Abstract
The nucleotide sequence of the peplomer (P) protein gene of Berne virus (BEV), the torovirus prototype, was determined. The gene encodes an apoprotein of 1581 amino acids with an Mr of about 178K. The open reading frame was cloned behind the T7 RNA polymerase promoter and its translation product was identified as the BEV P protein precursor by in vivo expression and immunoprecipitation. The deduced amino acid sequence contains a number of domains which are typical for type I membrane glycoproteins: an N-terminal signal sequence, a putative C-terminal transmembrane anchor, and a cytoplasmic tail. Eighteen potential N-glycosylation sites, two heptad repeat domains, and a possible “trypsin-like” cleavage site were identified. The mature P protein consists of two subunits and their electrophoretic mobility upon endoglycosidase F treatment strongly suggests that the predicted cleavage site is functional in vivo. The heptad repeat domains are probably involved in the generation of an intra-chain coiled-coil secondary structure; similar inter-chain interactions can play a role in P protein oligomerization. Using a sucrose gradient assay the P protein was indeed shown to form dimers. The intra- and inter-chain coiled-coil interactions may stabilize the elongated BEV peplomers.
Footnotes
Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under Accession No. X52506.
References
- Cavanagh D. Coronavirus I BV: Structural characterization of the spike protein. J. Gen. Virol. 1983;64:2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
- Cavanagh D., Davis P.J., Pappin D.J.C., Binns M.M., Boursnell M.E.G., Brown T.D.K. Coronavirus IBV: Partial amino terminal sequencing of spike polypeptide S2 identifies the sequence ArgArgPheArgArg at the cleavage site of the spike precursor polypeptide of IBV strains Beaudette and M41. Virus Res. 1986;4:133–143. doi: 10.1016/0168-1702(86)90037-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen C., Parry D.A.D. α-Helical coiled coils—A widespread motif in proteins. Trends. Biochem. Sci. 1986;11:245–248. [Google Scholar]
- Chrichton R.R., Eason R., Barclay A., Bryce C.F.A. The subunit structure of horse spleen apoferritin: The molecular weight of the oligomer and its stability to dissociation by dilution. Biochem. J. 1973;131:855–857. doi: 10.1042/bj1310855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Groot R.J., Luytjes W., Horzinek M.C., Van Der Zeijst B.A.M., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Groot R.J., Van Leen R.W., Dalderup M.J.M., Vennema H., Horzinek M.C., Spaan W.J.M. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology. 1989;171:493–502. doi: 10.1016/0042-6822(89)90619-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domls R.W., Helenius A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J. Virol. 1986;60:833–839. doi: 10.1128/jvi.60.3.833-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doms R.W., Ruusala A., Machamer C., Helenius J., Helenius A., Rose J.K. Differential effects of mutations in three domains on folding, quaternary structure, and intracellular transport of vesicular stomatitis virus G protein. J. Cell Biol. 1988;107:89–99. doi: 10.1083/jcb.107.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunphy W.G., Rothman J.E. Compartmental organization of the Golgi stack. Cell. 1985;42:13–21. doi: 10.1016/s0092-8674(85)80097-0. [DOI] [PubMed] [Google Scholar]
- Elder J.H., Alexander S. Vol. 79. 1982. Endo-(β-N-acetylglucosaminidase F: Endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins; pp. 4540–4544. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fagerland J.A., Pohlenz J.F.L., Woode G.N. A morphological study of the replication of Breda virus (proposed family Toroviridae) in bovine intestinal cells. J. Gen. Virol. 1986;67:1293–1304. doi: 10.1099/0022-1317-67-7-1293. [DOI] [PubMed] [Google Scholar]
- Fuerst T.R., Niles E.G., Studier F.W., Moss B. Vol. 83. 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase; pp. 8122–8126. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorman C. High efficiency gene transfer into mammalian cells. In: Glover D.M., editor. DNA Cloning, Vol. II, A Practical Approach. IRL Press; Oxford, UK: 1985. pp. 143–165. [Google Scholar]
- Horzinek M.C., Weiss M. Toroviridae: A taxonomic proposal. Zentralbl. Veterinaer. Med. Reihe B. 1984;31:649–659. [PubMed] [Google Scholar]
- Horzinek M.C., Weiss M., Ederveen J. Berne virus is not “coronavirus-like”. J. Gen. Virol. 1984;65:645–649. doi: 10.1099/0022-1317-65-3-645. [DOI] [PubMed] [Google Scholar]
- Horzinek M.C., Ederveen J., Kaeffer B., De Boer D., Weiss M. The peplomers of Berne virus. J. Gen. Virol. 1986;67:2475–2483. doi: 10.1099/0022-1317-67-11-2475. [DOI] [PubMed] [Google Scholar]
- Horzinek M.C., Flewett T.H., Saif L.J., Spaan W.J.M., Weiss M., Woode G.N. A new family of vertebrate viruses: Toroviridae. Intervirology. 1987;27:17–24. doi: 10.1159/000149710. [DOI] [PubMed] [Google Scholar]
- Huston J.S., Fish W.W., Mann K.G., Tanford C. Studies on the subunit molecular weight of beef heart lactate dehydrogenase. Biochemistry. 1972;11:1609–1612. doi: 10.1021/bi00759a010. [DOI] [PubMed] [Google Scholar]
- Kaeffer B., Van Kooten P., Ederveen J., Van Eden W., Horzinek M.C. Properties of monoclonal antibodies against Berne virus (Toroviridae) Amer. J. Vet. Res. 1989;50:1131–1137. [PubMed] [Google Scholar]
- Kozak M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15:8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lipman D.J., Pearson W.R. Rapid and sensitive protein similarity searches. Science. 1985;227:1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
- Metcalf P., Blum M., Freymann D., Turner M., Wiley D.C. Two variant surface glycoproteins of Trypanosoma brucei of different sequence classes have similar 6 Å resolution X-ray structure. Nature (London) 1987;325:84–86. doi: 10.1038/325084a0. [DOI] [PubMed] [Google Scholar]
- Schroeder W.A., Shelton J.R., Shelion J.B., Robberson B., Apell G. The amino acid sequence of bovine liver catalase: A preliminary report. Arch. Biochem. Biophys. 1969;131:653–655. doi: 10.1016/0003-9861(69)90441-x. [DOI] [PubMed] [Google Scholar]
- Snijder E.J., Ederveen J., Spaan W.J.M., Weiss M., Horzinek M.C. Characterization of Berne virus genomic and messenger RNAs. J. Gen. Virol. 1988;69:2135–2144. doi: 10.1099/0022-1317-69-9-2135. [DOI] [PubMed] [Google Scholar]
- Snijder E.J., Horzinek M.C., Spaan W.J.M. A 3′-coterminal nested set of independently transcribed messenger RNAs is generated during Berne virus replication. J. Virol. 1990;64:331–338. doi: 10.1128/jvi.64.1.331-338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snijder E.J., Den Boon J.A., Bredfnbeek P.J., Horzinek M.C., Rijnbrand R., Spaan W.J.M. The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionarily related. Nucleic Acids Res. 1990;18 doi: 10.1093/nar/18.15.4535. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Squire P.G., Moser P., O'Konski C.T. The hydrodynamic properties of bovine serum albumin monomer and dimer. Biochemistry. 1968;7:4261–4272. doi: 10.1021/bi00852a018. [DOI] [PubMed] [Google Scholar]
- Staden R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids. Res. 1982;10:2951–2961. doi: 10.1093/nar/10.9.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staden R. The current status and portability of our sequence handling software. Nucleic Acids Res. 1986;14:217–233. doi: 10.1093/nar/14.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarentino A.L., Maley F. Purification and properties of an endo-β-N-acetylglucosaminidase from Streptomyces griseus. J. Biol. Chem. 1974;249:811–817. [PubMed] [Google Scholar]
- Vennema H., Heijnen L., Zijderveld A., Horzinek M.C., Spaan W.J.M. Intracellular transport of recombinant coronavirus spike proteins: Implications for virus assembly. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986;14:4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss M., Steck F., Horzinek M.C. Purification and partial characterization of a new enveloped RNA virus (Berne virus) J. Gen. Virol. 1983;64:1849–1858. doi: 10.1099/0022-1317-64-9-1849. [DOI] [PubMed] [Google Scholar]
- Weiss M., Horzinek M.C. Morphogenesis of Berne virus (proposed family Toroviridae. J. Gen. Virol. 1986;67:1305–1314. doi: 10.1099/0022-1317-67-7-1305. [DOI] [PubMed] [Google Scholar]
- Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature (London) 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]