The content is available as a PDF (3.4 MB).
REFERENCES
- Arumugham R.G., Tanzer M.L. Abnormal glycosylation of human cellular fibronectin in the presence of swainsonine. J. Biol. Chem. 1983;258:11883–11889. [PubMed] [Google Scholar]
- Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
- Atkinson P.H., Lee J.T. Cotranslational excision of α-glucose and α-mannose in nascent vesicular stomatitis virus G protein. J. Cell Biol. 1984;98:2245–2249. doi: 10.1083/jcb.98.6.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aubert J.P., Biserte G., Loucheux-Lefebvre M.H. Carbohydrate-peptide linkage in glycoproteins. Arch. Biochem. Biophys. 1976;175:410–418. doi: 10.1016/0003-9861(76)90528-2. [DOI] [PubMed] [Google Scholar]
- Baenziger J.U., Fiete D. Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell. 1980;22:611–620. doi: 10.1016/0092-8674(80)90371-2. [DOI] [PubMed] [Google Scholar]
- Baenziger J.U., Maynard Y. Human hepatic lectin: Physiochemical properties and specificity. J. Biol. Chem. 1980;255:4607–4613. [PubMed] [Google Scholar]
- Barclay A.N., Letarte-Muirhead M., Williams A.F., Faulkes R.A. Chemical characterization of the Thy-1 glycoproteins from the membranes of rat thymocytes and brain. Nature (London) 1976;263:563–567. doi: 10.1038/263563a0. [DOI] [PubMed] [Google Scholar]
- Barondes S.H. Lectins: Their multiple endogenous cellular functions. Annu. Rev. Biochem. 1981;50:207–231. doi: 10.1146/annurev.bi.50.070181.001231. [DOI] [PubMed] [Google Scholar]
- Barondes S.H. Soluble lectins: A new class of extracellular proteins. Science. 1984;223:1259–1264. doi: 10.1126/science.6367039. [DOI] [PubMed] [Google Scholar]
- Barouki R., Finidori J., Chobert M.N., Aggerbeck M., Laperche Y., Hanoune J. Biosynthesis and processing of γ-glutamyl transpeptidase in hepatoma tissue culture cells. J. Biol. Chem. 1984;259:7970–7974. [PubMed] [Google Scholar]
- Bar-Sagi D., Prives J. Tunicamycin inhibits the expression of surface Na+ channels in cultured muscle cells. J. Cell. Physiol. 1983;114:77–81. doi: 10.1002/jcp.1041140113. [DOI] [PubMed] [Google Scholar]
- Bartalena L., Robbins J. Effect of tunicamycin and monensin on secretion of thyroxine-binding globulin by cultured human hepatoma (Hep G2) cells. J. Biol. Chem. 1984;259:13610–13614. [PubMed] [Google Scholar]
- Bathurst I.C., Travis J., George P.M., Carrell R.W. Structural and functional characterization of the abnormal Z α1-antitrypsin isolated from human liver. FEBS Lett. 1984;177:179–183. doi: 10.1016/0014-5793(84)81279-x. [DOI] [PubMed] [Google Scholar]
- Bauer H.C., Parent J.B., Olden K. Role of carbohydrate in glycoprotein secretion by human hepatoma cells. Biochem. Biophys. Res. Commun. 1985;128:368–375. doi: 10.1016/0006-291x(85)91688-2. [DOI] [PubMed] [Google Scholar]
- Bause E. Structural requirements of N-glycosylation of proteins. Biochem. J. 1983;209:331–336. doi: 10.1042/bj2090331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beeley J.G. Peptide chain conformation and the glycosylation of glycoproteins. Biochem. Biophys. Res. Commun. 1977;76:1051–1055. doi: 10.1016/0006-291x(77)90962-7. [DOI] [PubMed] [Google Scholar]
- Bergman L.W., Kuehl W.M. In: Horowitz M.I., editor. Vol. 3. Academic Press; New York: 1982. pp. 81–98. (“The Glycoconjugates”). [Google Scholar]
- Bernard B.A., Yamada K.M., Olden K. Carbohydrates selectively protect a specific domain of fibronectin against proteases. J. Biol. Chem. 1982;257:8549–8554. [PubMed] [Google Scholar]
- Beyer E.C., Barondes S.H. Secretion of endogenous lectin by chicken intestinal goblet cells. J. Cell Biol. 1982;92:28–33. doi: 10.1083/jcb.92.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer E.C., Tokuyasu K.T., Barondes S.H. Localization of an endogenous lectin in chicken liver, intestine and pancreas. J. Cell Biol. 1979;82:565–571. doi: 10.1083/jcb.82.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer E.C., Zweig S.E., Barondes S.H. Two lactose binding lectins from chicken tissues. J. Biol. Chem. 1980;255:4236–4239. [PubMed] [Google Scholar]
- Beyer T.A., Hill R.L. In: Horowitz M.I., editor. Vol. 3. Academic Press; New York: 1982. pp. 25–45. (“The Glycoconjugates”). [Google Scholar]
- Bischoff J., Kornfeld R. Evidence for an α-mannosidase in endoplasmic reticulum of rat liver. J. Biol. Chem. 1983;258:7907–7910. [PubMed] [Google Scholar]
- Bischoff J., Kornfeld R. The effect of 1-deoxymannojirimycin on rat liver α-mannosidases. Biochem. Biophys. Res. Commun. 1984;125:324–331. doi: 10.1016/s0006-291x(84)80371-x. [DOI] [PubMed] [Google Scholar]
- Bischoff J., Liscum L., Kornfeld R. The use of 1-deoxymannojirimycin to evaluate the role of various α-mannosidases in oligosaccharide processing in intact cells. J. Biol. Chem. 1986;261:4766–4774. [PubMed] [Google Scholar]
- Bjorkman U., Ekholm R. Effect of tunicamycin on thyroglobulin secretion. Eur. J. Biochem. 1982;125:585–591. doi: 10.1111/j.1432-1033.1982.tb06723.x. [DOI] [PubMed] [Google Scholar]
- Bourguignon L.Y.M., Balazovich K., Trowbridge I.S., Hyman R. Immu-noelectron microscopic localization of the Thy-1 glycoprotein in wild type and Thy-1 negative lymphoma cells. Cell Biol. Int. Rep. 1982;6:745–755. doi: 10.1016/0309-1651(82)90167-9. [DOI] [PubMed] [Google Scholar]
- Breitfeld P.P., Rup D., Schwartz A.L. Influence of the N-linked oligosaccharides on the biosynthesis, intracellular routing, and function of the human asialoglycoprotein receptor. J. Biol. Chem. 1984;259:10414–10421. [PubMed] [Google Scholar]
- Briles E.B., Gregory W., Fletcher P., Kornfeld S. Vertebrate lectins: Comparison of properties of β-galactoside-binding lectins from tissues of calf and chicken. Cell Biol. 1979;81:528–537. doi: 10.1083/jcb.81.3.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown P.H., Hickman S. Oligosaccharide processing at individual glycosylation sites on MOPC 104E immunoglobulin M. Differences in α-1,2-linked mannose processing. J. Biol. Chem. 1986;261:2575–2582. [PubMed] [Google Scholar]
- Brownell M.D., Colley K.J., Baenziger J.U. Synthesis, processing and secretion of the core-specific lectin by rat hepatocytes and hepatoma cells. J. Biol. Chem. 1984;259:3925–3932. [PubMed] [Google Scholar]
- Budarf M.L., Herbert E. Effect of tunicamycin on the synthesis, processing and secretion of proopiomelanocortin peptides in mouse pituitary cells. J. Biol. Chem. 1982;257:10128–10135. [PubMed] [Google Scholar]
- Burke B., Matlin K., Bause E., Legler G., Peyrieras N., Ploegh H. Inhibition of N-linked oligosaccharide trimming does not interfere with surface expression of certain integral membrane proteins. EMBO J. 1984;3:551–556. doi: 10.1002/j.1460-2075.1984.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell D., Gagnon J., Reid K., Williams A. Rat brain Thy-1 glycoprotein. The amino acid sequence, disulfide bonds, and an unusual hydrophobic region. Biochem. J. 1981;195:15–30. doi: 10.1042/bj1950015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carrell R.W., Bathurst I.C., Brennan S.O. The molecular pathology of α1-antitrypsin. Biochem. Soc. Symp. 1984;49:55–66. [PubMed] [Google Scholar]
- Ceri H., Kobiler D., Barondes S.H. Heparin-inhibitable lectin. J. Biol. Chem. 1981;256:390–394. [PubMed] [Google Scholar]
- Chapman A., Li E., Kornfeld S. The biosynthesis of the major lipid-linked oligosaccharide of Chinese hamster ovary cells occurs by the ordered addition of mannose residues. J. Biol. Chem. 1979;254:10243–10249. [PubMed] [Google Scholar]
- Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E thy-1 negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J. Biol. Chem. 1980;255:4441–4446. [PubMed] [Google Scholar]
- Chatterjee S., Kwiterovich P.O., Jr., Sekerke C.S. Effects of tunicamycin on the binding and degradation of low density lipoproteins and glycoprotein synthesis in cultured human fibroblasts. J. Biol. Chem. 1979;254:3704–3707. [PubMed] [Google Scholar]
- Chatterjee S., Sekerke C.S., Kwiterovich P.O., Jr. Effects of tunicamycin on the cell-surface binding, internalization, and degradation of low-density lipoproteins in human fibroblasts. Eur. J. Biochem. 1981;120:435–441. doi: 10.1111/j.1432-1033.1981.tb05721.x. [DOI] [PubMed] [Google Scholar]
- Chu F.K., Maley F. Stabilization of the structure and activity of yeast carboxypeptidase Y by its high-mannose oligosaccharide chains. Arch. Biochem. Biophys. 1982;214:134–139. doi: 10.1016/0003-9861(82)90015-7. [DOI] [PubMed] [Google Scholar]
- Chu F.K., Trimble R.B., Maley F. The effect of carbohydrate depletion on the properties of yeast external invertase. J. Biol. Chem. 1978;253:8691–8693. [PubMed] [Google Scholar]
- Ciccimarra F., Rosen F.S., Schneeberger E., Merler E. Failure of heavy chain glycosylation of IgG in some patients with common, variable agammaglobulinemia. J. Clin. Invest. 1976;57:1386–1390. doi: 10.1172/JCI108407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarenburg R. Asialoglycoprotein receptor is uninvolved in clearing intact glycoproteins from rat blood. Am. Phys. Soc. 1983;244:G247–G253. doi: 10.1152/ajpgi.1983.244.3.G247. [DOI] [PubMed] [Google Scholar]
- Cohen B.G., Phillips A.H. Evidence for rapid and concerted turnover of membrane phospholipids in MOPC 41 myeloma cells and its possible relationship to secretion. J. Biol. Chem. 1980;255:3075–3079. [PubMed] [Google Scholar]
- Cohen B.G., Mosler S., Phillips A.H. Rapid turnover of intracellular membranes in MOPC 41 myeloma cells and its possible relationship to secretion. J. Biol. Chem. 1979;254:4267–4275. [PubMed] [Google Scholar]
- Colley K.J., Baenziger J.U. Identification of the post-translational modifications of the core-specific lectin. J. Biol. Chem. 1987;262:10290–10295. [PubMed] [Google Scholar]
- Colley K.J., Baenziger J.U. Posttranslational modifications of the core-specific lectin. J. Biol. Chem. 1987;262:10296–10303. [PubMed] [Google Scholar]
- Courtney M., Buchwalder A., Tessier L.H., Jaye M., Benavente A., Balland A., Kohli V., Lathe R., Tolstoshev P., Lecocq J.P. High level production of biologically active human α1-antitrypsin in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1984;81:669–673. doi: 10.1073/pnas.81.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummings R.D., Kornfeld S., Schneider W.J., Hobgood K.K., Tolleshaug H., Brown M.S., Goldstein J.L. Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J. Biol. Chem. 1983;258:15261–15273. [PubMed] [Google Scholar]
- Danielsen E.M., Cowell G.M., Noren O., Sjostrom H., Dorling P.R. Biosynthesis of intestinal microvillar proteins. The effect of swainsonine on post-translational processing of aminopeptidase N. Biochem. J. 1983;216:325–331. doi: 10.1042/bj2160325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datema R., Schwarz R.T. Effect of energy depletion on the glycosylation of a viral glycoprotein. J. Biol. Chem. 1981;256:11191–11198. [PubMed] [Google Scholar]
- Datema R., Romero P.A., Legler G., Schwarz R.T. Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol. Proc. Natl. Acad. Sci. U.S.A. 1982;79:6787–6791. doi: 10.1073/pnas.79.22.6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datema R., Romero P.A., Rott R., Schwarz R.T. One the role of oligosaccharide trimming in the maturation of Sindbis and influenza virus. Arch. Virol. 1984;81:25–39. doi: 10.1007/BF01309294. [DOI] [PubMed] [Google Scholar]
- Davis C.G., Elhammer A., Russell D.W., Schneider W.J., Kornfeld S., Brown M.S., Goldstein J.L. Deletion of clustered O-linked carbohydrates does not impair function or low density lipoprotein receptor in transfected fibroblasts. J. Biol. Chem. 1986;261:2828–2838. [PubMed] [Google Scholar]
- Davis L.I., Blobel G. Identification and characterization of a nuclear pore complex protein. Cell. 1986;45:699–709. doi: 10.1016/0092-8674(86)90784-1. [DOI] [PubMed] [Google Scholar]
- Derynck R., Remaut E., Saman E., Stansseus P., De Clercq E., Content J., Fiers W. Expression of human fibroblast interferon gene in Escherichia coli. Nature (London) 1980;287:193–197. doi: 10.1038/287193a0. [DOI] [PubMed] [Google Scholar]
- Docherty P.A., Kuranda M.J., Aronson N.N., Jr., BeMiller J.N., Myers R.W., Bohn J.A. Effect of α-D-mannopyranosylmethyl-p-nitrophenyltriazene on hepatic degradation and processing of the N-linked oligosaccharide chains of α1-acid glycoprotein. J. Biol. Chem. 1986;261:3457–3463. [PubMed] [Google Scholar]
- Doss R.C., Kramarcy N.K., Harden T.K., Perkins J.P. Effects of tunicamycin on the expression of β-adrenergic receptors in human astrocytoma cells during growth and recovery from agonist-induced down-regulation. Mol. Pharmacol. 1985;27:507–516. [PubMed] [Google Scholar]
- Drickamer K. Complete amino acid sequence of a membrane receptor for glycoproteins. J. Biol. Chem. 1981;256:5827–5839. [PubMed] [Google Scholar]
- Duksin D., Bornstein P. Impaired conversion of procollagen to collagen by fibroblasts and bone treated with tunicamycin, an inhibitor of protein glycosylation. J. Biol. Chem. 1977;252:955–962. [PubMed] [Google Scholar]
- Dunphy W.G., Rothman J.E. Compartmental organization of the Golgi stack. Cell. 1985;42:13–21. doi: 10.1016/s0092-8674(85)80097-0. [DOI] [PubMed] [Google Scholar]
- Dunphy W.G., Brands R., Rothman J.E. Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell. 1985;40:463–472. doi: 10.1016/0092-8674(85)90161-8. [DOI] [PubMed] [Google Scholar]
- Duronio V., Jacobs S., Cuatrecasas P. Complete glycosylation of the insulin and insulin-like growth factor 1 receptors is not necessary for their biosynthesis and function. J. Biol. Chem. 1986;261:970–975. [PubMed] [Google Scholar]
- Eggo M.C., Burrow G. Glycosylation of thyroglobulin. Its role in secretion, iodination and stability. Endocrinology. 1983;113:1655–1663. doi: 10.1210/endo-113-5-1655. [DOI] [PubMed] [Google Scholar]
- Elbein A.D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit. Rev. Biochem. 1984;16:21–49. doi: 10.3109/10409238409102805. [DOI] [PubMed] [Google Scholar]
- Elbein A.D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu. Rev. Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
- Elbein A.D., Solf R., Dorling P.R., Vosbeck K. Swainsonine: An inhibitor of glycoprotein processing. Proc. Natl. Acad. Sci. U.S.A. 1981;78:7393–7397. doi: 10.1073/pnas.78.12.7393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elbein A.D., Dorling P.R., Vosbeck K., Horisberger M. Swainsonine prevents the processing of the oligosaccharide chains of influenza virus hemagglutinin. J. Biol. Chem. 1982;257:1573–1576. [PubMed] [Google Scholar]
- Elbein A.D., Legler G., Tlusty A., McDowell W., Schwarz R. The effect of deoxymannojirimycin on the processing of the influenza viral glycoproteins. Arch. Biochem. Biophys. 1984;235:579–588. doi: 10.1016/0003-9861(84)90232-7. [DOI] [PubMed] [Google Scholar]
- Farquhar M.G. Progress in unraveling pathways of Golgi traffic. Annu. Rev. Cell Biol. 1985;1:447–488. doi: 10.1146/annurev.cb.01.110185.002311. [DOI] [PubMed] [Google Scholar]
- Farquhar M.G., Palade G.E. The Golgi apparatus (complex)—(1954–1981)- from artifact to center stage. J. Cell Biol. 1981;91:77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filipovic I., von Figura K. Effect of tunicamycin on the metabolism of low-density lipoproteins by control and low-density-lipoprotein-receptor-deficient human skin fibroblasts. Biochem. J. 1980;186:373–375. doi: 10.1042/bj1860373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Firestone G.L. The role of protein glycosylation in the compartmentalization and processing of mouse mammary tumor virus glycoproteins in mouse mammary tumor virus-infected rat hepatoma cells. J. Biol. Chem. 1983;258:6155–6161. [PubMed] [Google Scholar]
- Firestone G.L., Heath E.C. Role of protein glycosylation in the cAMP-mediated induction of alkaline phosphatase in mouse L-cells. J. Biol. Chem. 1981;256:1404–1411. [PubMed] [Google Scholar]
- Fisher H.D., Gonzalez-Noriega A., Sly W.S., Morre D.J. Phosphomannosyl-enzyme receptors in rat liver. Subcellular distribution and role in intracellular transport of lysosomal enzymes. J. Biol. Chem. 1980;255:9608–9615. [PubMed] [Google Scholar]
- Fitting T., Kabat D. Evidence for a glycoprotein “signal” involved in transport between subcellular organelles. Two membrane glycoproteins encoded by murine leukemia virus reach the cell surface at different rates. J. Biol. Chem. 1982;257:14011–14017. [PubMed] [Google Scholar]
- Fitting T., Ruta M., Kabat D. Mutant cells that abnormally process plasma membrane glycoproteins encoded by murine leukemia virus. Cell. 1981;24:847–858. doi: 10.1016/0092-8674(81)90110-0. [DOI] [PubMed] [Google Scholar]
- Fliesler S.J., Basinger S.F. Tunicamycin blocks the incorporation of opsin into retinal rod outer segment membranes. Proc. Natl. Acad. Sci. U.S.A. 1985;82:1116–1120. doi: 10.1073/pnas.82.4.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fliesler S.J., Rayborn M.E., Hollyfield J.G. Membrane morphogenesis in retinal rod outer segments: Inhibition by tunicamycin. J. Cell Biol. 1985;100:574–587. doi: 10.1083/jcb.100.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank J.L., Housepian S., Fayet G., Bouchilloux Inhibition of N-linked oligosaccharide processing does not prevent the secretion of thyroglobulin. Eur. J. Biochem. 1986;157:225–232. doi: 10.1111/j.1432-1033.1986.tb09660.x. [DOI] [PubMed] [Google Scholar]
- Fries E., Gustafsson L., Peterson P.A. Four secretory proteins synthesized by hepatocytes are transported from endoplasmic reticulum to Golgi complex at different rates. EMBO J. 1984;3:147–152. doi: 10.1002/j.1460-2075.1984.tb01775.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuhrmann U., Bause E., Legler G., Ploegh H. Novel mannosidase inhibitor blocking conversion of high mannose to complex oligosaccharides. Nature (London) 1984;307:755–758. doi: 10.1038/307755a0. [DOI] [PubMed] [Google Scholar]
- Fuhrmann U., Bause E., Ploegh H. Inhibitors of oligosaccharide processing. Biochim. Biophys. Acta. 1985;825:95–110. doi: 10.1016/0167-4781(85)90095-8. [DOI] [PubMed] [Google Scholar]
- Gabel C.A., Bergmann J.E. Processing of the asparagine-linked oligosaccharides of secreted and intracellular forms of the vesicular stomatitis virus G protein: In vivo evidence of Golgi apparatus compartmentalization. J. Cell Biol. 1985;101:460–469. doi: 10.1083/jcb.101.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabel C.A., Kornfeld S. Lysosomal enzyme phosphorylation in mouse lymphoma cell lines with altered asparagine-linked oligosaccharides. J. Biol. Chem. 1982;257:10605–10612. [PubMed] [Google Scholar]
- Gahmberg C.G., Jokinen M., Karhi K.K., Andersson L.C. Effect of tunicamycin on the biosynthesis of the major human red cell sialoglycoprotein, glycophorin A, in the leukemia cell line K562. J. Biol. Chem. 1980;255:2169–2175. [PubMed] [Google Scholar]
- Gallione C.J., Rose J.K. Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. J. Virol. 1983;46:162–169. doi: 10.1128/jvi.46.1.162-169.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaston S.M., Marchase R.B., Jakoi E.R. Brain ligatin: A membrane lectin that binds acetylcholinesterase. J. Cell. Biochem. 1982;18:447–459. doi: 10.1002/jcb.1982.240180406. [DOI] [PubMed] [Google Scholar]
- George, S. T., Ruoho, A. E., and Malbou, C. C. (1986). N-glycosylation in expression and function of β-adrenergic receptors. [PubMed]
- Geuze H.J., Slot J.W., Strous G.J.A.M., Lodish H.F., Schwartz A.L. Immunocytochemical localization of the receptor for asialoglycoprotein in rat liver cells. J. Cell Biol. 1982;92:865–870. doi: 10.1083/jcb.92.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geuze H.J., Slot J.W., Strous G.J.A.M., Schwartz A.L. The pathway of the asialoglycoprotein-ligand during receptor-mediated endocytosis: A morphological study with colloidal gold/ligand in the human hepatoma cell line, Hep G2. Eur. J. Cell Biol. 1983;32:38–44. [PubMed] [Google Scholar]
- Gibson R., Schlesinger S., Kornfeld S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 1979;254:3600–3607. [PubMed] [Google Scholar]
- Gibson R., Kornfeld S., Schlesinger S. A role for oligosaccharides in glycoprotein biosynthesis. Trends Biochem. Sci. 1980;5:290–293. [Google Scholar]
- Gibson R., Kornfeld S., Schlesinger S. The effect of oligosaccharide chains of different sizes on the maturation and physical properties of the G protein of vesicular stomatitis virus. J. Biol. Chem. 1981;256:456–462. [PubMed] [Google Scholar]
- Gonzalez-Noriega A., Grubb J.H., Talkad V., Sly W.S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J. Cell Biol. 1980;85:839–852. doi: 10.1083/jcb.85.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grafl R., Lang K., Vogl H., Schmid F.X. The mechanism of folding of pancreatic ribonuclease is independent of the presence of covalently linked carbohydrate. J. Biol. Chem. 1987;262:10624–10629. [PubMed] [Google Scholar]
- Green R., Meiss H., Rodriguez-Boulan E.J. Glycosylation does not determine segregation of viral envelope proteins in the plasma membrane of epithelial cells. J. Cell Biol. 1981;89:230–239. doi: 10.1083/jcb.89.2.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grey P.W., Goeddel D.V. Cloning and expression of murine immune interferon cDNA. Proc. Natl. Acad. Sci. U.S.A. 1983;80:5842–5846. doi: 10.1073/pnas.80.19.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grey P.W., Leung D.W., Pennica D., Yelverton E., Najarian R., Simonsen C.C., Derynck R., Sherwood P.J., Wallace D.M., Berger S.L., Levinson A.D., Goeddel D.V. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature (London) 1982;295:503–508. doi: 10.1038/295503a0. [DOI] [PubMed] [Google Scholar]
- Gross V., Andus T., Tran-Thi T.A., Schwarz R.T., Decker K., Heinrich P.C. 1-Deoxynojirimycin impairs oligosaccharide processing of α1proteinase inhibitors and inhibits its secretion in primary cultures of rat hepatocytes. J. Biol. Chem. 1983;258:12203–12209. [PubMed] [Google Scholar]
- Gross V., Tran-Thi T.A., Vosbeck K., Heinrich P.C. Effect of swainsonine on the processing of the asparagine-linked carbohydrate chains of α1-antitrypsin in rat hepatocytes. J. Biol. Chem. 1983;258:4032–4036. [PubMed] [Google Scholar]
- Gross V., Steube K., Tran-Thi T.A., McDowell W., Schwarz R.T., Decker C., Gerok W., Heinrich P.C. Secretion of high-mannose-type α1-proteinase inhibitor and α1-acid glycoprotein by primary cultures of rat hepatocytes in the presence of the mannosidase 1 inhibitor 1-deoxymannojirimycin. Eur. J. Biochem. 1985;150:41–46. doi: 10.1111/j.1432-1033.1985.tb08985.x. [DOI] [PubMed] [Google Scholar]
- Guan J.L., Rose J.K. Conversion of a secretory protein into a transmembrane protein results in its transport to the Golgi complex but not to the cell surface. Cell. 1984;37:779–787. doi: 10.1016/0092-8674(84)90413-6. [DOI] [PubMed] [Google Scholar]
- Guan J.L., Machamer C.E., Rose J.K. Glycosylation allows cell-surface transport of an anchored secretory protein. Cell. 1985;42:489–496. doi: 10.1016/0092-8674(85)90106-0. [DOI] [PubMed] [Google Scholar]
- Gumbiner B., Kelly R.B. Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Cell. 1982;28:51–59. doi: 10.1016/0092-8674(82)90374-9. [DOI] [PubMed] [Google Scholar]
- Gunzler W.A., Henninger W., Hennies H.H., Otting F., Schneider J., Friderichs E., Giertz H., Flohe L., Blaber M., Winkler M. Functional characterization of human urokinase produced in bacteria as compared to urokinase obtained from human urine. Haemostatis. 1984;14:60. [Google Scholar]
- Haltiwanger R.S., Hill R.R. The isolation of a rat alveolar macrophage lectin. J. Biol. Chem. 1986;261:7440–7444. [PubMed] [Google Scholar]
- Haltiwanger R.S., Hill R.L. The ligand binding specificity and tissue localization of a rat alveolar macrophage lectin. J. Biol. Chem. 1986;261:15696–15702. [PubMed] [Google Scholar]
- Haltiwanger R.S., Lehrman M.A., Eckhardt A.E., Hill R.L. The distribution and localization of the fucose-binding lectin in rat tissues and the identification of a high affinity form of the mannose N-acetylglucosamine-binding lectin in rat liver. J. Biol. Chem. 1986;261:7433–7439. [PubMed] [Google Scholar]
- Hanley J.M., Haugen T.H., Heath E.C. Biosynthesis and processing of rat haptoglobin. J. Biol. Chem. 1983;258:7858–7869. [PubMed] [Google Scholar]
- Harford J., Ashwell G. In: Horowitz M., editor. Vol. 4. Academic Press; New York: 1982. pp. 27–55. (“The Glycoconjugates”). [Google Scholar]
- Harpaz N., Schachter H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi α-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamineia-D-mannoside 2-N-acetylglucosaminyltransferase. J. Biol. Chem. 1980;255:4894–4902. [PubMed] [Google Scholar]
- Harrison F.L., Chesterton C.J. Erythroid developmental agglutinin is a protein lectin mediating specific cell-cell adhesion between differentiating rabbit erythroblasts. Nature (London) 1980;286:502–504. doi: 10.1038/286502a0. [DOI] [PubMed] [Google Scholar]
- Hasilik A., Klein U., Waheed A., Strecker G., von Figura K. Phosphorylated oligosaccharides in lysosomal enzymes: Identification of α-N-acetylglucosamine (1)- phospho (6) mannose diester groups. Proc. Natl. Acad. Sci. U.S.A. 1980;77:7074–7078. doi: 10.1073/pnas.77.12.7074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hercz A., Harpaz N. Characterization of the oligosaccharides of liver Z variant α1-antitrypsin. Can. J. Biochem. 1980;58:644–648. doi: 10.1139/o80-089. [DOI] [PubMed] [Google Scholar]
- Hercz A., Katona E., Cutz E., Wilson J.R., Barton M. Antitrypsin: The presence of excess mannose in the Z variant isolated from liver. Science. 1978;201:1229–1232. doi: 10.1126/science.308696. [DOI] [PubMed] [Google Scholar]
- Herder G., Compans R.W. Posttranslational modification and intracellular transport of mumps virus glycoproteins. J. Virol. 1983;47:354–362. doi: 10.1128/jvi.47.2.354-362.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hettkamp H., Bause E., Legler G. Inhibition by norjirimycin and 1-deoxynorjirimycin of microsomal glucosidases from calf liver acting on the glycoprotein oligosaccharides Glc1–3Man9GIcNAc2. Biosci. Rep. 1982;2:899–906. doi: 10.1007/BF01114896. [DOI] [PubMed] [Google Scholar]
- Hickman S., Kornfeld S. Effect of tunicamycin on IgM, IgA, and IgG secretion by mouse plasmacytoma cells. J. Immunol. 1978;121:990–996. [PubMed] [Google Scholar]
- Hickman S., Kulczycki A., Jr., Lynch R.G., Kornfeld S. Studies of the mechanism of tunicamycin inhibition of 1gA and IgE secretion by plasma cells. J. Biol. Chem. 1977;252:4402–4408. [PubMed] [Google Scholar]
- Hiller A.M., Koro L.A., Marchase R.B. Glucose-1-phosphotransferase and N-acetylglucosamine-1-phosphotransferase have distinct acceptor specificities. J. Biol. Chem. 1987;262:4377–4381. [PubMed] [Google Scholar]
- Hirschberg C.B., Snider M.D. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 1987;56:65–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
- Hodges L.C., Laine R., Chan S.K. Structure of the oligosaccharide chains in human α1-protease inhibitor. J. Biol. Chem. 1979;254:8208–8212. [PubMed] [Google Scholar]
- Hoflack B., Kornfeld S. Lysosomal enzyme binding to mouse P388D1 macrophage membranes lacking the 215 kDa mannose 6-phosphate receptor: Evidence for the existence of a second mannose 6-phosphate receptor. Proc. Natl. Acad. Sci. U.S.A. 1985;82:4428–4432. doi: 10.1073/pnas.82.13.4428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoflack B., Kornfeld S. Purification and characterization of a cation-dependent mannose 6-phosphate receptor from murine P338D1 macrophages and bovine liver. J. Biol. Chem. 1985;260:12008–12014. [PubMed] [Google Scholar]
- Holt G.D., Hart G.W. The subcellular distribution of terminal N-acetylglucosamine moieties. J. Biol. Chem. 1986;261:8049–8057. [PubMed] [Google Scholar]
- Horton M.A., Hyman R. Genetic basis for Ly-6− defect: Complementation between Ly-6− and Thy-1- mutant cell lines. Immunogenetics. 1983;17:261–270. doi: 10.1007/BF00364410. [DOI] [PubMed] [Google Scholar]
- Housley T.J., Rowland F.N., Ledger P.W., Kaplan J., Tanzer M.L. Effects of tunicamycin on the biosynthesis of procollagen by human fibroblasts. J. Biol. Chem. 1980;255:121–128. [PubMed] [Google Scholar]
- Hubbard S.C., Robbins P.W. Synthesis and processing of protein-linked oligosaccharides in vivo. J. Biol. Chem. 1979;243:4568–4576. [PubMed] [Google Scholar]
- Huffaker T.C., Robbins P.W. Yeast mutants deficient in protein glycosylation. Proc. Natl. Acad. Sci. U.S.A. 1983;80:7466–7470. doi: 10.1073/pnas.80.24.7466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt L.A., Davidson S.K., Golemboski D.B. Unusual heterogeneity in the glycosylation of the G protein of the Hazelhurst strain of vesicular stomatitis virus. Arch. Biochem. Biophys. 1983;226:347–356. doi: 10.1016/0003-9861(83)90301-6. [DOI] [PubMed] [Google Scholar]
- Hynes R.O., Yamada K.M. Fibronectins: Multifunctional modular glycoproteins. J. Cell Biol. 1982;95:369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakoi E.R., Marchase R.B. Ligatin from embryonic chick neural retina. J. Cell Biol. 1979;80:642–650. doi: 10.1083/jcb.80.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakoi E.R., Zampighi G., Robertson J.D. Regular structures in unit membranes II. Morphological and biochemical characterization of two water-soluble membrane proteins isolated from the suckling rat ileum. J. Cell Biol. 1976;70:97–111. doi: 10.1083/jcb.70.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakoi E.R., Kempe K., Gaston S.M. Ligatin binds phosphohexose residues on acidic hydrolases. J. Supramol. Struct. Cell. Biochem. 1981;16:139–153. doi: 10.1002/jsscb.1981.380160205. [DOI] [PubMed] [Google Scholar]
- Jeppsson J. Amino acid substitution Glu to Lys in α1-antitrypsin PiZ. FEBS Lett. 1976;65:195–197. doi: 10.1016/0014-5793(76)80478-4. [DOI] [PubMed] [Google Scholar]
- Julius D., Schekman R., Thorner J. Glycosylation and processing of prepro-α-factor through the yeast secretory pathway. Cell. 1984;36:309–318. doi: 10.1016/0092-8674(84)90224-1. [DOI] [PubMed] [Google Scholar]
- Kalderon D., Roberts B.L., Richardson W.D., Smith A.E. A short amino acid sequence able to specify nuclear location. Cell. 1985;39:499–509. doi: 10.1016/0092-8674(84)90457-4. [DOI] [PubMed] [Google Scholar]
- Kawasaki T., Ashwell G. Isolation and characterization of an avian hepatic binding protein specific for N-acetylglucosamine-terminated glycoproteins. J. Biol. Chem. 1977;252:6536–6543. [PubMed] [Google Scholar]
- Kawasaki T., Etoh R., Yamashina I. Isolation and characterization of a mannan-binding protein from rabbit liver. Biochem. Biophys. Res. Commun. 1978;81:1018–1024. doi: 10.1016/0006-291x(78)91452-3. [DOI] [PubMed] [Google Scholar]
- Kawasaki T., Mori K., Oka S., Kawasaki N., Kozutsumi Y., Yamashina I. Binding proteins specific for mannose and N-acetylglucosamine (mannan-binding protein, MBP) In: Olden K., Parent J.B., editors. “Vertebrate Lectins”. Van Nostrand Reinhold Company; New York: 1987. pp. 92–107. [Google Scholar]
- Keller R.K., Swank G.D. Tunicamycin does not block ovalbumin secretion in the oviduct. Biochem. Biophys. Res. Commun. 1978;85:762–768. doi: 10.1016/0006-291x(78)91226-3. [DOI] [PubMed] [Google Scholar]
- Kelly R.B. Pathways of protein secretion in eukaryotes. Science. 1985;230:25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
- Kingsley D.M., Kozarsky K.F., Hobbie L., Krieger M. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDPGa1/UDPGa1NAc 4-epimerase deficient mutant. Cell. 1986;44:749–759. doi: 10.1016/0092-8674(86)90841-x. [DOI] [PubMed] [Google Scholar]
- Kingsley D.M., Kozarsky K.F., Segal M., Krieger M. Three types of low density lipoprotein receptor-deficient mutants have pleiotropic defects in the synthesis of N-linked, O-linked and lipid-linked carbohydrate chains. J. Cell Biol. 1986;102:1576–1585. doi: 10.1083/jcb.102.5.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobata A. In: Ginsburg V., Robbins P.W., editors. Vol. 2. Wiley (Interscience); New York: 1984. pp. 87–161. (“Biology of Carbohydrates”). [Google Scholar]
- Kobiler D. Developmentally regulated soluble lectins. In: Olden K., Parent J.B., editors. “Vertebrate Lectins. Van Nostrand Reinhold; New York: 1987. pp. 195–210. [Google Scholar]
- Kolb-Bachofen V., Schlepper-Schöfer J., Vogell W. Electron microscopic evidence for an asialoglycoprotein receptor on Kupffer Cells: Localization of lectin-mediated endocytosis. Cell. 1982;29:859–866. doi: 10.1016/0092-8674(82)90447-0. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. In: “The Biochemistry of Glycoproteins and Proteoglycans”. Lennarz W.J., editor. Plenum; New York: 1980. pp. 1–34. [Google Scholar]
- Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
- Kornfeld S., Li E., Tabas I. The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. J. Biol. Chem. 1978;253:7771–7778. [PubMed] [Google Scholar]
- Kornfeld S., Gregory W., Chapman A. Class E Thy-1 negative mouse lymphoma cells utilize an alternate pathway of oligosaccharide processing to synthesize complex-type oligosaccharides. J. Biol. Chem. 1979;254:11649–11654. [PubMed] [Google Scholar]
- Koro L.A., Marchase R.B. A UDPglucose:glycoprotein glucose-1-phosphotransferase in embryonic chicken neural retina. Cell. 1982;31:739–748. doi: 10.1016/0092-8674(82)90328-2. [DOI] [PubMed] [Google Scholar]
- Kozutsumi Y., Kawasaki T., Yamashina I. Isolation and characterization of a mannan-binding protein from rabbit serum. Biochem. Biophys. Res. Commun. 1980;95:658–664. doi: 10.1016/0006-291x(80)90836-0. [DOI] [PubMed] [Google Scholar]
- Kozutsumi Y., Kawasaki T., Yamashina I. Kinetical properties of the serum mannan-binding protein from rabbit. A comparison with those of the liver mannan-binding protein. J. Biochem. 1981;90:1799–1807. doi: 10.1093/oxfordjournals.jbchem.a133658. [DOI] [PubMed] [Google Scholar]
- Krag S.S. A concanavalin A-resistant Chinese hamster ovary cell line is deficient in the synthesis of [3H]glucosy1 oligosaccharide-lipid. J. Biol. Chem. 1979;254:9167–9177. [PubMed] [Google Scholar]
- Krag S.S. Mechanisms and functional role of glycosylation in membrane protein synthesis. Curr. Top. Membr. Transport. 1985;24:181–249. [Google Scholar]
- Krag S.S., Robbins A.R. A Chinese hamster ovary cell mutant deficient in glucosylation of lipid-linked oligosaccharide synthesizes lysosomal enzymes of altered structure and function. J. Biol. Chem. 1982;257:8424–8431. [PubMed] [Google Scholar]
- Krebs H., Schmid F.X., Jaenicke R. Folding of homologous proteins. The refolding of different ribonucleases is independent of sequence variations, proline content and glycosylation. J. Mol. Biol. 1983;169:619–635. doi: 10.1016/s0022-2836(83)80067-9. [DOI] [PubMed] [Google Scholar]
- Krieger M., Kingsley D.M., Sege R.D., Hobbie L., Kozarsky K.F. Genetic analysis of receptor-mediated endocytosis. Trends Biochem. Sci. 1985;10:447–452. [Google Scholar]
- Kuranda M.J., Aronson N.N., Jr. Tissue locations for the turnover of radioaclively labeled rat orosomucoid in vivo. Arch. Biochem. Biophys. 1983;224:526–533. doi: 10.1016/0003-9861(83)90240-0. [DOI] [PubMed] [Google Scholar]
- Lalegerie P., Legler G., Yon J.M. The use of inhibitors in the study of glycosidases. Biochimie. 1982;64:977–1000. doi: 10.1016/s0300-9084(82)80379-9. [DOI] [PubMed] [Google Scholar]
- Lang L., Reitman M., Tang J., Roberts R.M., Kornfeld S. Lysosomal enzyme phosphorylation. Recognition of a protein-dependent determinant allows specific phosphorylation of oligosaccharides present on lysosomal enzymes. J. Biol. Chem. 1984;259:14663–14671. [PubMed] [Google Scholar]
- Lawson E.Q., Hedlund B.E., Ericson M.E., Mood D.A., Litman G.W., Mid-daugh R. Effect of carbohydrate on protein solubility. Arch. Biochem. Biophys. 1983;220:572–575. doi: 10.1016/0003-9861(83)90449-6. [DOI] [PubMed] [Google Scholar]
- Le A.V., Doyle D. N-linked oligosaccharides of the H-2Dk histocompatability protein heavy chain influence its transport and cellular distribution. Biochemistry. 1985;24:6238–6245. doi: 10.1021/bi00343a030. [DOI] [PubMed] [Google Scholar]
- Leavitt R., Schlesinger S., Kornfeld S. Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and sindbis virus. J. Biol. Chem. 1977;252:9018–9023. [PubMed] [Google Scholar]
- Ledford B.E., Davis D.F. Kinetics of serum protein secretion by cultured hepatoma cells. J. Biol. Chem. 1983;258:3304–3308. [PubMed] [Google Scholar]
- Lefort G.P., Stolk J.M., Nisula B.C. Evidence that desialylation and uptake by hepatic receptors for galactose-terminated glycoproteins are immaterial to the metabolism of human choriogonadotropin in the rat. Endocrinology. 1984;115:1551–1557. doi: 10.1210/endo-115-4-1551. [DOI] [PubMed] [Google Scholar]
- Lehrman M.A., Haltiwanger R.S., Hill R.L. The binding of fucose-containing glycoproteins by hepatic lectins. The binding specificity of the rat liver fucose lectin. J. Biol. Chem. 1986;261:7426–7432. [PubMed] [Google Scholar]
- Lehrman M.A., Hill R.L. The binding of fucose-containing glycoproteins by hepatic lectins. Purification of a fucose-binding lectin from rat liver. J. Biol. Chem. 1986;261:7419–7425. [PubMed] [Google Scholar]
- Lehrman M.A., Pizzo S.V., Imber M.J., Hill R.L. The binding of fucose-containing glycoproteins by hepatic lectins. Examination of the clearance from blood and the binding to membrane receptors and pure lectins. J. Biol. Chem. 1986;261:7412–7418. [PubMed] [Google Scholar]
- Leichter A.M., Krieger M. Addition of mannose 6-phosphate-containing oligosaccharides alters cellular processing of low density lipoprotein by parental and LDL-receptor-defective Chinese hamster ovary cells. J. Cell Sci. 1984;68:183–194. doi: 10.1242/jcs.68.1.183. [DOI] [PubMed] [Google Scholar]
- Lemansky P., Gieselmann V., Hasilik A., von Figura K. Cathepsin D and β-hexosaminidase synthesized in the presence of 1-deoxynorjirimycin accumulate in the endoplasmic reticulum. J. Biol. Chem. 1984;259:10129–10135. [PubMed] [Google Scholar]
- Liscum L., Cummings R.D., Anderson R.G.W., DeMartino G.N., Goldstein J.L., Brown M.S. 3-Hydroxy-3-methylglutaryl-CoA reductase: A transmembrane glycoprotein of the endoplasmic reticulum with N-linked “high mannose” oligosaccharides. Proc. Natl. Acad. Sci. U.S.A. 1983;80:7165–7169. doi: 10.1073/pnas.80.23.7165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobermann H., Tokuoka R., Deisenhofer J., Huber R. Human α1proteinase inhibitor. Crystal structure analysis of two crystal modifications. J. Mol. Biol. 1984;255:4053–4061. [PubMed] [Google Scholar]
- Lodish H.F., Kong N. Glucose removal from N-linked oligosaccharides is required for efficient maturation of certain secretory glycoproteins from the rough endoplasmic reticulum to the Golgi complex. J. Cell Biol. 1984;98:1720–1729. doi: 10.1083/jcb.98.5.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lodish H.F., Kong N., Snider M., Strous G.J.A.M. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature (London) 1983;304:80–83. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
- Loh Y.P., Gainer H. The role of glycosylation of the biosynthesis, degradation and secretion of the ACTH-β-lipotropin common precursor and its peptide products. FEBS Lett. 1978;96:269–272. doi: 10.1016/0014-5793(78)80415-3. [DOI] [PubMed] [Google Scholar]
- Loh Y.P., Gainer H. The role of carbohydrate in the stabilization, processing, and packaging of the glycosylated adrenocorticotropin-endorphin common precursor in toad pituitaries. Endocrinology. 1979;105:474–487. doi: 10.1210/endo-105-2-474. [DOI] [PubMed] [Google Scholar]
- Loh Y.P., Gainer H. Evidence that glycosylation of proopiocortin and ACTH influences their proteolysis by trypsin and blood proteases. Mol. Cell. Endocrinol. 1980;20:35–44. doi: 10.1016/0303-7207(80)90092-1. [DOI] [PubMed] [Google Scholar]
- Lubas W.A., Spiro R.G. Golgi endo-α-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J. Biol. Chem. 1987;262:3775–3781. [PubMed] [Google Scholar]
- Lynch D.C., Williams R., Zimmerman T.S., Kirby E.P., Livingston D.M. Biosynthesis of the subunits of factor VIIIR by bovine aortic endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 1983;80:2738–2742. doi: 10.1073/pnas.80.9.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machamer C.E., Florkiewicz R.Z., Rose J.K. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Mol. Cell. Biol. 1985;5:3074–3083. doi: 10.1128/mcb.5.11.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchase R.B., Harges P., Jakoi E.R. Ligatin from embryonic chick neural retina inhibits retinal cell adhesion. Dev. Biol. 1981;86:250–255. doi: 10.1016/0012-1606(81)90337-7. [DOI] [PubMed] [Google Scholar]
- Marchase R.B., Koro L.A., Kelly C.M., McClay D.R. Retinal ligatin recognizes glycoproteins bearing oligosaccharides terminating in phosphodiester-linked glucose. Cell. 1982;28:813–820. doi: 10.1016/0092-8674(82)90060-5. [DOI] [PubMed] [Google Scholar]
- Marchase R.B., Koro L.A., Hiller A.M. Receptors for glycoproteins with phosphorylated oligosaccharides. In: Conn P.M., editor. Vol. 1. Academic Press; New York: 1984. pp. 261–313. (“The Receptors”). [Google Scholar]
- Marchase R.B. Receptors for glycoproteins with oligosaccharides containing α-glucose-1-phosphate. In: Olden K., Parent J.B., editors. “Vertebrate Lectins”. Van Nostrand Reinhold; New York: 1987. pp. 108–123. [Google Scholar]
- Maynard Y., Baenziger J.U. Oligosaccharide specific endocytosis by isolated rat hepatic reticuloendothelial cells. J. Biol. Chem. 1981;256:8063–8068. [PubMed] [Google Scholar]
- Maynard Y., Baenziger J.U. Characterization of a mannose- and N-acetylglucosamine-specific lectin present in rat hepatocytes. J. Biol. Chem. 1982;257:3788–3794. [PubMed] [Google Scholar]
- Mega T., Lujan E., Yoshida A. Studies of the oligosaccharide chains of human approtease inhibitor. II. Structure of oligosaccharides. J. Biol. Chem. 1980;255:4057–4061. [PubMed] [Google Scholar]
- Meiss H.K., Green R.F., Rodriguez-Boulan E.J. Lectin-resistant mutant of polarized epithelial cells. Mol. Cell. Biol. 1982;2:1287–1294. doi: 10.1128/mcb.2.10.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merlie J.P., Sebbane R., Tzartos S., Lindstrom J. Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor sub-units in muscle cells. J. Biol. Chem. 1982;257:2694–2701. [PubMed] [Google Scholar]
- Mizunaga T., Noguchi T. The role of core-oligosaccharide in formation of an active acid phosphatase and its secretion by yeast protoplasts. J. Biochem. 1982;91:191–200. doi: 10.1093/oxfordjournals.jbchem.a133676. [DOI] [PubMed] [Google Scholar]
- Mizuno Y., Kozutsumi Y., Kawasaki T., Yamashina I. Isolation and characterization of a mannan-binding protein from rat liver. J. Biol. Chem. 1981;256:4247–4252. [PubMed] [Google Scholar]
- Mizuochi T., Nishimura Y., Kato K., Kobata A. Comparative studies of asparagine-Iinked oligosaccharide structures on rat liver microsomal and lysosomal β-glucuronidases. Arch. Biochem. Biophys. 1981;209:298–303. doi: 10.1016/0003-9861(81)90284-8. [DOI] [PubMed] [Google Scholar]
- Montreuil J. Primary structure of glycoprotein glycans. Basis for the molecular biology of glycoproteins. Adv. Carbohydr. Chem. Biochem. 1980;37:157–223. doi: 10.1016/s0065-2318(08)60021-9. [DOI] [PubMed] [Google Scholar]
- Montreuil J. Glycoproteins. In: Neuberger A., Van Deenen L.L.M., editors. Vol I9B. Elsevier; Amsterdam: 1982. pp. 1–188. (“Comprehensive Biochemistry”). Part II. [Google Scholar]
- Montreuil J. Structure and conformation of glycoprotein glycans. In: Olden K., Parent J.B., editors. “Vertebrate Lectins”. Van Nostrand Reinhold; New York: 1987. pp. 1–26. [Google Scholar]
- Moore H.P., Gumbiner B., Kelly R.B. A subclass of proteins and sulfated macromolecules secreted by AtT-20 (mouse pituitary tumor) cells is sorted with adrenocorticotropin in dense secretory granules. J. Cell Biol. 1983;97:810–817. doi: 10.1083/jcb.97.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan E.H., Peters T., Jr. Intracellular aspects of transferrin synthesis and secretion in the rat. J. Biol. Chem. 1971;246:3508–3511. [PubMed] [Google Scholar]
- Mori K., Kawasaki T., Yamashina I. Identification of the mannan-binding protein from rat livers as a hepatocyte protein distinct from the mannan receptor on sinusoidal cells. Arch. Biochem. Biophys. 1983;222:542–552. doi: 10.1016/0003-9861(83)90552-0. [DOI] [PubMed] [Google Scholar]
- Mori K., Kawasaki T., Yamashina I. Subcellular distribution of the mannan-binding protein and its endogenous inhibitors in rat liver. Arch. Biochem. Biophys. 1984;232:223–233. doi: 10.1016/0003-9861(84)90538-1. [DOI] [PubMed] [Google Scholar]
- Nakamura K., Compans R.W. Host cell- and virus strain-dependent differences in oligosaccharides of hemagglutinin glycoproteins of influenza A viruses. Virology. 1979;95:8–23. doi: 10.1016/0042-6822(79)90397-0. [DOI] [PubMed] [Google Scholar]
- Neufeld E.F., Lim T.W., Shapiro L.J. Inherited disorders of lysosomal metabolism. Annu. Rev. Biochem. 1975;44:357–376. doi: 10.1146/annurev.bi.44.070175.002041. [DOI] [PubMed] [Google Scholar]
- Neufeld E.F., Sando G.N., Garvin A.J., Rome L.H. The transport of lysosomal enzymes. J. Supramol. Struct. 1977;6:95–101. doi: 10.1002/jss.400060108. [DOI] [PubMed] [Google Scholar]
- Novick P., Schekman R. Export of major cell surface proteins is blocked in yeast secretory mutants. J. Cell Biol. 1983;96:541–547. doi: 10.1083/jcb.96.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olden K., Pratt R.M., Yamada K.M. Role of carbohydrates in protein secretion and turnover. Effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts. Cell. 1978;13:461–473. doi: 10.1016/0092-8674(78)90320-3. [DOI] [PubMed] [Google Scholar]
- Olden K., Parent J.B., White S.L. Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim. Biophys. Acta. 1982;650:209–232. doi: 10.1016/0304-4157(82)90017-x. [DOI] [PubMed] [Google Scholar]
- Omary M.B., Trowbridge I.S. Biosynthesis of the human transferrin receptor in cultured cells. J. Biol. Chem. 1981;256:12888–12892. [PubMed] [Google Scholar]
- Owen M.J., Kissonerghis A.M., Lodish H.F. Biosynthesis of HLA-A and HLA-B antigens in vivo. J. Biol. Chem. 1980;255:9678–9684. [PubMed] [Google Scholar]
- Palade G. Intracellular aspects of the process of protein secretion. Science. 1975;189:347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- Palamarczyk G., Elbein A.D. The effect of castanospermine on the oligosaccharide structures of glycoproteins from lymphoma cell lines. Biochem. J. 1985;227:795–804. doi: 10.1042/bj2270795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan Y.T., Hori H., Saul R., Sanford B.A., Molyneux R.J., Elbein A.D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry. 1983;22:3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
- Parent J.B., Bauer H.C., Olden K. Tunicamycin treated fibroblasts secrete a cathepsin B-like protease. Biochem. Biophys. Res. Commun. 1982;108:552–558. doi: 10.1016/0006-291x(82)90864-6. [DOI] [PubMed] [Google Scholar]
- Parent J.B., Bauer H.C., Olden K. Three secretory rates in human hepatoma cells. Biochim. Biophys. Acta. 1985;846:44–50. doi: 10.1016/0167-4889(85)90108-9. [DOI] [PubMed] [Google Scholar]
- Parent J.B., Yeo T.K., Yeo K.T., Olden K. Differential effects of 1-deoxynorjirimycin on the intracellular transport of secretory glycoproteins of human hepatoma cells in culture. Mol. Cell. Biochem. 1986;72:21–33. doi: 10.1007/BF00230633. [DOI] [PubMed] [Google Scholar]
- Parodi A.J., Lederkremer G.Z., Mendelzon D.H. Protein glycosylation in Trypanosoma cruzi. The mechanism of glycosylation and structure of protein-bound oligosaccharides. J. Biol. Chem. 1983;258:5589–5595. [PubMed] [Google Scholar]
- Parodi A.J., Mendelzon D.H., Lederkremer G.Z. Transient glucosylation of protein-bound Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2 in calf thyroid cells. A possible recognition signal in processing of glycoproteins. J. Biol. Chem. 1983;258:8260–8265. [PubMed] [Google Scholar]
- Parodi A.J., Mendelzon D.H., Lederkremer G.Z., Martin-Barrientos J. Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2 occurs in rat liver and Phaseolus vulgaris cells. J. Biol. Chem. 1984;259:6351–6357. [PubMed] [Google Scholar]
- Pecoud A.R., Ruddy S., Conrad D.H. Functional and partial characterization of the carbohydrate moieties of the IgE receptor on rat basophilic leukemia cells and rat mast cells. J. Immunol. 1981;126:1624–1629. [PubMed] [Google Scholar]
- Pennica D., Holmes W.E., Kohr W.J., Harkins R.N., Vehar G.A., Ward C.A., Bennett W.F., Yelverton E., Seeburg P.H., Heyneker H.L., Goeddel D.V., Collen D. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature (London) 1983;301:214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
- Peyrieras N., Bause E., Legler G., Vasilov R., Claesson L., Peterson P., Ploegh H. Effect of the glucosidase inhibitors norjirimycin and deoxynorjirimycin on the biosynthesis of membrane and secretory glycoproteins. EMBO J. 1983;2:823–832. doi: 10.1002/j.1460-2075.1983.tb01509.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plantner J.J., Poncz L., Kean E.L. Effect of tunicamycin on the glycosylation of rhodopsin. Arch. Biochem. Biophys. 1980;201:527–532. doi: 10.1016/0003-9861(80)90541-x. [DOI] [PubMed] [Google Scholar]
- Ploegh H.L., Orr H.T., Strominger J.L. Biosynthesis and cell surface localization of nonglycosylated human histocompatability antigens. J. Immunol. 1981;126:270–275. [PubMed] [Google Scholar]
- Pricer W.E., Jr., Ashwell G. Subcellular distribution of a mammalian hepatic binding protein specific for asialoglycoproteins. J. Biol. Chem. 1976;251:7539–7544. [PubMed] [Google Scholar]
- Prieels J.P., Pizzo S.V., Glasgow L.R., Paulson J.C., Hill R.L. Hepatic receptor that specifically binds oligosaccharides containing fucosyl-αl-3 N-acetylglucosamine linkages. Proc. Natl. Acad. Sci. U.S.A. 1978;75:2215–2219. doi: 10.1073/pnas.75.5.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prives J., Bar-Sagi D. Effect of tunicamycin, an inhibitor of protein glycosylation, on the biological properties of acetylcholine receptor in cultured muscle cells. J. Biol. Chem. 1983;258:1775–1780. [PubMed] [Google Scholar]
- Puett D. Conformational studies on a glycosylated bovine pancreatic ribonuclease. J. Biol. Chem. 1973;248:3566–3572. [PubMed] [Google Scholar]
- Rearick J.I., Chapman A., Kornfeld S. Glucose starvation alters lipid-linked oligosaccharide biosynthesis in Chinese hamster ovary cells. J. Biol. Chem. 1981;256:6255–6261. [PubMed] [Google Scholar]
- Reed B.C., Ronnett G.V., Lane M.D. Role of glycosylation and protein synthesis in insulin receptor metabolism by 3T3-L1 mouse adipocytes. Proc. Natl. Acad. Sci. U.S.A. 1981;78:2908–2912. doi: 10.1073/pnas.78.5.2908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reitman M.L., Kornfeld S. UDP-N-acetylglucosamine: glycoprotein N-acetylglucosamine-1-phosphotransferase. Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes. J. Biol. Chem. 1981;256:4257–4281. [PubMed] [Google Scholar]
- Reitman M.L., Kornfeld S. Lysosomal enzyme targeting. N-Acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes. J. Biol. Chem. 1981;256:11977–11980. [PubMed] [Google Scholar]
- Reitman M.L., Trowbridge I.S., Kornfeld S. A lectin-resistant mouse lymphoma cell line is deficient in glucosidase II, a glycoprotein-processing enzyme. J. Biol. Chem. 1982;257:10357–10363. [PubMed] [Google Scholar]
- Repp R., Tamura T., Boschek C.B., Wege H., Schwarz R.T., Niemann H. The effects of processing inhibitors of N-linked oligosaccharides on the intracellular migration of glycoprotein E2 of mouse hepatitis virus and the maturation of corona virus particles. J. Biol. Chem. 1985;260:15873–15879. doi: 10.1016/S0021-9258(17)36339-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbins A.R., Myerowitz R. The mannose 6-phosphate receptor of Chinese hamster ovary cells. Compartmentalization of acid hydrolases in mutants with altered receptors. J. Biol. Chem. 1981;256:10623–10627. [PubMed] [Google Scholar]
- Robbins A.R., Myerowitz R., Youle R.J., Murray G.J., Neville D.M., Jr. The mannose 6-phosphate receptor of Chinese hamster ovary cells. Isolation of mutants with altered receptors. J. Biol. Chem. 1981;256:10618–10622. [PubMed] [Google Scholar]
- Roller R.J., Wassarman P.M. Role of asparagine-linked oligosaccharides in secretion of glycoproteins of the mouse egg's extracellular coat. J. Biol. Chem. 1983;258:13243–13249. [PubMed] [Google Scholar]
- Romero P.A., Datema R., Schwarz R.T. N-Methyl-1-deoxynorjirimycin, a novel inhibitor of glycoprotein processing and its effect of fowl plague virus maturation. Virology. 1983;130:238–242. doi: 10.1016/0042-6822(83)90133-2. [DOI] [PubMed] [Google Scholar]
- Romero P.A., Saunier B., Herscovics A. Comparison between 1-deoxynorjirimycin and N-methyl-1-deoxynorjirimycin as inhibitors of oligosaccharide processing in intestinal epithelial cells. Biochem. J. 1985;226:733–740. doi: 10.1042/bj2260733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romero P.A., Herscovics A. Transfer of nonglucosylated oligosaccharide from lipid to protein in a mammalian cell. J. Biol. Chem. 1986;261:15936–15940. [PubMed] [Google Scholar]
- Ronin C., Cased C. Transfer of glucose in the biosynthesis of thyroid glycoproteins. II. Possibility of a direct transfer of glucose from UDPglucose to proteins. Biochim. Biophys. Acta. 1981;674:58–64. doi: 10.1016/0304-4165(81)90346-9. [DOI] [PubMed] [Google Scholar]
- Ronnett G.V., Lane M.D. Posttranslational glycosylation-induced activation of aglycoinsulin receptor accumulated during tunicamycin treatment. J. Biol. Chem. 1981;256:4704–4707. [PubMed] [Google Scholar]
- Ronnett G.V., Knutson V.P., Kohanski R.A., Simpson T.L., Lane M.D. Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3-L1 adipocytes. J. Biol. Chem. 1984;259:4566–4575. [PubMed] [Google Scholar]
- Roos P.H., Harman H.J., Schlepper-Schafer J., Kolb H., Kolb-Bachofen V. Galactose-specific receptors on liver cells. II. Characterization of the purified receptor from macrophages reveals no structural relationship to the hepatocyte receptor. Biochim. Biophys. Acta. 1985;847:115–121. doi: 10.1016/0167-4889(85)90161-2. [DOI] [PubMed] [Google Scholar]
- Rosner M.R., Grinna L.S., Robbins P.W. Differences in glycosylation patterns of closely related murine leukemia viruses. Proc. Natl. Acad. Sci. U.S.A. 1980;77:67–71. doi: 10.1073/pnas.77.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth J., Berger E.G. Immunocytochemical localization of galactosyltransferase in HeLa cells: Codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J. Cell Biol. 1982;93:223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth M.G., Fitzpatrick J.P., Compans R.W. Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: Lack of a requirement for glycosylation of viral glycoproteins. Proc. Natl. Acad. Sci. U.S.A. 1979;76:6430–6434. doi: 10.1073/pnas.76.12.6430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotundo R.L. Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc. Natl. Acad. Sci. U.S.A. 1984;81:479–483. doi: 10.1073/pnas.81.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Runge K.W., Huflaker T.C., Robbins P.W. Two yeast mutations in glycosylation steps of the asparagine glycosylation pathway. J. Biol. Chem. 1984;259:412–417. [PubMed] [Google Scholar]
- Ruta M., Clarke S., Boswell B., Kabat D. Heterogeneous metabolism and subcellular localization of a potentially leukemogenic membrane glycoprotein encoded by Friend erythroleukemia virus. J. Biol. Chem. 1982;257:126–134. [PubMed] [Google Scholar]
- Sahagian G.G. The mannose 6-phosphate receptor and its role in lysosomal enzyme transport. In: Olden K., Parent J.B., editors. “Vertebrate Lectins”. Van Nostrand Reinhold; New York: 1987. pp. 46–64. [Google Scholar]
- Sahagian G.G., Distler J., Jourdian G.W. Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular β-galactosidase. Proc. Natl. Acad. Sci. U.S.A. 1981;78:4289–4293. doi: 10.1073/pnas.78.7.4289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkar M., Liao J., Kabat E.A., Tanabe T., Ashwell G. The binding site of rabbit hepatic lectin. J. Biol. Chem. 1979;254:3170–3174. [PubMed] [Google Scholar]
- Saunier B., Kilker R.D., Jr., Tkacz J.S., Quaroni A., Herscovics A. Inhibition of N-linked complex oligosaccharide formation by 1-deoxynorjirimycin, an inhibitor of processing glucosidases. J. Biol. Chem. 1982;257:14155–14161. [PubMed] [Google Scholar]
- Schauer R. Sialic acids and their roles as biological masks. Trends Biol. Sci. 1985;10:357–360. [Google Scholar]
- Scheele G., Tartakoff A. Exit of nonglycosylated secretory proteins from the rough endoplasmic reticulum is asynchronous in the exocrine pancreas. J. Biol. Chem. 1985;260:926–931. [PubMed] [Google Scholar]
- Schindler M., Hogan M. Carbohydrate moieties of nuclear glycoproteins are predominantly N-acetylglucosamine. J. Cell biol. 1984;99:99a. (abstr.) [Google Scholar]
- Schindler M., Hogan M., Miller R., DeGaetano D. A nuclear specific glycoprotein representative of a unique pattern of glycosylation. J. Biol. Chem. 1987;262:1254–1260. [PubMed] [Google Scholar]
- Schlepper-Schafer J., Hulsmann D., Djoulcar A., Meyer H.E., Herbertz L., Kolb H., Kolb-Bachofen V. Endocytosis via galactose receptors in vivo. Exp. Cell Res. 1986;165:494–506. doi: 10.1016/0014-4827(86)90602-6. [DOI] [PubMed] [Google Scholar]
- Schlesinger S., Malfer C., Schlessinger M.J. The formation of vesicular stomatitis virus (San Juan strain) becomes temperature-sensitive when glucose residues are retained on the oligosaccharides of the glycoprotein. J. Biol. Chem. 1984;259:7597–7601. [PubMed] [Google Scholar]
- Schlesinger S., Koyama A.H., Malfer C., Gee S.L., Schlesinger M.J. The effects of inhibitors of glucosidase 1 on the formation of Sindbis virus. Virol. Res. 1985;2:139–149. doi: 10.1016/0168-1702(85)90244-8. [DOI] [PubMed] [Google Scholar]
- Schmidt J.A., Beug H., Hayman M.J. Effects of inhibitors of glycoprotein processing on the synthesis and biological activity of the erbB oncogene. EMBO J. 1985;4:105–112. doi: 10.1002/j.1460-2075.1985.tb02323.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber G., Dryburgh H., Millership A., Matsuda Y., Inglis A., Phillips J., Edwards K., Maggs J. The synthesis and secretion of rat transferrin. J. Biol. Chem. 1979;254:12013–12019. [PubMed] [Google Scholar]
- Schwartz A.L. The hepatic asialoglycoprotein receptor. CRC Crit. Rev. Biochem. 1984;16:207–233. doi: 10.3109/10409238409108716. [DOI] [PubMed] [Google Scholar]
- Schwarz R.T., Datema R. The lipid pathway of protein glycosylation and its inhibitors: The biological significance of protein-bound carbohydrates. Adv. Carbohydr. Chem. Biochem. 1982;40:287–379. doi: 10.1016/s0065-2318(08)60111-0. [DOI] [PubMed] [Google Scholar]
- Schwarz R.T., Datema R. In: Horowitz M.I., editor. Vol. 3. Academic Press; New York: 1982. pp. 47–79. (“The Glycoconjugates”). [Google Scholar]
- Schwarz R.T., Datema R. Inhibitors of trimming: New tools in glycoprotein research. Trends Biol. Sci. 1984;9:32–34. [Google Scholar]
- Schwarz R.T., Klenk H.D. Carbohydrates of influenza virus: IV. Strain-dependent variations. Virology. 1981;113:584–593. doi: 10.1016/0042-6822(81)90186-0. [DOI] [PubMed] [Google Scholar]
- Schwarz R.T., Rohrschneider J.M., Schmidt M.F.G. Suppression of glycoprotein formation of Semliki Forest, influenza, and avian sarcoma virus by tunicamycin. J. Virol. 1976;19:782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheares B.T., Robbins P.W. Glycosylation of ovalbumin in a heterologous cell: Analysis of oligosaccharide chains of the cloned glycoprotein in mouse L cells. Proc. Natl. Acad. Sci. U.S.A. 1986;83:1993–1997. doi: 10.1073/pnas.83.7.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepherd V.L., Freeze H.H., Miller A.L., Stahl P.D. Identification of mannose 6-phosphate receptors in rabbit alveolar macrophage. J. Biol. Chem. 1984;259:2257–2261. [PubMed] [Google Scholar]
- Sibley C.H., Wagner R.A. Glycosylation is not required for membrane localization or secretion of IgM in a mouse B cell lymphoma. J. Immunol. 1981;126:1868–1873. [PubMed] [Google Scholar]
- Sidman C. Differing requirements for glycosylation in the secretion of related glycoproteins is determined neither by the producing cell nor by the relative number of oligosaccharide units. J. Biol. Chem. 1981;256:9374–9376. [PubMed] [Google Scholar]
- Simmons K., Fuller S.D. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1985;1:243–288. doi: 10.1146/annurev.cb.01.110185.001331. [DOI] [PubMed] [Google Scholar]
- Siuta-Mangano P., Janero D.R., Lane M.D. Association and assembly of triglyceride and phospholipid with glycosylated and unglycosylated apoproteins of very low density lipoprotein in the intact liver cell. J. Biol. Chem. 1982;257:11463–11467. [PubMed] [Google Scholar]
- Slieker L.J., Lane M.D. Posttranslational processing of the epidermal growth factor receptor. Glycosylation-dependent acquisition of ligand-binding capacity. J. Biol. Chem. 1985;260:687–690. [PubMed] [Google Scholar]
- Sly W.S. In: Horowitz M.I., editor. Vol. 3. Academic Press; New York: 1982. pp. 3–25. (“The Glycoconjugates”). [Google Scholar]
- Sly W.S., Stahl P. In: “Transport of Macromolecules in Cellular Systems”. Silverstein S.C., editor. Dahlen Kouferenzen; Berlin: 1978. pp. 229–245. [Google Scholar]
- Snider M.D. In: Ginsburg V., Robbins P.W., editors. Vol. 2. Wiley (Interscience); New York: 1984. pp. 163–198. (“Biology of Carbohydrates”). [Google Scholar]
- Soderquist A.M., Carpenter G. Glycosylation of the epidermal growth factor receptor in A-431 cells. The contribution of carbohydrate to receptor function. J. Biol. Chem. 1984;259:12586–12594. [PubMed] [Google Scholar]
- Stahl P., Schlessinger P.H., Sigardon E., Rodman J.S., Lee Y.C. Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: Characterization and evidence for receptor recycling. Cell. 1980;19:207–215. doi: 10.1016/0092-8674(80)90402-x. [DOI] [PubMed] [Google Scholar]
- Stanley P. Glycosylation mutants of animal cells. Annu. Rev. Genet. 1984;18:525–552. doi: 10.1146/annurev.ge.18.120184.002521. [DOI] [PubMed] [Google Scholar]
- Stanley P. In: “Molecular Cell Genetics: The Chinese Hamster Cell”. Gottes-man M.M., editor. Wiley (Interscience); New York: 1985. pp. 745–772. [Google Scholar]
- Steer C.J., Ashwell G. Studies on a mammalian hepatic binding protein specific for asialoglycoproteins. J. Biol. Chem. 1980;255:3008–3018. [PubMed] [Google Scholar]
- Stevens T.H., Rothman J.H., Payne G.S., Schekman R. Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y. J. Cell Biol. 1986;102:1551–1557. doi: 10.1083/jcb.102.5.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoll J., Robbins A.R., Krag S.S. Mutant Chinese hamster ovary cells with altered mannose 6-phosphate receptor activity is unable to synthesize mannosylphosphoryldolichol. Proc. Natl. Acad. Sci. U.S.A. 1982;79:2296–2300. doi: 10.1073/pnas.79.7.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stowell C.P., Lee Y.C. The binding of D-glucosyl-neoglycoproteins to the hepatic asialoglycoprotein receptor. J. Biol. Chem. 1978;253:6107–6110. [PubMed] [Google Scholar]
- Strous G.J.A.M., Lodish H.F. Intracellular transport of secretory and membrane proteins in hepatoma cells infected by vesicular stomatitis virus. Cell. 1980;22:709–717. doi: 10.1016/0092-8674(80)90547-4. [DOI] [PubMed] [Google Scholar]
- Strous G.J.A.M., Willemsen R., van Kerkhof P., Slot J.W., Geuze H.J., Lodish H. Vesicular stomatitis virus glycoprotein, albumin, and transferrin are transported to the cell surface via the same Golgi vesicles. J. Cell Biol. 1983;97:1815–1822. doi: 10.1083/jcb.97.6.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svedersky L.P., Shepard H.M., Spencer S.A., Shalaby M.R., Palladino M.A. Augmentation of human natural cell-mediated cytotoxicity by recombinant human interleukin 2. J. Immunol. 1984;133:714–718. [PubMed] [Google Scholar]
- Swiedler S.J., Hart G.W., Tarentino A.L., Plummer T.H., Jr., Freed J.H. Stable oligosaccharide microheterogeneity at individual glycosylation sites of a murine major histocompatability antigen derived from a B-cell lymphoma. J. Biol. Chem. 1983;258:11515–11523. [PubMed] [Google Scholar]
- Swiedler S.J., Freed J.H., Tarentino A.L., Plummer T.H., Jr., Hart G.W. Oligosaccharide microheterogeneity of the murine major histocompatibility antigens. Reproducible site-specific patterns of sialylation and branching in asparagine-linked oligosaccharides. J. Biol. Chem. 1985;260:4046–4054. [PubMed] [Google Scholar]
- Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. III. Identification of an α-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J. Biol. Chem. 1978;253:7779–7786. [PubMed] [Google Scholar]
- Takatsuki A., Arima K., Tamura G. Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J. Antibiot. 1971;24:215–223. doi: 10.7164/antibiotics.24.215. [DOI] [PubMed] [Google Scholar]
- Takatsuki A., Kohno K., Tamura G. Inhibition of biosynthesis of polyiso-prenol sugars in chick embryo microsomes by tunicamycin. Agric. Biol. Chem. 1975;39:2089–2091. [Google Scholar]
- Tarentino A.L., Plummer T.H., Jr., Maley F. The release of intact oligosaccharides from specific glycoproteins by endo-β-N-acetylglucosaminidase H. J. Biol. Chem. 1974;249:818–824. [PubMed] [Google Scholar]
- Tartakoff A.M. The confined function model of the Golgi complex: Center for ordered processing of biosynthetic products of the rough endoplasmic reticulum. Int. Rev. Cylol. 1983;85:221–252. doi: 10.1016/S0074-7696(08)62374-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tartakoff A.M. Mutations that influence the secretory path in animal cells. Biochem. J. 1983;216:1–9. doi: 10.1042/bj2160001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tartakoff A., Vassalli P. Comparative studies of intracellular transport of secretory proteins. J. Cell Biol. 1978;79:694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tkacz J.S., Lampen J.B. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem. Biophys. Res. Commun. 1975;65:248–257. doi: 10.1016/s0006-291x(75)80086-6. [DOI] [PubMed] [Google Scholar]
- Torres C.R., Hart G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. J. Biol. Chem. 1984;259:3308–3317. [PubMed] [Google Scholar]
- Townsend R., Stahl P. Isolation and characterization of a mannose/N-acetylglucosamine/fucose binding protein from rat liver. Biochem. J. 1981;194:209–214. doi: 10.1042/bj1940209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trimble R.B., Maley F. The use of endo-β-N-acetylglucosaminidase H in characterizing the structure and function of glycoproteins. Biochem. Biophys. Res. Commun. 1977;78:935–944. doi: 10.1016/0006-291x(77)90512-5. [DOI] [PubMed] [Google Scholar]
- Trowbridge I.S., Hyman R. Abnormal lipid-linked oligosaccharides in class E Thy-1-negative mutant lymphomas. Cell. 1979;17:503–508. doi: 10.1016/0092-8674(79)90258-7. [DOI] [PubMed] [Google Scholar]
- Trowbridge I.S., Hyman R., Mazauskas C. The synthesis and properties of T25 glycoprotein in Thy-1 negative mutant lymphoma cells. Cell. 1978;14:21–32. doi: 10.1016/0092-8674(78)90297-0. [DOI] [PubMed] [Google Scholar]
- Trowbridge I.S., Hyman R., Ferson T., Mazauskas C. Expression of Thy-1 glycoprotein on lectin-resistant lymphoma cell lines. Eur. J. Immunol. 1978;8:716–723. doi: 10.1002/eji.1830081009. [DOI] [PubMed] [Google Scholar]
- Tulsiani D.R.P., Touster O. Swainsonine causes the production of hybrid glycoproteins by human skin fibroblasts and rat liver Golgi preparations. J. Biol. Chem. 1983;258:7578–7585. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Hubbard S.C., Robbins P.W., Touster O. α-D-Mannosidases of rat liver Golgi membranes. J. Biol. Chem. 1982;257:3660–3668. [PubMed] [Google Scholar]
- Tulsiani D.R.P., Harris T.M., Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II. J. Biol. Chem. 1982;257:7936–7939. [PubMed] [Google Scholar]
- Vladutiu G.D., Rattazzi M. Excretion-reuptake route of β-hexosaminidase in normal and I-cell disease cultured fibroblasts. J. Clin. Invest. 1979;63:595–601. doi: 10.1172/JCI109341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Figura K., Hasilik A. Lysosomal enzymes and their receptors. Annu. Rev. Biochem. 1986;55:167–193. doi: 10.1146/annurev.bi.55.070186.001123. [DOI] [PubMed] [Google Scholar]
- von Figura K., Weber E. An alternative hypothesis of cellular transport of lysosomal enzymes in fibroblasts. Biochem. J. 1978;176:943–950. doi: 10.1042/bj1760943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waechter C.J., Schmidt J.W., Catterall W.A. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J. Biol. Chem. 1983;258:5117–5123. [PubMed] [Google Scholar]
- Wagner D.D., Mayadas T., Marder V.J. Initial glycosylation and acidic pH in the Golgi apparatus are required for multimerization of von Willebrand factor. J. Cell Biol. 1986;102:1320–1324. doi: 10.1083/jcb.102.4.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waheed A., Hasilik A., von Figura K. UDP-N-acetylglucosamine : lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase. J. Biol. Chem. 1982;257:12322–12331. [PubMed] [Google Scholar]
- Wang F.F.C., Hirs C.H.W. Influence of the heterosaccharides in porcine pancreatic ribonuclease on the conformation and stability of the protein. J. Biol. Chem. 1977;252:8358–8364. [PubMed] [Google Scholar]
- Weigel P.H., Oka J.A. The large intracellular pool of asialoglycoprotein receptors functions during the endocytosis of asialoglycoproteins by isolated rat hepatocytes. J. Biol. Chem. 1983;258:5095–5102. [PubMed] [Google Scholar]
- Weigel P.H. Receptor recycling and ligand processing mediated by hepatic glycosyl receptors: A two-pathway system. In: Olden K., Parent J.B., editors. “Vertebrate Lectins”. Van Nostrand Reinhold; New York: 1987. pp. 65–91. [Google Scholar]
- Weis J.J., Fearon D.T. The identification of N-linked oligosaccharides on the human CR2/Epstein-Barr virus receptor and their function in receptor metabolism, plasma membrane expression, and ligand binding. J. Biol. Chem. 1985;260:13824–13830. [PubMed] [Google Scholar]
- Whitsett J.A., Ross G., Weaver T., Rice W., Dion C., Hull W. Glycosylation and secretion of surfactant-associated glycoprotein A. J. Biol. Chem. 1985;260:15273–15279. [PubMed] [Google Scholar]
- Wileman T., Boshans R., Schlesinger R.H., Stahl P.D. Monensin inhibits recycling of macrophages' mannose-glycoprotein receptors and ligand delivery to lysosomes. Biochem. J. 1984;220:665–675. doi: 10.1042/bj2200665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams D.B., Swiedler S.J., Hart G.W. Intracellular transport of membrane glycoproteins: Two closely related histocompatability antigens differ in their rates of transit to the cell surface. J. Cell Biol. 1985;101:725–734. doi: 10.1083/jcb.101.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong K.L., Charlwood P.A., Hatton M.W.C., Regoeczi E. Studies of the metabolism of asialotransferrins: Evidence that transferrin does not undergo desialylation in vivo. Clin. Sci. Mol. Med. 1974;46:763–774. doi: 10.1042/cs0460763. [DOI] [PubMed] [Google Scholar]
- Yamashita K., Kamerling J.P., Kobata A. Structural studies of the sugar chains of hen ovomucoid. Evidence indicating that they are formed mainly by the alternate biosynthetic pathway of asparagine-linked sugar chains. J. Biol. Chem. 1983;258:3099–3106. [PubMed] [Google Scholar]
- Yeo K.T., Parent J.B., Yeo T.K., Olden K. Variability in transport rates of secretory glycoproteins through the endoplasmic reticulum and Golgi in human hepatoma cells. J. Biol. Chem. 1985;260:7896–7902. [PubMed] [Google Scholar]
- Yeo T.K., Yeo K.T., Parent J.B., Olden K. Swainsonine treatment accelerates intracellular transport and secretion of glycoproteins in human hepatoma cells. J. Biol. Chem. 1985;260:2565–2569. [PubMed] [Google Scholar]
- Yokota S., Fahimi H.D. Immunochemical localization of albumin in the secretory apparatus of rat liver parenchymal cells. Proc. Natl. Acad. Sci. U.S.A. 1981;78:4970–4974. doi: 10.1073/pnas.78.8.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida L., Lieberman J., Gaidulis L., Ewing C. Molecular abnormality of human arantitrypsin variant (PiZ) associated with plasma activity deficiency. Proc. Natl. Acad. Sci. U.S.A. 1976;73:1324–1328. doi: 10.1073/pnas.73.4.1324. [DOI] [PMC free article] [PubMed] [Google Scholar]