Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2007 Sep 2:25–35. doi: 10.1016/B978-012220360-2/50003-9

Virus Origins

Conjoined RNA Genomes as Precursors to DNA Genomes

Hugh D Robertson 1,2,3, Olivia D Neel 1,2,3
Editors: Esteban Domingo1,2,3, Robert Webster1,2,3, John Holland1,2,3
PMCID: PMC7155586

Publisher Summary

RNA's unprecedented ability to act both as a template for information storage and as an enzymatic molecule has led to the proposal that primitive living systems were based on RNA, with protein synthesis and DNA templates for information storage added later. This chapter reviews the current knowledge about RNA rearrangement and recombination in viruses, and cites evidence for various mechanisms catalyzing these events. RNA recombination can occur in a spontaneous manner, and such a potential, even at low frequency, would expand opportunities for RNA conjunction. The chapter also outlines the significance of work on viroid-like pathogens, circular RNA replication, and their potential relation to early RNA; and relates the early emergence of RNA mosaics to developments leading to today's DNA-based systems of viral gene expression.

References

  1. Branch A.D., Robertson H.D. A replication cycle for viroids and other small infectious RNAs. Science. 1984;223:450–454. doi: 10.1126/science.6197756. [DOI] [PubMed] [Google Scholar]
  2. Branch A.D., Robertson H.D., Dickson E. Vol. 78. 1981. Longer-than-unit-length viroid minus strands are present in RNA from infected plants; pp. 6381–6385. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Branch A.D., Benenfeld B.J., Baroudy B.M., Wells F.V., Gerin J.L., Robertson H.D. An ultraviolet-sensitive RNA structural element in a viroid-like domain of the hepatitis delta virus. Science. 1989;243:25–35. doi: 10.1126/science.2492676. [DOI] [PubMed] [Google Scholar]
  4. Branch A.D., Levine B.J., Robertson H.D. The brotherhood of circular RNA pathogens: viroids, circular satellites, and the delta agent. Sem. Virol. 1990;1:143–152. [Google Scholar]
  5. Brazas R., Ganem D. A cellular homolog of hepatitis delta antigen: implications for viral replication and evolution. Science. 1996;274:90–94. doi: 10.1126/science.274.5284.90. [DOI] [PubMed] [Google Scholar]
  6. Brazas R., Ganem D. Response to [Delta-interacting protein A and the origin of hepatitis delta antigen] Science. 1997;276:825. doi: 10.1126/science.276.5313.824. [DOI] [PubMed] [Google Scholar]
  7. Carpenter C.D., Simon A.E. Changes in locations of crossover sites over time in de novo generated RNA recombinants. Virology. 1996;223:165–173. doi: 10.1006/viro.1996.0465. [DOI] [PubMed] [Google Scholar]
  8. Carpenter C.D., Simon A.E. In vivo restoration of biologically active 3' ends of virus-associated RNAs by nonhomologous RNA recombination and replacement of a terminal motif. J. Virol. 1996;70:478–486. doi: 10.1128/jvi.70.1.478-486.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carpenter CD., Oh J.W., Zhang C., Simon A.E. Involvement of a stem-loop structure in the location of junction sites in viral RNA recombination. J. Mol Biol. 1995;245:608–622. doi: 10.1006/jmbi.1994.0050. [DOI] [PubMed] [Google Scholar]
  10. Cech T.R. RNA enzymes. Adv. Enyzmol. 1989;62:1–36. [Google Scholar]
  11. Chen P.J., Kalpana G., Goldberg J. Vol. 83. 1986. Structure and replication of the genome of the hepatitis delta virus; pp. 8774–8778. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chetverin A.B., Chetverina H.V., Demidenko A.A., Ugarov V.I. Nonhomologous RNA recombination in a cell-free system: evidence for a transesterification mechanism guided by secondary structure. Cell. 1997;88:503–513. doi: 10.1016/S0092-8674(00)81890-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collett M.S., Moening V., Horzinek M.C. Recent advances in pestivirus research. J. Gen. Virol. 1989;70:253–266. doi: 10.1099/0022-1317-70-2-253. [DOI] [PubMed] [Google Scholar]
  14. Crick F. Split genes and RNA splicing. Science. 1979;204:264–271. doi: 10.1126/science.373120. [DOI] [PubMed] [Google Scholar]
  15. Dickson E. A model for the involvement of viroids in RNA splicing. Virology. 1981;115:216–221. doi: 10.1016/0042-6822(81)90104-5. [DOI] [PubMed] [Google Scholar]
  16. Diener T.O. John Wiley; Berlin: 1979. Viroids and Viroid Diseases. [Google Scholar]
  17. Diener T.O. Vol. 78. 1981. Are viroids escaped introns? pp. 5104–5105. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Diener T.O. Vol. 86. 1989. Circular RNAs: relics of precellular evolution? pp. 9370–9374. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Duggal R., Cuconati A., Gromeier M., Wimmer E. Vol. 94. 1997. Genetic recombination of poliovirus in a cell-free system; pp. 13786–13791. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Figlerowicz M., Nagy P.D., Bujarksi J.J. Vol. 94. 1997. A mutation in the putative RNA polymerase gene inhibits nonhomologous, but not homologous, genetic recombination in an RNA virus; pp. 2073–2078. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fraile A., Alonso-Prados J.L., Aranda M.A., Bernal J.J., Malpica J.M., Garcia-Arenal F. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J. Virol. 1997;71:934–940. doi: 10.1128/jvi.71.2.934-940.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gesteland R.F., Atkins J.F. Cold Spring Harbor Laboratory Press; New York: 1993. The RNA World. [Google Scholar]
  23. Gibbs M.J., Cooper J.I. A recombinational event in the history of luteoviruses probably induced by base-pairing between the genomes of two distinct viruses. Virology. 1995;206:1129–1132. doi: 10.1006/viro.1995.1037. [DOI] [PubMed] [Google Scholar]
  24. Gilbert W. The RNA world. Nature. 1986;319:618. [Google Scholar]
  25. Gilbert W. Vol. 52. 1987. The exon theory of genes; pp. 901–905. (Cold Spring Harbor Symp. Quantit. Biol.). [DOI] [PubMed] [Google Scholar]
  26. Golding B.G., Tsao N., Pearlman R.E. Vol. 91. 1994. Evidence for intron capture: an unusual path for the evolution of proteins; pp. 7506–7509. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Greene A.E., Allison R.F. Recombination between viral RNA and transgenic plant transcripts. Science. 1994;263:1423–1425. doi: 10.1126/science.8128222. [DOI] [PubMed] [Google Scholar]
  28. Gross H.J., Domdey H., Lossow C. Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature. 1978;273:203–211. doi: 10.1038/273203a0. [DOI] [PubMed] [Google Scholar]
  29. Imazeki F., Omata M., Ohto M. Heterogeneity and evolution rates of delta virus RNA sequences. J. Virol. 1990;64:5594–5599. doi: 10.1128/jvi.64.11.5594-5599.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Keese P., Symons R.H. Vol. 82. 1985. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution; pp. 4582–4586. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Khatchkian D., Orlich M., Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the hemagglutinin gene of an influenza virus. Nature. 1989;340:156–157. doi: 10.1038/340156a0. [DOI] [PubMed] [Google Scholar]
  32. Kierkegaard K., Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986;47:433–443. doi: 10.1016/0092-8674(86)90600-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kos A., Kijema R., Arnberg A.C., van der Meide P.H., Schellekens H. The hepatitis delta virus possesses a circular RNA. Nature. 1986;323:558–560. doi: 10.1038/323558a0. [DOI] [PubMed] [Google Scholar]
  34. Krushkal J., Li W.H. Substitution rates in hepatitis delta virus. J. Mol Evol. 1995;41:721–726. doi: 10.1007/BF00173151. [DOI] [PubMed] [Google Scholar]
  35. Lai M.M.C. RNA recombination in animal and plant viruses. Microbiol Rev. 1992;56:61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lai M.M.C. Genetic recombination in RNA viruses. Curr. Topics Microbiol. Immunol. 1992;176:21–32. doi: 10.1007/978-3-642-77011-1_2. [DOI] [PubMed] [Google Scholar]
  37. Lai M.M.C. Recombination and its evolutionary effect on viruses with RNA genomes. In: Molecular Basis of Virus Evolution. In: Gibbs A.J., Calisher C.H., Garcia-Arenal F.), editors. Cambridge University Press; Cold Spring Harbor, NY.: 1995. pp. 119–132. [Google Scholar]
  38. Le Gall O., Lanneau M., Candresse T., Dumez J. The nucleotide sequence of the RNA-2 of an isolate of the English serotype of tomato black ring virus: RNA recombination in the history of nepoviruses. J. Gen. Virol. 1995;76:1279–1283. doi: 10.1099/0022-1317-76-5-1279. [DOI] [PubMed] [Google Scholar]
  39. Long M., deSouza S.J., Gilbert W. Delta-interacting protein A and the origin of hepatitis delta antigen. Science. 1997;276:824–825. doi: 10.1126/science.276.5313.824. [DOI] [PubMed] [Google Scholar]
  40. Makino S., Chang M.F., Sheih C.K. Molecular cloning and sequencing of a human hepatitis delta virus RNA. Nature. 1987;329:343–346. doi: 10.1038/329343a0. [DOI] [PubMed] [Google Scholar]
  41. Maroney P.A., Yu Y.T., Jankowska M., Nilsen T.W. Direct analysis of nematode cis- and trans-spliceosomes: a functional role for U5 snRNA in spliced leader addition trans-splicing and the identification of no. RNA. 1996;2(8):735–745. [PMC free article] [PubMed] [Google Scholar]
  42. Mayo M.A., Jolly C.A. The 5'-terminal sequence of potato leafroll virus RNA: evidence of recombination between virus and host RNA. J. Gen. Virol. 1991;72:2591–2595. doi: 10.1099/0022-1317-72-10-2591. [DOI] [PubMed] [Google Scholar]
  43. Meyers G., Tautz N., Dubovi E.J., Thiel H.-J. Viral cytopathogenicity correlated with integration of ubiquitin-coding sequences. Virology. 1991;180:602–616. doi: 10.1016/0042-6822(91)90074-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Monroe S.S., Schlesinger S. Vol. 80. 1983. RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5'-ends; pp. 3279–3283. (Proc. Natl Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nagy P.D., Bujarksi J.J. Homologous RNA recombination in brome mosaic virus: AU-rich sequences decrease the accuracy of crossovers. J. Virol. 1996;70:415–426. doi: 10.1128/jvi.70.1.415-426.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Nagy P.D., Bujarksi J.J. Engineering of homologous recombination hotspots with AU-rich sequences in Brome mosaic virus. J. Virol. 1997;71:3799–3810. doi: 10.1128/jvi.71.5.3799-3810.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Nagy P.D., Bujarksi J.J. Silencing homologous RNA recombination hot spots with GC-rich sequences in Brome mosaic virus. J. Virol. 1998;72:1122–1130. doi: 10.1128/jvi.72.2.1122-1130.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Nagy P.D., Simon A.E. New insights into the mechanisms of RNA recombination. Virology. 1997;234:1–9. doi: 10.1006/viro.1997.8681. [DOI] [PubMed] [Google Scholar]
  49. Pilipenko E.V., Gmyl A.P., Agol V.I. A model for rearrangements in RNA genomes. Nucl Acids Res. 1995;23:1870–1875. doi: 10.1093/nar/23.11.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Purcell R.H., Gerin J.L. Hepatitis delta virus. In: Fields B.N., Knipe D.M., Howley P.M., editors. Fields Virology. Lippincott-Raven; Cambridge: 1996. pp. 2819–2829. [Google Scholar]
  51. Reanney D.C., Ralph R.K. Genetic circularity and evolution. J. Theoret. Biol. 1968;21:217–228. doi: 10.1016/0022-5193(68)90071-4. [DOI] [PubMed] [Google Scholar]
  52. Roberts R.J. Intervening sequences excised in vitro. Nature. 1978;274:530. doi: 10.1038/274530a0. [DOI] [PubMed] [Google Scholar]
  53. Robertson H.D. Replication and evolution of viroid-like pathogens. Curr. Topics Microbiol. Immunol. 1992;176:214–219. doi: 10.1007/978-3-642-77011-1_14. [DOI] [PubMed] [Google Scholar]
  54. Robertson H.D., Branch A.D. The viroid replication process. In: Semancik J.S., editor. Viroids and 1Viroid-like Pathogens. CRC Press; Philadelphia PA: 1987. pp. 49–70. [Google Scholar]
  55. Semancik J.S., editor. Viroids and Viroid-like Pathogens. CRC Press; Boca Raton, FL.: 1987. [Google Scholar]
  56. Sharp P.A. On the origin of RNA splicing and introns. Cell. 1985;42:397–400. doi: 10.1016/0092-8674(85)90092-3. [DOI] [PubMed] [Google Scholar]
  57. Taylor J.M. Hepatitis delta virus and its replication. In: Fields B.N., Knipe D.M., Howley P.M., editors. Fields Virology. Lippincott-Raven; Boca Raton, FL.: 1996. pp. 2809–2818. [Google Scholar]
  58. Taylor J., Mason W., Summers J. Replication of human hepatitis delta virus in primary cultures of woodchuck hepatocytes. J. Virol. 1987;61:2891–2895. doi: 10.1128/jvi.61.9.2891-2895.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wang K.S., Choo Q.L., Weiner A.J. Structure, sequence, and expression of the hepatitis delta viral genome. Nature. 1986;323:508–514. doi: 10.1038/323508a0. [DOI] [PubMed] [Google Scholar]
  60. Zhang X., Lai M.M.C. Unusual heterogeneity of leader-mRNA fusion in a murine coronavirus: implications for the mechanism of RNA transcription and recombination. J. Virol. 1994;68:6626–6633. doi: 10.1128/jvi.68.10.6626-6633.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Origin and Evolution of Viruses are provided here courtesy of Elsevier

RESOURCES