Abstract
Many advances have been made in the understanding of intestinal electrolyte transport from the molecular to the whole-tissue level. This chapter discusses the molecular mechanisms of intestinal epithelial ion transport processes, as well as the intra- and extracellular factors involved in their regulation, as a framework for the understanding of virus-induced gastroenteritis. Based on the present knowledge of the effects of rotavirus (RV) infection on the physiology of the intestine at different levels of organization, a working model for the pathogenesis of RV diarrhea is presented in the chapter. The understanding of the pathogenic processes of viral diarrheas may serve as the basis for a rational approach in the design of novel therapeutic strategies and the search for new antiviral drugs.
Abbreviations: 5HT, 5-hydroxytryptamine, serotonin; AC, adenylate cyclase; ACh, acetylcholine; AQP, water channels of the aquaporin family; CaCC, Ca2+-activated chloride channel; CAMP, adenosine 3′-5′ cyclic monophosphate; CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator, chloride channel; cGMP, guanosine 3′-5′ cyclic monophosphate; ENS, enteric nervous system; ER, endoplasmic reticulum; GC, guanylate cyclase; GLUT2, facilitated sugar
References
- Anderson M.P., Sheppard D.N., Berger H.A., Welsh M.J. Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am J Physiol. 1992;263:L1–L14. doi: 10.1152/ajplung.1992.263.1.L1. [DOI] [PubMed] [Google Scholar]
- Angel J., Tang B., Feng N., Greenberg H.B., Bass D. Studies of the role for NSP4 in the pathogenesis of homologous murine rotavirus diarrhea. J Infect Dis. 1998;177:455–458. doi: 10.1086/517374. [DOI] [PubMed] [Google Scholar]
- Arias C.F., Guerrero C.A., Mendez E., Zárate S., Isa P., Espinosa R., Romero P., López S. Vol. 238. 2001. Early events of rotavirus infection: the search for the receptor(s) pp. 47–60. (Novartis Found Symp). [DOI] [PubMed] [Google Scholar]
- Ball J.M., Tian P., Zeng C.Q., Morris A.P., Estes M.K. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science. 1996;272:101–104. doi: 10.1126/science.272.5258.101. [DOI] [PubMed] [Google Scholar]
- Barrett K.E., Keely S.J. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol. 2000;62:535–572. doi: 10.1146/annurev.physiol.62.1.535. [DOI] [PubMed] [Google Scholar]
- Berschneider H.M., Knowles M.R., Azizkhan R.G., Boucher R.C., Tobey N.A., Orlando R.C., Powell D.W. Altered intestinal chloride transport in cystic fibrosis. FASEB J. 1988;2:2625–2629. doi: 10.1096/fasebj.2.10.2838365. [DOI] [PubMed] [Google Scholar]
- Berschneider H.M., Powell D.W. Fibroblasts modulate intestinal secretory responses to inflammatory mediators. J Clin Invest. 1992;89:484–489. doi: 10.1172/JCI115610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjarnason I., MacPherson A., Hollander D. Intestinal permeability: an overview. Gastroenterology. 1995;108:1566–1581. doi: 10.1016/0016-5085(95)90708-4. [DOI] [PubMed] [Google Scholar]
- Brunet J.P., Cotte-Laffitte J., Linxe C., Quero A.M., Geniteau-Legendre M., Servin A. Rotavirus infection induces an increase in intracellular calcium concentration in human intestinal epithelial cells: role in microvillar actin alteration. J Virol. 2000;74:2323–2332. doi: 10.1128/jvi.74.5.2323-2332.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunet J.P., Jourdan N., Cotte-Laffitte J., Linxe C., Geniteau-Legendre M., Servin A., Quero A.M. Rotavirus infection induces cytoskeleton disorganization in human intestinal epithelial cells: implication of an increase in intracellular calcium concentration. J Virol. 2000;74:10801–10806. doi: 10.1128/jvi.74.22.10801-10806.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke B., Desselberger U. Rotavirus pathogenicity. Virology. 1996;218:299–305. doi: 10.1006/viro.1996.0198. [DOI] [PubMed] [Google Scholar]
- Collins J., Starkey W.G., Wallis T.S., Clarke G.J., Worton K.J., Spencer A.J., Haddon S.J., Osborne M.P., Candy D.C., Stephen J. Intestinal enzyme profiles in normal and rotavirus-infected mice. J Pediatr Gastroenterol Nutr. 1988;7:264–272. doi: 10.1097/00005176-198803000-00017. [DOI] [PubMed] [Google Scholar]
- Cooke H.J. Neurotransmitters in neuronal reflexes regulating intestinal secretion. Ann N Y Acad Sci. 2000;915:77–80. doi: 10.1111/j.1749-6632.2000.tb05225.x. [DOI] [PubMed] [Google Scholar]
- D'Andrea L., Lytle C., Matthews J.B., Hofman P., Forbush B., 3rd, Madara J.L. Na:K:2CI cotransporter (NKCC) of intestinal epithelial cells. Surface expression in response to CAMP. J Biol Chem. 1996;271:28969–28976. doi: 10.1074/jbc.271.46.28969. [DOI] [PubMed] [Google Scholar]
- Davidson G.P., Gall D.G., Petric M., Butler D.G., Hamilton J.R. Human rotavirus enteritis induced in conventional piglets. Intestinal structure and transport. J Clin Invest. 1977;60:1402–1409. doi: 10.1172/JCI108901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- del Castillo J.R., Ludert J.E., Sanchez A., Ruiz M.C., Michelangeli F., Liprandi F. Rotavirus infection alters Na+ and K+ homeostasis in MA104 cells. J. Gen. Virol. 1991;72:541–547. doi: 10.1099/0022-1317-72-3-541. [DOI] [PubMed] [Google Scholar]
- Devor D.C., Duffey M.E. Carbachol induces K+, Cl−, and nonselective cation conductances in T84 cells: a perforated patch-clamp study. Am J Physiol. 1992;263:C780–C787. doi: 10.1152/ajpcell.1992.263.4.C780. [DOI] [PubMed] [Google Scholar]
- Diamond J.M. Osmotic water flow in leaky epithelia. J Membr Biol. 1979;51:195–216. doi: 10.1007/BF01869084. [DOI] [PubMed] [Google Scholar]
- Diamond J.M., Bossert W.H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967;50:2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickman K.G., Hempson S.J., Anderson J., Lippe S., Zhao L., Burakoff R., Shaw R.D. Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol. 2000;279:G757–G766. doi: 10.1152/ajpgi.2000.279.4.G757. [DOI] [PubMed] [Google Scholar]
- Dong Y., Zeng C.Q., Ball J.M., Estes M.K., Morris A.P. Vol. 94. 1997. The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating. phospholipase C-mediated inositol-1,4,5- trisphosphate production; pp. 3960–3965. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estes M.K., Kang G., Zeng C.Q., Crawford S.E., Ciarlet M. Vol. 238. 2001. Pathogenesis of rotavirus gastroenteritis; pp. 82–96. (Novartis Found Symp). [DOI] [PubMed] [Google Scholar]
- Estes M.K., Morris A.P. A viral enterotoxin. A new mechanism of virusinduced pathogenesis. Adv Exp Med Biol. 1999;473:73–82. [PubMed] [Google Scholar]
- French P.J., Bijman J., Edixhoven M., Vaandrager A.B., Scholte B.J., Lohmann S.M., Nairn A.C., de Jonge H.R. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMPdependent protein kinase 11. J Biol Chem. 1995;270:26626–266231. doi: 10.1074/jbc.270.44.26626. [DOI] [PubMed] [Google Scholar]
- Fromter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972;235:9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
- Gadsby D.C., Nairn A.C. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev. 1999;79:S77–S107. doi: 10.1152/physrev.1999.79.1.S77. [DOI] [PubMed] [Google Scholar]
- Ganapathy V., Brandsch M., Leibach F.H. Intestinal Transport of Amino Acid and Peptides. In: Johnson L.R., editor. Physiology of the Gastrointestinal Tract. Raven Press; New York: 1994. pp. 1773–1794. [Google Scholar]
- Glass R.I., Bresee J., Jiang B., Gentsch J., Ando T., Fankhauser R., Noel J., Parashar U., Rosen B., Monroe S.S. Vol. 238. 2001. Gastroenteritis viruses: an overview; pp. 5–19. (Novartis Found Symp). [DOI] [PubMed] [Google Scholar]
- Greenberg H.B., Clark H.F., Offit P.A. Rotavirus pathology and pathophysiology. Curr Top Microbiol Immunol. 1994;185:255–283. doi: 10.1007/978-3-642-78256-5_9. [DOI] [PubMed] [Google Scholar]
- Greger R., Bleich M., Warth R. New types of K+ channels in the colon. Wien Klin Wochenschr. 1997;109:497–498. [PubMed] [Google Scholar]
- Grubb B.R., Gabriel S.E. Intestinal physiology and pathology in genetargeted mouse models of cystic fibrosis. Am J Physiol. 1997;273:G258–G266. doi: 10.1152/ajpgi.1997.273.2.G258. [DOI] [PubMed] [Google Scholar]
- Haas M., Forbush B., 3rd The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol. 2000;62:515–534. doi: 10.1146/annurev.physiol.62.1.515. [DOI] [PubMed] [Google Scholar]
- Halaihel N., Lievin V., Alvarado F., Vasseur M. Rotavirus infection impairs intestinal brush-border membrane Na(+)- solute cotransport activities in young rabbits. Am J Physiol Gastrointest Liver Physiol. 2000;279:G587–G596. doi: 10.1152/ajpgi.2000.279.3.G587. [DOI] [PubMed] [Google Scholar]
- Halaihel N., Lievin V., Ball J.M., Estes M.K., Alvarado F., Vasseur M. Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na(+)-D-glucose symporter of rabbit intestinal brush border membrane. J Virol. 2000;74:9464–9470. doi: 10.1128/jvi.74.20.9464-9470.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatakeyama S., Yoshida Y., Tani T., Koyama Y., Nihei K., Ohshiro K., Kamiie J.I., Yaoita E., Suda T., Hatakeyama K., Yamamoto T. Cloning of a new aquaporin (aqp10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun. 2001;287:814–819. doi: 10.1006/bbrc.2001.5661. [DOI] [PubMed] [Google Scholar]
- Hecht G., Koutsouris A. Myosin regulation of NKCC1: effects on cAMPmediated CI- secretion in intestinal epithelia. Am J Physiol. 1999;277:C441–C447. doi: 10.1152/ajpcell.1999.277.3.C441. [DOI] [PubMed] [Google Scholar]
- Ishii T.M., Silvia C., Hirschberg B., Bond C.T., Adelman J.P., Maylie J. Vol. 94. 1997. A human intermediate conductance calcium-activated potassium channel; pp. 11651–11656. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen B.S., Strobaek D., Christophersen P., Jorgensen T.D., Hansen C., Silahtaroglu A., Olesen S.P., Ahring P.K. Characterization of the cloned human intermediate-conductance Ca2+- activated K+ channel. Am J Physiol. 1998;275:C848–C856. doi: 10.1152/ajpcell.1998.275.3.C848. [DOI] [PubMed] [Google Scholar]
- Jia Y., Mathews C.J., Hanrahan J.W. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J Biol Chem. 1997;272:4978–4984. doi: 10.1074/jbc.272.8.4978. [DOI] [PubMed] [Google Scholar]
- Jourdan N., Brunet J.P., Sapin C., Blais A., Cotte-Laffitte J., Forestier F., Quero A.M., Trugnan G., Servin A.L. Rotavirus infection reduces sucraseisomaltase expression in human intestinal epithelial cells by perturbing protein targeting and organization of microvillar cytoskeleton. J Virol. 1998;72:7228–7236. doi: 10.1128/jvi.72.9.7228-7236.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jourdan N., Maurice M., Delautier D., Quero A.M., Servin A.L., Trugnan G. Rotavirus is released from the apical surface of cultured human intestinal cells through nonconventional vesicular transport that bypasses the Golgi apparatus. J Virol. 1997;71:8268–8278. doi: 10.1128/jvi.71.11.8268-8278.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kandil H.M., Berschneider H.M., Argenzio R.A. Tumour necrosis factor alpha changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins. Gut. 1994;35:934–940. doi: 10.1136/gut.35.7.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karam S.M. Lineage commitment and maturation of epithelial cells in the gut. Front Biosci. 1999;4:D286–D298. doi: 10.2741/karam. [DOI] [PubMed] [Google Scholar]
- Karczewski J., Groot J. Molecular physiology and pathophysiology of tight junctions III. Tight junction regulation by intracellular messengers: differences in response within and between epithelia. Am J Physiol Gastrointest Liver Physiol. 2000;279:G660–G665. doi: 10.1152/ajpgi.2000.279.4.G660. [DOI] [PubMed] [Google Scholar]
- Keljo D.J., MacLeod R.J., Perdue M.H., Butler D.G., Hamilton J.R. D-Glucose transport in piglet jejunal brush-border membranes: insights from a disease model. Am J Physiol. 1985;249:G751–G760. doi: 10.1152/ajpgi.1985.249.6.G751. [DOI] [PubMed] [Google Scholar]
- Kockerling A., Fromm M. Origin of cAMP-dependent Cl- secretion from both crypts and surface epithelia of rat intestine. Am J Physiol. 1993;264:C1294–C1301. doi: 10.1152/ajpcell.1993.264.5.C1294. [DOI] [PubMed] [Google Scholar]
- Lee C.N., Wang Y.L., Kao C.L., Zao C.L., Lee C.Y., Chen H.N. NSP4 gene analysis of rotaviruses recovered from infected children with and without diarrhea. J Clin Microbiol. 2000;38:4471–4477. doi: 10.1128/jcm.38.12.4471-4477.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee W.S., Kanai Y., Wells R.G., Hediger M.A. The high affinity Na+/ glucose cotransporter. Re-evaluation of function and distribution of expression. J Biol Chem. 1994;269:12032–12039. [PubMed] [Google Scholar]
- Lentz M.J. Molecular aspects of hydrolysis and absorption. Am J Clin Nutr. 1995;61:946S. doi: 10.1093/ajcn/61.4.946S. [DOI] [PubMed] [Google Scholar]
- Lomax R.B., Warhurst G., Sandle G.I. Characteristics of two basolateral potassium channel populations in human colonic crypts. Gut. 1996;38:243–247. doi: 10.1136/gut.38.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundgren O. Neuroimmune modulation of epithelial function. An overview. Ann N YAcad Sci. 1992;664:309–324. doi: 10.1111/j.1749-6632.1992.tb39770.x. [DOI] [PubMed] [Google Scholar]
- Lundgren O., Peregrin A.T., Persson K., Kordasti S., Uhnoo I., Svensson L. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea [see comments] Science. 2000;287:491–495. doi: 10.1126/science.287.5452.491. [DOI] [PubMed] [Google Scholar]
- Lundgren O., Svensson L. Pathogenesis of rotavirus diarrhea. Microb Infect. 2001;3:1145–1156. doi: 10.1016/S1286-4579(01)01475-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lytle C., Forbush B., 3rd The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem. 1992;267:25438–25443. [PubMed] [Google Scholar]
- Lytle C., Forbush B., 3rd Regulatory phosphorylation of the secretory NaKCl cotransporter: modulation by cytoplasmic Cl. Am J Physiol. 1996;270:C437–C448. doi: 10.1152/ajpcell.1996.270.2.C437. [DOI] [PubMed] [Google Scholar]
- Ma T., Verkman A.S. Aquaporin water channels in gastrointestinal physiology. J Physiol. 1999;517:317–326. doi: 10.1111/j.1469-7793.1999.0317t.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madara J.L. Epithelia: Biologic Principles of Organization. In: Yamada T., Alpers D.H., Laine L., Owyang C., Powell D.W., editors. Lippincott Williams and Wilkins; Philadelphia: 1999. pp. 141–156. (Textbook of Gastroenterology). [Google Scholar]
- Madara J.L., Trier J.S. The functional morphology of the mucosa of the small intestine. In: Johnson L.R., editor. Physiology of the Gastrointestinal Tract. Raven Press; New York: 1994. pp. 1209–1251. [Google Scholar]
- Mailliard M.E., Stevens B.R., Mann G.E. Amino acid transport by small intestinal, hepatic, and pancreatic epithelia. Gastroenterology. 1995;108:888–910. doi: 10.1016/0016-5085(95)90466-2. [DOI] [PubMed] [Google Scholar]
- Matthews J.B., Awtrey C.S., Madara J.L. Microfilament-dependent activation of Na+/K+/2Cl- cotransport by cAMP in intestinal epithelial monolayers. J Clin Invest. 1992;90:1608–1613. doi: 10.1172/JCI116030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews J.B., Smith J.A., Hrnjez B.J. Effects of F-actin stabilization or disassembly on epithelial Cl− secretion and Na-K-2C1 cotransport. Am J Physiol. 1997;272:C254–C262. doi: 10.1152/ajpcell.1997.272.1.C254. [DOI] [PubMed] [Google Scholar]
- Matthews J.B., Smith J.A., Nguyen H. Modulation of intestinal chloride secretion at basolateral transport sites: opposing effects of cyclic adenosine monophosphate and phorbol ester. Surgery. 1995;118:147–152. doi: 10.1016/s0039-6060(05)80317-4. discussion 152-3. [DOI] [PubMed] [Google Scholar]
- McCarty N.A. Permeation through the CFTR chloride channel. J Exp Biol. 2000;203:1947–1962. doi: 10.1242/jeb.203.13.1947. [DOI] [PubMed] [Google Scholar]
- McEwan G.T., Hirst B.H., Simmons N.L. Carbachol stimulates Cl−secretion via activation of two distinct apical Cl− pathways in cultured human T84 intestinal epithelial monolayers. Biochim Biophys Acta. 1994;1220:241–247. doi: 10.1016/0167-4889(94)90144-9. [DOI] [PubMed] [Google Scholar]
- McRoberts J.A., Beuerlein G., Dharmsathaphorn K. Cyclic AMP and Ca2+-activated K+ transport in a human colonic epithelial cell line. J Biol Chem. 1985;260:14163–14172. [PubMed] [Google Scholar]
- Merlin D., Jiang L., Strohmeier G.R., Nusrat A., Alper S.L., Lencer W.I., Madara J.L. Distinct Ca2+- and cAMP-dependent anion conductances in the apical membrane of polarized T84 cells. Am J Physiol. 1998;275:C484–495. doi: 10.1152/ajpcell.1998.275.2.C484. [DOI] [PubMed] [Google Scholar]
- Michelangeli F., Liprandi F., Chemello M.E., Ciarlet M., Ruiz M.C. Selective depletion of stored calcium by thapsigargin blocks rotavirus maturation but not the cytopathic effect. J Virol. 1995;69:3838–3847. doi: 10.1128/jvi.69.6.3838-3847.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michelangeli F., Ruiz M.C., del Castillo J.R., Ludert J.E., Liprandi F. Effect of rotavirus infection on intracellular calcium homeostasis in cultured cells. Virology. 1991;181:520–527. doi: 10.1016/0042-6822(91)90884-e. [DOI] [PubMed] [Google Scholar]
- Montrose M.H., Barrett K.E., Keely S.J. Electrolyte secretion and absorption: small intestine and colon. In: Yamada T., Alpers D.H., Laine L., Owyang C., Powell D.W., editors. Lippincott Williams and Wilkins; Philadelphia: 1999. pp. 320–354. (Textbook of Gastroenterology). [Google Scholar]
- Moody F.G., Durbin R.P. Water flow induced by osmotic and hydrostatic pressure in the stomach. Am J Physiol. 1969;207:255–261. doi: 10.1152/ajplegacy.1969.217.1.255. [DOI] [PubMed] [Google Scholar]
- Moon H.W. Pathophysiology of viral diarrhea. In: Kapikian A.Z., editor. Viral Infections of the Gastrointestinal Tract. 2nd ed. Marcel Dekker; New York: 1994. pp. 27–52. [Google Scholar]
- Morris A.P. The regulation of epithelial cell CAMP- and calcium-dependent chloride channels. Adv Pharmacol. 1999;46:209–251. doi: 10.1016/s1054-3589(08)60472-x. [DOI] [PubMed] [Google Scholar]
- Morris A.P., Cunningham S.A., Benos D.J., Frizzell R.A. Cellular differentiation is required for cAMP but not Ca2+-dependent Cl− secretion in colonic epithelial cells expressing high levels of cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1992;267:5575–5583. [PubMed] [Google Scholar]
- Morris A.P., Estes M.K. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VIII. Pathological consequences of rotavirus infection and its enterotoxin. Am J Physiol Gastrointest Liver Physiol. 2001;281:G303–G310. doi: 10.1152/ajpgi.2001.281.2.G303. [DOI] [PubMed] [Google Scholar]
- Morris A.P., Frizzell R.A. Ca2+-dependent CI− channels in undifferentiated human colonic cells (HT-29). 11. Regulation and rundown. Am J Physiol. 1993;264:C977–C985. doi: 10.1152/ajpcell.1993.264.4.C977. [DOI] [PubMed] [Google Scholar]
- Morris A.P., Scott J.K., Ball J.M., Zeng C.Q., O'Neal W.K., Estes M.K. NSP4 elicits age-dependent diarrhea and Ca2+-mediated I(-) influx into intestinal crypts of CF mice. Am J Physiol. 1999;277:G431–G444. doi: 10.1152/ajpgi.1999.277.2.G431. [DOI] [PubMed] [Google Scholar]
- Naftalin R.J., Pedley K.C. Regional crypt function in rat large intestine in relation to fluid absorption and growth of the pericryptal sheath. J Physiol. 1999;514:211–227. doi: 10.1111/j.1469-7793.1999.211af.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naftalin R.J., Zammit P.S., Pedley K.C. Concentration polarization of fluorescent dyes in rat descending colonic crypts: evidence of crypt fluid absorption. J Physiol. 1995;487:479–495. doi: 10.1113/jphysiol.1995.sp020894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naftalin R.J., Zammit P.S., Pedley K.C. Regional differences in rat large intestinal crypt function in relation to dehydrating capacity in vivo. J Physiol. 1999;514:201–210. doi: 10.1111/j.1469-7793.1999.201af.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton K., Meyer J.C., Bellamy A.R., Taylor J.A. Rotavirus nonstructural glycoprotein NSP4 alters plasma membrane permeability in mammalian cells. J Virol. 1997;71:9458–9465. doi: 10.1128/jvi.71.12.9458-9465.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nusrat A., Turner J.R., Madara J.L. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol. 2000;279:G851–G857. doi: 10.1152/ajpgi.2000.279.5.G851. [DOI] [PubMed] [Google Scholar]
- Obert G., Peiffer I., Servin A.L. Rotavirus-induced structural and functional alterations in tight junctions of polarized intestinal Caco-2 cell monolayers. J Virol. 2000;74:4645–4651. doi: 10.1128/jvi.74.10.4645-4651.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oka T., Nakagomi T., Nakagomi O. A lack of consistent amino acid substitutions in NSP4 between rotaviruses derived from diarrheal and asymptomatically-infected kittens. Microbiol Immunol. 2001;45:173–177. doi: 10.1111/j.1348-0421.2001.tb01277.x. [DOI] [PubMed] [Google Scholar]
- Osborne M.P., Haddon S.J., Worton K.J., Spencer A.J., Starkey W.G., Thornber D., Stephen J. Rotavirus-induced changes in the microcirculation of intestinal villi of neonatal mice in relation to the induction and persistence of diarrhea. J Pediatr Gastroenterol Nutr. 1991;12:111–120. doi: 10.1097/00005176-199101000-00021. [DOI] [PubMed] [Google Scholar]
- Pappenheimer J.R., Dahl C.E., Karnovsky M.L., Maggio J.E. Vol. 91. 1994. Intestinal absorption and excretion of octapeptides composed of D amino acids; pp. 1942–1945. (Proc Natl Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez J.F., Chemello M.E., Liprandi F., Ruiz M.C., Michelangeli F. Oncosis in MA104 cells is induced by rotavirus infection through an increase in intracellular Ca2+ concentration. Virology. 1998;252:17–27. doi: 10.1006/viro.1998.9433. [DOI] [PubMed] [Google Scholar]
- Perez J.F., Ruiz M.C., Chemello M.E., Michelangeli F. Characterization of a membrane calcium pathway induced by rotavirus infection in cultured cells. J Virol. 1999;73:2481–2490. doi: 10.1128/jvi.73.3.2481-2490.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez J.F., Ruiz M.C., Michelangeli F. Simultaneous measurement and imaging of intracellular Ca2+ and H+ transport in isolated rabbit gastric glands. J Physiol. 2001;537:735–745. doi: 10.1111/j.1469-7793.2001.00735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podolsky D.K. Regulation of intestinal epithelial proliferation: a few answers, many questions. Am J Physiol. 1993;264:G179–G186. doi: 10.1152/ajpgi.1993.264.2.G179. [DOI] [PubMed] [Google Scholar]
- Powell D.W., Mifflin R.C., Valentich J.D., Crowe S.E., Saada J.I., West A.B. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol. 1999;277:C1–C9. doi: 10.1152/ajpcell.1999.277.1.C1. [DOI] [PubMed] [Google Scholar]
- Rhoads J.M., MacLeod R.J., Hamilton J.R. Diminished brush border membrane Na-dependent L-alanine transport in acute viral enteritis in piglets. J Pediatr Gastroenterol Nutr. 1989;9:225–231. doi: 10.1097/00005176-198908000-00016. [DOI] [PubMed] [Google Scholar]
- Ruiz M.C., Cohen J., Michelangeli F. Role of Ca2+ in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium. 2000;28:137–149. doi: 10.1054/ceca.2000.0142. [DOI] [PubMed] [Google Scholar]
- Saif L.J. Comparative pathogenesis of enteric viral infections of swine. Adv Exp Med Biol. 1999;473:47–59. doi: 10.1007/978-1-4615-4143-1_4. [DOI] [PubMed] [Google Scholar]
- Sasaki S., Horie Y., Nakagomi T., Oseto M., Nakagomi O. Group C rotavirus NSP4 induces diarrhea in neonatal mice. Arch Virol. 2001;146:801–806. doi: 10.1007/s007050170148. [DOI] [PubMed] [Google Scholar]
- Sears C.L. Molecular physiology and pathophysiology of tight junctions V. assault of the tight junction by enteric pathogens. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1129–G1134. doi: 10.1152/ajpgi.2000.279.6.G1129. [DOI] [PubMed] [Google Scholar]
- Sears C.L., Kaper J.B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev. 1996;60:167–215. doi: 10.1128/mr.60.1.167-215.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepherd R.W., Gall D.G., Butler D.G., Hamilton J.R. Determinants of diarrhea in viral enteritis. The role of ion transport and epithelial changes in the ileum in transmissible gastroenteritis in piglets. Gastroenterology. 1979;76:20–24. doi: 10.1016/S0016-5085(79)80122-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh S.K., Binder H.J., Boron W.F., Geibel J.P. Fluid absorption in isolated perfused colonic crypts. J Clin Invest. 1995;96:2373–2379. doi: 10.1172/JCI118294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephen J. Functional abnormalities in the intestine. In: Farthing M.J.G., editor. Viruses and the Gut. Swan Press; London: 1989. pp. 19–44. [Google Scholar]
- Stephen J., Osborne M.P. Pathophysiological mechanisms in diarrhoeal disease. In: Donachie W., Griffiths E., Stephen J., editors. Bacterial Infections of Respiratory and Gastrointestinal Mucosae. IRL Press; Oxford: 1988. pp. 149–172. [Google Scholar]
- Stewart C.P., Turnberg L.A. A microelectrode study of responses to secretagogues by epithelial cells on villus and crypt of rat small intestine. Am J Physiol. 1989;257:G334–G343. doi: 10.1152/ajpgi.1989.257.3.G334. [DOI] [PubMed] [Google Scholar]
- Stintzing G., Johansen K., Magnusson K.E., Svensson L., Sundqvist T. Intestinal permeability in small children during and after rotavirus diarrhoea assessed with different-size polyethyleneglycols (PEG 400 and PEG 1000) Acta Paediatr Scand. 1986;75:1005–1009. doi: 10.1111/j.1651-2227.1986.tb10331.x. [DOI] [PubMed] [Google Scholar]
- Svensson L., Finlay B.B., Bass D., von Bonsdorff C.H., Greenberg H.B. Symmetric infection of rotavirus on polarized human intestinal epithelial (Caco-2) cells. J Virol. 1991;65:4190–4197. doi: 10.1128/jvi.65.8.4190-4197.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tafazoli F., Zeng C.Q., Estes M.K., Magnusson K.E., Svensson L. NSP4 Enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells. J Virol. 2001;75:1540–1546. doi: 10.1128/JVI.75.3.1540-1546.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C.J., Baxter P.S., Hardcastle J., Hardcastle P.T. Failure to induce secretion in jejunal biopsies from children with cystic fibrosis. Gut. 1988;29:957–962. doi: 10.1136/gut.29.7.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telch J., Shepherd R.W., Butler D.G., Perdue M., Hamilton J.R., Gall D.G. Intestinal glucose transport in acute viral enteritis in piglets. Clin Sci (Lond) 1981;61:29–34. doi: 10.1042/cs0610029. [DOI] [PubMed] [Google Scholar]
- Thiagarajah J.R., Pedley K.C., Naftalin R.J. Evidence of amiloridesensitive fluid absorption in rat descending colonic crypts from fluorescence recovery of FITC-labelled dextran after photobleaching. J Physiol. 2001;536:541–553. doi: 10.1111/j.1469-7793.2001.0541c.xd. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian P., Ball J.M., Zeng C.Q., Estes M.K. The rotavirus nonstructural glycoprotein NSP4 possesses membrane destabilization activity. J Viral. 1996;70:6973–6981. doi: 10.1128/jvi.70.10.6973-6981.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian P., Estes M.K., Hu Y., Ball J.M., Zeng C.Q., Schilling W.P. The rotavirus nonstructural glycoprotein NSP4 mobilizes Call from the endoplasmic reticulum. J Virol. 1995;69:5763–5772. doi: 10.1128/jvi.69.9.5763-5772.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian P., Hu Y., Schilling W.P., Lindsay D.A., Eiden J., Estes M.K. The nonstructural glycoprotein of rotavirus affects intracellular calcium levels. J. Virol. 1994;68:251–257. doi: 10.1128/jvi.68.1.251-257.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torchia J., Lytle C., Pon D.J., Forbush B., 3rd, Sen A.K. The NaKCl cotransporter of avian salt gland. Phosphorylation in response to CAMP-dependent and calcium-dependent secretogogues. J Biol Chem. 1992;267:25444–25450. [PubMed] [Google Scholar]
- Turner J.R., Madara J.L. Physiological regulation of intestinal epithelial tight junctions as a consequence of Na+-coupled nutrient transport. Gastroenterology. 1995;109:1391–1396. doi: 10.1016/0016-5085(95)90605-3. [DOI] [PubMed] [Google Scholar]
- Vajanaphanich M., Schultz C., Tsien R.Y., Traynor-Kaplan A.E., Pandol S.J., Barrett K.E. Cross-talk between calcium and CAMP-dependent intracellular signaling pathways. Implications for synergistic secretion in T84 colonic epithelial cells and rat pancreatic acinar cells. J Clin Invest. 1995;96:386–393. doi: 10.1172/JCI118046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vandorpe D.H., Shmukler B.E., Jiang L., Lim B., Maylie J., Adelman J.P., de Franceschi L., Cappellini M.D., Brugnara C., Alper S.L. cDNA cloning and functional characterization of the mouse Call-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation. J Biol Chem. 1998;273:21542–21553. doi: 10.1074/jbc.273.34.21542. [DOI] [PubMed] [Google Scholar]
- Ward R.L., Mason B.B., Bernstein D.I., Sander D.S., Smith V.E., Zandle G.A., Rappaport R.S. Attenuation of a human rotavirus vaccine candidate did not correlate with mutations in the NSP4 protein gene. J Virol. 1997;71:6267–6270. doi: 10.1128/jvi.71.8.6267-6270.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright E.M., Hirsch J.R., Loo D.D., Zampighi G.A. Regulation of Na+/glucose cotransporters. J Exp Biol. 1997;200:287–293. doi: 10.1242/jeb.200.2.287. [DOI] [PubMed] [Google Scholar]
- Wright E.M., Loo D.D. Coupling between Na+, sugar, and water transport across the intestine. Ann N YAcad Sci. 2000;915:54–66. doi: 10.1111/j.1749-6632.2000.tb05223.x. [DOI] [PubMed] [Google Scholar]
- Zhang M., Zeng C.Q., Dong Y., Ball J.M., Saif L.J., Morris A.P., Estes M.K. Mutations in rotavirus nonstructural glycoprotein NSP4 are associated with altered virus virulence. J Virol. 1998;72:3666–3672. doi: 10.1128/jvi.72.5.3666-3672.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang M., Zeng C.Q., Morris A.P., Estes M.K. A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol. 2000;74:11663–11670. doi: 10.1128/jvi.74.24.11663-11670.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]