes R.K. Membrane traffic and the cellular uptake of cholera toxin. Biochim. Biophys. Acta Molec. Cell Res. 1999;1450:177–190. doi: 10.1016/s0167-4889(99)00070-1. [DOI] [PubMed] [Google Scholar]
  22. Lodge J.M., Bolton A.J., Martin G.D., Osborne M.P., Ketley J.M., Stephen J. A histotoxin produced by Salmonella. J. Med. Microbiol. 1999;48:811–818. doi: 10.1099/00222615-48-9-811. [DOI] [PubMed] [Google Scholar]
  23. Lundgren O., Jodal M. The enteric nervous system and cholera toxin-induced secretion. Comp. Biochem. Physiol. A. 1997;118:319–327. doi: 10.1016/s0300-9629(96)00312-x. [DOI] [PubMed] [Google Scholar]
  24. Mathan M.M., Chandy G., Mathan V.I. Ultrastructural changes in the upper small intestinal mucosa in patients with cholera. Gastroenterology. 1995;109:422–430. doi: 10.1016/0016-5085(95)90329-1. [DOI] [PubMed] [Google Scholar]
  25. McGee Z.A. Pathogenic mechanism of Neisseria gonor- rhoeae: observations on damage to human fallopian tubes in organ cultures by gonococci of colony Type I or Type 4. J. Infect. Dis. 1981;143:413–422. doi: 10.1093/infdis/143.3.413. [DOI] [PubMed] [Google Scholar]; McGee Z.A. Pathogenic mechanism of Neisseria gonor-rhoeae: observations on damage to human fallopain tubes in organ cultures by gonococci of colony Type I or Type 4. J. Infect. Dis. 1981;143:432–439. doi: 10.1093/infdis/143.3.413. [DOI] [PubMed] [Google Scholar]
  26. Mims C.A. Rift Valley Fever virus in mice VI: Histological changes in the liver in relation to virus multiplication. Austral. J. Exp. Biol. Med. Sci. 1957;35:595. doi: 10.1038/icb.1957.61. [DOI] [PubMed] [Google Scholar]
  27. Mims C.A. Viral aetiology of diseases of obscure origin. Brit. Med. Bull. 1985;41:63–69. doi: 10.1093/oxfordjournals.bmb.a072027. [DOI] [PubMed] [Google Scholar]
  28. Nataro J.P., Kaper J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998;11:142–201. doi: 10.1128/cmr.11.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Olsnes S., Wesche J., Falnes P.Ø. Binding, uptake, routing and translocation of toxins with intracellular sites of action. In: Alouf J.E., Freer J., editors. The Comprehensive Sourcebook of Bacterial Protein Toxins'. Academic Press; London: 1999. pp. 73–93. [Google Scholar]
  30. Osborne M.P., Haddon S.J., Worton K.J., Spencer A.J., Starkey W.G., Thornber D., Stephen J. Rotavirus-induced changes in the microcirculation of intestinal villi of neonatal mice in relation to the induction and persistence of diarrhea. J. Pediatr. Gastroenterol. Nutr. 1991;12:111–120. doi: 10.1097/00005176-199101000-00021. [DOI] [PubMed] [Google Scholar]
  31. Poewe W., Schelosky L., Kleedorfer B., Heinen F., Wagner M., Deuschl G. Treatment of spasmodic torticollis with local injections of botulinum toxin. J. Neurol. 1992;239:21–25. doi: 10.1007/BF00839206. [DOI] [PubMed] [Google Scholar]
  32. Raudin J.I. Pathogenesis of diseases caused by Entamoeba histolytica: studies of adherence, secreted toxins and contact-dependent cytolysis. Rev. Infect. Dis. 1986;8:247–260. doi: 10.1093/clinids/8.2.247. [DOI] [PubMed] [Google Scholar]
  33. Rodriguez M., von Wedel R.J., Garrett R.S. Pituitary dwarfism in mice persistently infected with lymphocytic choriomeningitis virus. Lab. Invest. 1983;49:48. [PubMed] [Google Scholar]
  34. Schiavo G., Benfenati F., Poulain B., Rossetto O., de Laureto P.P., DasGupta B.R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359:832–833. doi: 10.1038/359832a0. [DOI] [PubMed] [Google Scholar]
  35. Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L., Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J. 1992;11:3577–3583. doi: 10.1002/j.1460-2075.1992.tb05441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Silva T.M.J., Schleupner M.A., Tacket C.O., Steiner T.S., Kaper J.B., Edelman R., Guerrant R.L. New evidence for an inflammatory component in diarrhea caused by selected new, live attenuated cholera vaccines and by El Tor and O139 Vibrio cholerae. Infect. Immun. 1996;64:2362–2364. doi: 10.1128/iai.64.6.2362-2364.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spencer A.J., Osborne M.P., Haddon S.J., Collins J., Starkey W.G., Candy D.C.A., Stephen J. X-ray-microanalysis of rotavirus-infected mouse intestine—a new concept of diarrheal secretion. J. Pediatr. Gastroenterol. Nutr. 1990;10:516–529. doi: 10.1097/00005176-199005000-00016. [DOI] [PubMed] [Google Scholar]
  38. Stephen J. Pathogenesis of infectious diarrhea: A minireview. Can. J. Gastroenterol. 2000 doi: 10.1155/2001/264096. (in press) [DOI] [PubMed] [Google Scholar]
  39. Svanborg C., Godaly G., Hedlund M. Cytokine responses during mucosal infections: role in disease pathogenesis and host defence. Curr. Opin. Microbiol. 1999;2:99–105. doi: 10.1016/s1369-5274(99)80017-4. [DOI] [PubMed] [Google Scholar]
  40. Uchida H., Kiyokawa N., Horie H., Fujimoto J., Takeda T. The detection of Shiga toxins in the kidney of a patient with hemolytic uremic syndrome. Pediatr. Res. 1999;45:133–137. doi: 10.1203/00006450-199901000-00022. [DOI] [PubMed] [Google Scholar]
  41. VanderSpeck J.C., Murphy J.R. Diphtheria toxin-based interlukin-2 fusion proteins. In: Alouf J.E., Freer J., editors. The Comprehensive Sourcebook of Bacterial Protein Toxins'. Academic Press; London: 1999. pp. 682–690. [Google Scholar]
  42. Welliver R.C. The development of respiratory syncytial virus-specific IgE and the release of histamine in naso-pharyngeal secretions after infection. N. Engl. J. Med. 1981;305:841–845. doi: 10.1056/NEJM198110083051501. [DOI] [PubMed] [Google Scholar]
  43. Williams R.C. Immune complexes in human diseases. Annu. Rev. Med. 1981;32:13–28. doi: 10.1146/annurev.me.32.020181.000305. [DOI] [PubMed] [Google Scholar]
  44. Yuki N. Pathogenesis of Guillain-Barre and Miller Fisher syndromes subsequent to Campylobacter jejuni enteritis. Jap. J. Infect. Dis. 1999;52:99–105. [PubMed] [Google Scholar]

Articles from Mims' Pathogenesis of Infectious Disease are provided here courtesy of Elsevier

RESOURCES