Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 1999 Jan 26;78(2):55–113. doi: 10.1016/S0163-7258(97)00167-8

The 2–5 A system: Modulation of viral and cellular processes through acceleration of RNA degradation

Mark R Player 1,2, Paul F Torrence 1,2,
PMCID: PMC7157933  PMID: 9623881

Abstract

The 2–5A system is an RNA degradation pathway that can be induced by the interferons (IFNs). Treatment of cells with IFN activates genes encoding several double-stranded RNA (dsRNA)-dependent synthetases. These enzymes generate 5′-triphosphorylated, 2′,5′-phosphodiester-linked oligoadenylates (2–5A) from ATP. The effects of 2–5A in cells are transient since 2–5A is unstable in cells due to the activities of phosphodiesterase and phosphatase. 2–5A activates the endoribonuclease 2–5A-dependent RNase L, causing degradation of single-stranded RNA with moderate specificity. The human 2–5A-dependent RNase is an 83.5 kDa polypeptide that has little, if any, RNase activity, unless 2–5A is present. 2–5A binding to RNase L switches the enzyme from its off-state to its on-state. At least three 2′,5′-linked oligoadenylates and a single 5′-phosphoryl group are required for maximal activation of the RNase. Even though the constitutive presence of 2–5A-dependent RNase is observed in nearly all mammalian cell types, cellular amounts of 2–5A-dependent mRNA and activity can increase after IFN treatment. One well-established role of the 2–5A system is as a host defense against some types of viruses. Since virus infection of cells results in the production and secretion of IFNs, and since dsRNA is both a frequent product of virus infection and an activator of 2–5A synthesis, the replication of encephalomyocarditis virus, which produces dsRNA during its life cycle, is greatly suppressed in IFN-treated cells as a direct result of RNA decay by the activated 2–5A-clependent RNase. This review covers the organic chemistry, enzymology, and molecular biology of 2–5A and its associated enzymes. Additional possible biological roles of the 2–5A system, such as in cell growth and differentiation, human immunodeficiency virus replication, heat shock, atherosclerotic plaque, pathogenesis of Type I diabetes, and apoptosis, are presented.

Keywords: Double-stranded RNA, 2–5A, interferons, ribonuclease L, virus, host defense

References

  1. Aboagye-Mathiesen G., Toth F.D., Hager H., Zdravkovic M., Petersen P.M., Villadsen J.A., Zachar V., Ebbesen P. Human trophoblast interferons. Antiviral Res. 1993;22:91–105. doi: 10.1016/0166-3542(93)90088-z. [DOI] [PubMed] [Google Scholar]
  2. Akagi S., Fukuda R., Shimada Y. The sequential change of serum 2′,5′ oligoadenylate synthetase in different infectious patterns of duck hepatitis B virus in ducks in experimental transmission. Gastroenterol. Jpn. 1992;27:374–381. doi: 10.1007/BF02777757. [DOI] [PubMed] [Google Scholar]
  3. Alarcon B., Bugany H., Carrasco L. pppA2′p5′A blocks vesicular stomatitis virus replication in intact cells. J. Virol. 1984;52:183–187. doi: 10.1128/jvi.52.1.183-187.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alul R., Hoke G.D. (2′–5′)-Oligo-3′-deoxynucleotides: selective binding to single-stranded RNA but not DNA. Antisense Res. Dev. 1995;5:3–11. doi: 10.1089/ard.1995.5.3. [DOI] [PubMed] [Google Scholar]
  5. Andreone P., Cursaro C., Gramenzi A., Buzzi A., Miniero R., Sprovieri G., Gasbarrini G. Indomethacin enhances serum 2′,5′-oligoadenylate synthetase in patients with hepatitis B and C virus chronic active hepatitis. J. Hepatol. 1994;21:984–988. doi: 10.1016/s0168-8278(05)80606-3. [DOI] [PubMed] [Google Scholar]
  6. Anukanth A., Ponnuswamy P.K. 2′,5′-Linked polynucleotides do form a double-stranded helical structure: a result from the energy minimization study of A2′p5′A. Biopolymers. 1986;25:729–752. doi: 10.1002/bip.360250414. [DOI] [PubMed] [Google Scholar]
  7. Baca L.M., Genis P., Kalvakolanu D., Sen G., Meltzer M.S., Zhou A., Silverman R., Gendelman H.E. Regulation of interferon-α-inducible cellular genes in human immunodeficiency virus-infected monocytes. J. Leukoc. Biol. 1994;55:299–309. doi: 10.1002/jlb.55.3.299. [DOI] [PubMed] [Google Scholar]
  8. Baglioni C., Maroney P.A. Mechanism of action of human interferons. Induction of 2′,5′-oligo(A) polymerase. J. Biol. Chem. 1980;255:8390–8393. [PubMed] [Google Scholar]
  9. Baglioni C., Minks M.A., Maroney P.A. Interferon action may be mediated by activation of a nuclease by pppA2′p5′A2′p5′A. Nature. 1978;273:684–686. doi: 10.1038/273684a0. [DOI] [PubMed] [Google Scholar]
  10. Baglioni C., Maroney P.A., West D.K. 2′,5′ Oligo(A) polymerase activity and inhibition of viral RNA synthesis in interferon-treated HeLa cells. Biochemistry. 1979;18:1765–1770. doi: 10.1021/bi00576a020. [DOI] [PubMed] [Google Scholar]
  11. Baglioni C., D'Alessandro S.B., Nilsen T.W., Den Hartog J.A.A., Crea R., Van Boom J.H. Analogs of (2′–5′)oligo(A). Endonuclease activation and inhibition of protein synthesis in intact cells. J. Biol. Chem. 1981;256:3253–3257. [PubMed] [Google Scholar]
  12. Baglioni C., Minks M.A., De Clercq E. Structural requirements of polynucleotides for the activation of (2′–5′)An polymerase and protein kinase. Nucl. Acids Res. 1981;9:4939–4950. doi: 10.1093/nar/9.19.4939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Baglioni C., De Benedetti A., Williams G. Cleavage of nascent reovirus mRNA by localized activation of the 2′–5′-oligoadenylate-dependent endoribonuclease. J. Virol. 1984;52:865–871. doi: 10.1128/jvi.52.3.865-871.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ball L.A. Induction of 2′,5′-oligoadenylate synthetase activity and a new protein by chick Interferon. Virology. 1979;94:282–296. doi: 10.1016/0042-6822(79)90462-8. [DOI] [PubMed] [Google Scholar]
  15. Ball L.A. Induction, purification and properties of 2′,5′-oligoadenylate synthetase. Ann. NY Acad. Sci. 1980;350:486–496. doi: 10.1111/j.1749-6632.1980.tb20651.x. [DOI] [PubMed] [Google Scholar]
  16. Ball L.A., White C.N. Coupled transcription and translation in mammalian and avian cell-free systems. Virology. 1978;84:479–495. doi: 10.1016/0042-6822(78)90264-7. [DOI] [PubMed] [Google Scholar]
  17. Ball L.A., White C.N. Effect of interferon pretreatment on coupled transcription and translation in cell-free extracts of primary chick embryo cells. Virology. 1978;84:496–508. doi: 10.1016/0042-6822(78)90265-9. [DOI] [PubMed] [Google Scholar]
  18. Ball L.A., White C.N. Vol. 75. 1978. Oligonucleotide inhibitor of protein synthesis made in extracts of interferon-treated chick embryo cells: comparison with the mouse low molecular weight inhibitor; pp. 1167–1171. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ball L.A., White C.N. Induction, purification and properties of 2′,5′ oligoadenylate synthetase. In: Koch G., Richter D., editors. Regulation of Macromolecular Synthesis by Low Molecular Weight Mediators. Academic Press; New York: 1979. [Google Scholar]
  20. Ball L.A., White C.N. Nuclease activation by double-stranded RNA and by 2′, 5′-oligoadenylate in extracts of interferon-treated chick cells. Virology. 1979;93:348–356. doi: 10.1016/0042-6822(79)90239-3. [DOI] [PubMed] [Google Scholar]
  21. Bannai H. Comparison of pharmacokinetic behaviors of two human interferons (Lb-IFN-alpha and Re-IFN-alpha A) in cynomolgus monkeys by 2′–5′ oligoadenylate synthetase assay. Jpn. J. Med. Sci. Biol. 1986;39:185–198. doi: 10.7883/yoken1952.39.185. [DOI] [PubMed] [Google Scholar]
  22. Bannai H., Tatsumi M., Kohase M., Onishi E., Yamazaki S. Pharmacokinetic study of a human recombinant interferon (Re-IFN-alpha A) in cynomolgus monkeys by 2′–5′ oligoadenylate synthetase assay. Jpn. J. Med. Sci. Biol. 1985;38:113–124. [PubMed] [Google Scholar]
  23. Barros C.M., Plante C., Thatcher W.W., Hansen P.J. Regulation of bovine endometrial secretion of prostaglandins and synthesis of 2′,5′-oligoadenylate synthetase by interferon-α molecules. Am. J. Reprod. Immunol. 1991;25:146–152. doi: 10.1111/j.1600-0897.1991.tb01085.x. [DOI] [PubMed] [Google Scholar]
  24. Battistini C., Brasca M.G., Fustinoni S., Lazzari E. An efficient and stereoselective synthesis of 2′,5′-oligo-(Sp)-thioadenylates. Tetrahedron. 1992;48:3209–3226. [Google Scholar]
  25. Bayard B., Gabrion J.B. 2′,5′-Oligoadenylate-dependent RNase located in nuclei: biochemical characterization and subcellular distribution of the nuclease in human and murine cells. Biochem. J. 1993;296:155–160. doi: 10.1042/bj2960155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bayard B., Bisbal C., Silhol M., Cnockaert J., Huez G., Lebleu B. Increased stability and antiviral activity of 2′-O-phosphoglyceryl derivatives of (2′–5′)oligo(adenylate) Eut. J. Biochem. 1984;142:291–298. doi: 10.1111/j.1432-1033.1984.tb08284.x. [DOI] [PubMed] [Google Scholar]
  27. Bayard B., Leserman L.D., Bisbal C., Lebleu B. Antiviral activity in L1210 cells of liposome-encapsulated (2′-5′)oligo(adenylate) analogues. Eur. J. Biochem. 1985;151:319–325. doi: 10.1111/j.1432-1033.1985.tb09103.x. [DOI] [PubMed] [Google Scholar]
  28. Bayard B., Bisbal C., Lebleu B. Activation of ribonuclease L by (2′–5′)(A4)-poly(L-lysine) conjugates in intact cells. Biochemistry. 1986;25:3730–3736. doi: 10.1021/bi00360a038. [DOI] [PubMed] [Google Scholar]
  29. Bayard B., Bette-Bobillo P., Aliau S. Affinity purification and characterization of (2′–5′)oligoadenylate-dependent RNase from mouse spleen. Eur. J. Biochem. 1994;223:403–410. doi: 10.1111/j.1432-1033.1994.tb19007.x. [DOI] [PubMed] [Google Scholar]
  30. Beigelman L., Matulic-Adamic J., Haeberli P., Usman N., Dong B., Silverman R.H., Khamnei S., Torrence P.F. Synthesis and biological activities of a phosphorodithioate analog of 2′,5′-oligoadenylate (2–5A) Nucl. Acids Res. 1995;23:3989–3994. doi: 10.1093/nar/23.19.3989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Belasco J., Brawerman G., editors. Control of Messenger RNA Stability. Academic Press; New York: 1993. [Google Scholar]
  32. Benech P., Merlin G., Revel M., Chebath J. 3′ End structure of the human (2′–5′) oligo A synthetase gene: prediction of two distinct proteins with cell type-specific expression. Nucl. Acids Res. 1985;13:1267–1281. doi: 10.1093/nar/13.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Benech P., Mory Y., Revel M., Chebath J. Structure of two forms of the interferon-induced (2′–5′) oligo A synthetase of human cells based on cDNAs and gene sequences. EMBO J. 1985;4:2249–2256. doi: 10.1002/j.1460-2075.1985.tb03922.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Bickel M., Dveksler G., Dieffenbach C.W., Ruhl S., Midura S.B., Pluznik D.H. Induction of interferon-beta and 2′,5′-oligoadenylate synthetase mRNAs by interleukin 6 during differentiation of murine myeloid cells. Cytokine. 1990;2:238–246. doi: 10.1016/1043-4666(90)90023-m. [DOI] [PubMed] [Google Scholar]
  35. Birnbaum M., Trink B., Shainberg A., Salzberg S. Activation of the interferon system during myogenesis in vitro. Differentiation. 1990;45:138–145. doi: 10.1111/j.1432-0436.1990.tb00467.x. [DOI] [PubMed] [Google Scholar]
  36. Birnbaum M., Shainberg A., Salzberg S. Infection with Moloney murine sarcoma virus inhibits myogenesis and alters the myogenic-associated (2′,5′)oligoadenylate synthetase expression and activity. Virology. 1993;194:865–869. doi: 10.1006/viro.1993.1332. [DOI] [PubMed] [Google Scholar]
  37. Bisbal C., Silhol M., Lemaitre M., Bayard B., Salehzada T., Lebleu B., Perree T.D., Blackburn M.G. 5′-Modified agonist and antagonist (2′–5′)(A)n analogues. Synthesis and biological activity. Biochemistry. 1987;26:5172–5178. doi: 10.1021/bi00390a041. [DOI] [PubMed] [Google Scholar]
  38. Bisbal C., Salehzada T., Lebleu B., Bayard B. Characterization of two murine (2′–5′)(A)n-dependent endonucleases of different molecular mass. Eur. J. Biochem. 1989;179:595–602. doi: 10.1111/j.1432-1033.1989.tb14588.x. [DOI] [PubMed] [Google Scholar]
  39. Bisbal C., Martinaud C., Silhol M., Lebleu B., Salehzada T. Cloning and characterization of a RNase L inhibitor. J. Biol. Chem. 1995;270:13308–13317. doi: 10.1074/jbc.270.22.13308. [DOI] [PubMed] [Google Scholar]
  40. Black R.J., Friedman R.M., Insi J., Torrence P.F. Specific antagonism of 2–5A-mediated inhibition of protein synthesis in intact cells by 2′,5′-(pA)3. FEBS Lett. 1985;191:154–158. doi: 10.1016/0014-5793(85)81013-9. [DOI] [PubMed] [Google Scholar]
  41. Bonnevie-Nielsen V., Larsen M.L., Frifelt J.J., Michelsen B., Lernmark A. Association of IDDM and attenuated response of 2′,5′-oligoadenylate synthetase to yellow fever vaccine. Diabetes. 1989;38:1636–1642. doi: 10.2337/diab.38.12.1636. [DOI] [PubMed] [Google Scholar]
  42. Bonnevie-Nielsen V., Gerdes A.-M., Fleckner J., Petersen J.S., Michelsen B., Dyrberg T. Interferon stimulates the expression of 2′,5′-oligoadenylate synthetase and MHC class I antigens in insulin-producing cells. J. Interferon Res. 1991;11:255–260. doi: 10.1089/jir.1991.11.255. [DOI] [PubMed] [Google Scholar]
  43. Bonnevie-Nielsen V., Husum G., Kristiansen K. Lymphocytic 2′,5′-oligoadenylate synthetase is insensitive to dsRNA and interferon stimulation in autoimmune BB rats. J. Interferon Res. 1991;11:351–356. doi: 10.1089/jir.1991.11.351. [DOI] [PubMed] [Google Scholar]
  44. Bork P., Sander C. Hypothesis. A hybrid protein kinase-RNase in an interferon-induced pathway? FEBS Lett. 1993;334:149–152. doi: 10.1016/0014-5793(93)81701-z. [DOI] [PubMed] [Google Scholar]
  45. Bosworth B.T., Maclachlan N.J., Johnston M.I. Induction of the 2–5A system by interferon and transmissable gastroenteritis virus. J. Interferon. Res. 1989;9:731–739. doi: 10.1089/jir.1989.9.731. [DOI] [PubMed] [Google Scholar]
  46. Bourgeade M.F., Besacon F. Induction of 2′,5′-oligoadenylate synthetase by retinoic acid in two transformed cell lines. Cancer Res. 1984;44:5355–5360. [PubMed] [Google Scholar]
  47. Branca A.A., Baglioni C. Evidence that type I and II interferons have different receptors. Nature. 1981;294:768–770. doi: 10.1038/294768a0. [DOI] [PubMed] [Google Scholar]
  48. Brown G.E., Lebleu B., Kawakita M., Shaila S., Sen G.C., Lengyel P. Increased endoribonuclease activity in an extract from mouse ehrlich ascites tumor cells which had been treated with a partially purified interferon preparation: dependence on double-stranded RNA. Biochem. Biophys. Res. Commun. 1976;69:114–122. doi: 10.1016/s0006-291x(76)80280-x. [DOI] [PubMed] [Google Scholar]
  49. Brown R.E., Cayley P.J., Kerr I.M. Analysis of (2′-5′)-oligo(A) and related oligonucleotides by high-performance liquid chromatography. Methods Enzymol. 1981;79:208–216. doi: 10.1016/s0076-6879(81)79031-1. [DOI] [PubMed] [Google Scholar]
  50. Bruchelt G., Buedenbender M., Truemer J., Niethammer D., Schmidt K. Investigations on the interferon-induced 2′–5′ oligoadenylate system using analytical capillary isotachophoresis. J. Chromatogr. 1989;470:185–190. doi: 10.1016/s0021-9673(00)94211-0. [DOI] [PubMed] [Google Scholar]
  51. Bruchelt G., Fierlbeck G., Schiebel U., Bogenschutz O., Rassner G., Niethammer D. Determination of 2′–5′-oligoadenylate synthetase in serum and peripheral blood mononuclear cells before and after subcutaneous application of recombinant interferon beta and gamma. Eur. J. Clin. Chem. Biochem. 1992;30:521–528. doi: 10.1515/cclm.1992.30.9.521. [DOI] [PubMed] [Google Scholar]
  52. Bucher N.L.R., Malt R.A. Little & Brown; Boston: 1971. Regeneration of Liver and Kidney. (New England Journal of Medicine Progress Series). [Google Scholar]
  53. Buffet-Janvresse C., Vannier J.P., Laurent A.G., Robert N., Hovanessian A.G. Enhanced level of double-stranded RNA-dependent protein kinase in peripheral blood mononuclear cells of patients with viral infections. J. Interferon Res. 1986;6:85–96. doi: 10.1089/jir.1986.6.85. [DOI] [PubMed] [Google Scholar]
  54. Cailla H., Le Borne De Kaouel C., Roux D., Delaage M., Marti J. Vol. 79. 1982. Monoclonal antibodies to 5′-triphospho-(2′,5′)adenyladenosine oligonucleotides; pp. 4742–4746. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Carroll S.S., Chen E., Viscount T., Geib J., Sardana M.K., Gehman J., Kuo L.C. Cleavage of oligoribonucleotides by the 2′,5′-oligoadenylate-dependent ribonuclease L. J. Biol. Chem. 1996;271:4988–4992. doi: 10.1074/jbc.271.9.4988. [DOI] [PubMed] [Google Scholar]
  56. Carter W.A., Levy H.B. The recognition of viral RNA by mammalian ribosomes. An effect of interferon. Biochem. Biophys. Acta. 1968;155:437–443. doi: 10.1016/0005-2787(68)90189-5. [DOI] [PubMed] [Google Scholar]
  57. Carter W.A., Strayer D.R., Brodsky I., Lewin M., Pellegrino M.G., Einck L., Henriques H.F., Simon G.L., Parenti D.M., Scheib R.G., Schuloff R.S., Montefiori D.C., Robinson W.E, Mitchell W.M., Volsky D.J., Paul D., Paxton H., Meyer W.A., Kariko K., Reichenbach N., Suhadolnik R.J., Gillespie D.H. Clinical, immunological, and virological effects of Ampligen, a mismatched double-stranded RNA, in patients with AIDS or AIDS-related complex. Lancet. 1987;i:1286–1292. doi: 10.1016/s0140-6736(87)90543-5. [DOI] [PubMed] [Google Scholar]
  58. Castelli J.C., Hassel B.A., Wood K.A., Maran A., Paranjape J., Hewitt J.A., Li X.-L, Hsu Y.-T., Torrence P.F., Silverman R.H., Youle R.J. A role for 2′,5′-oligoadenylate-activated ribonuclease L in apoptosis. J. Exp. Med. 1997;186:967–972. [Google Scholar]
  59. Castora F.J., Erickson C.E., Kovacs T., Lesiak K., Torrence P.F. 2′,5′-Oligoadenylates inhibit relaxation of supercoiled DNA by calf thymus topoisomerase I. J. Interferon Res. 1991;11:143–149. doi: 10.1089/jir.1991.11.143. [DOI] [PubMed] [Google Scholar]
  60. Cayley P.J., Kerr I.M. Synthesis, characterization and biological significance of (2′–5′)oligoadenylate derivatives of NAD+, ADP-ribose and adenosine(5′)tetraphospho(5′)adenosine. Eur. J. Biochem. 1982;122:601–608. [PubMed] [Google Scholar]
  61. Cayley P.J., Knight M., Kerr I.M. Virus-mediated inhibition of the 2–5A system in control cells and its prevention by interferon. Biochem. Biophys. Res. Commun. 1982;104:376–382. doi: 10.1016/0006-291x(82)90647-7. [DOI] [PubMed] [Google Scholar]
  62. Cayley P.J., White R.F., Antoniw J.F., Walesby N.J., Kerr I.M. Distribution of the ppp(A2′p)nA-binding protein and interferon-related enzymes in animals, plants and lower organisms. Biochem. Biophys. Res. Commun. 1982;108:1243–1250. doi: 10.1016/0006-291x(82)92133-7. [DOI] [PubMed] [Google Scholar]
  63. Chan S.W., Gallo S.J., Kim B.K., Guo M.J., Blackburn G.M. Vol. 94. 1997. P1P4-Dithio-P2, P3-monochloromethylene diadenosine 5′, 5‴-P1,P4-tetraphosphate: a novel antiplatelet agent; pp. 4034–4039. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Chang C.C., Wu J.M. Modulation of antiviral activity of interferon and 2′,5′-oligoadenylate synthetase gene expression by mild hyperthermia (39.5 degrees C) in cultured human cells. J. Biol. Chem. 1991;266:4605–4612. [PubMed] [Google Scholar]
  65. Chang C.C., Borelli T.J., Williams B.R., Wu J.M. Transcriptional activation of human (2′–5′)oligoadenylate synthetase gene expression by the phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate in type-I-interferon-treated HL-60 and HeLa cells. Eur. J. Biochem. 1992;207:297–304. doi: 10.1111/j.1432-1033.1992.tb17050.x. [DOI] [PubMed] [Google Scholar]
  66. Chapekar M.S., Glazer R.I. The synergistic cytocidal effect produced by immune interferon and tumor necrosis factor in HT-29 cells is associated with inhibition of rRNA processing and (2′,5′)-oligo(A) activation of RNase L. Biochem. Biophys. Res. Commun. 1988;151:1180–1187. doi: 10.1016/s0006-291x(88)80490-x. [DOI] [PubMed] [Google Scholar]
  67. Chapekar M.S., Knode M.C., Glazer R.I. The epidermal growth factor- and interferon-independent effects of double-stranded RNA in A431 cells. Mol. Pharmacol. 1988;34:461–466. [PubMed] [Google Scholar]
  68. Charachon G., Sobol R.W., Bisbal C., Salehzada T., Silhol M., Charubala R., Pfleiderer W., Lebleu B., Suhadolnik R.J. Phosphorothioate analogues of (2′–5′)(A)4: agonist and antagonist activities in intact cells. Biochemistry. 1990;29:2550–2556. doi: 10.1021/bi00462a017. [DOI] [PubMed] [Google Scholar]
  69. Charubala R., Pfleiderer W. Synthesis and properties of adenylate trimers A2′p5′A2′p5′A, A2′p5′A3′p5′A and A3′p5′A2′p5′A. Tetrahedron Lett. 1980;21:1933–1936. [Google Scholar]
  70. Charubala R., Pfleiderer W. Synthesis and properties of 3′-deoxyadenylate trimer dA2′p5′A2′p5′A. Tetrahedron Lett. 1980;21:4077–4080. [Google Scholar]
  71. Charubala R., Pfleiderer W. Synthesis of inosinate trimers I2′p5′I2'p5′I and tetramer I2′p5′I2′p5′I2′p5′I. Tetrahedron Lett. 1982;23:4789–4792. [Google Scholar]
  72. Charubala R., Pfleiderer W. The chemical syntheses of (2′–5′)-P-thioadenylate dimers, trimers and tetramers. Nucleosides & Nucleotides. 1988;7:703–706. [Google Scholar]
  73. Charubala R., Pfleiderer W. Syntheses and characterization of phosphorothioate analogues of (2′–5′)adenylate dimer and trimer and their 5′-O-monophosphates. Helv. Chim. Acta. 1992;75:471–479. [Google Scholar]
  74. Charubala R., Uhlmann E., Pfleiderer W. Synthese und eigenschaften von adenylyl-adenylyl-adenosinen. Leibigs Ann. Chem. 1981;1981:2392–2409. [Google Scholar]
  75. Charubala R., Pfleiderer W., Alster D., Brozda D., Torrence P.F. Synthesis and biological activity of a bis-substituted 3′-deoxyadenosine analog of 2–5A. Nucleosides & Nucleotides. 1989;8:273–284. [Google Scholar]
  76. Charubala R., Pfleiderer W., Sobol R.W., Li S.W., Suhadolnik R.J. Chemical synthesis of adenylyl-(2′ → 5′)-adenylyl-(2′ → 5′)-8-azidoadenosine, and activation and photo-affinity labelling of RNase L by [32P]-p5′A2′p5′A2′p5′N38A. Helv. Chem. Acta. 1989;72:1354–1361. [Google Scholar]
  77. Charubala R., Pfleiderer W., Suhadolnik R.J., Sobol R.W. Chemical synthesis and biological activity of 2′–5′-phosphorothioate tetramer cores. Nucleosides & Nucleotides. 1991;10:383–388. [Google Scholar]
  78. Chatterjee D., Savarese T.M. Posttranscriptional regulation of c-myc proto-oncogene expression and growth inhibition by recombinant human interferon-beta ser17 in a human colon carcinoma cell line. Cancer Chemother. Pharmacol. 1992;30:12–20. doi: 10.1007/BF00686479. [DOI] [PubMed] [Google Scholar]
  79. Chattopadhyaya J.B. Synthesis of adenylyl-(2′–5′)-adenylyl-(2′–5′)-adenosine (2–5A core) Tetrahedron Lett. 1980;21:4113–4116. [Google Scholar]
  80. Chebath J., Benech P., Mory Y., Federman P., Berissi H., Gesang C., Forman J., Danovitch S., Lehrer R., Aloni N., Revel M. The human (2′–5′) oligo A synthetase gene, structure of its two enzyme products and quick cell blot for clinical monitoring of its activation by interferons. Prog. Clin. Biol. Res. 1985;202:149–161. [PubMed] [Google Scholar]
  81. Chebath J., Benech P., Mory Y., Mallucci L., Michalevicz R., Revel M. IFN and (2′,5′) oligo A synthetase in cell growth and in differentiation of hematopoietic cells. In: Friedman R.M., Merigan T., Sreevalsen T., editors. Interferons as Cell Growth Inhibitory Factors. A. R. Liss; New York: 1986. pp. 351–363. [Google Scholar]
  82. Chebath J., Benech P., Hovanessian A., Galabru J., Revel M. Four different forms of interferon-induced 2′,5′-oligo(A) synthetase identified by immunoblotting in human cells. J. Biol. Chem. 1987;262:3852–3857. [PubMed] [Google Scholar]
  83. Chebath J., Benech P., Revel M., Vigneron M. Constitutive expression of (2′–5′) oligo A synthetase confers resistance to picornavirus infection. Nature. 1987;330:587–588. doi: 10.1038/330587a0. [DOI] [PubMed] [Google Scholar]
  84. Chelbi-Alix M.K., Chousterman S. Ethanol induces 2′,5′-oligoadenylate synthetase and antiviral activities through interferon-beta production. J. Biol. Chem. 1992;267:1741–1745. [PubMed] [Google Scholar]
  85. Chelbi-Alix M.K., Sripari C.E. Ability of insulin and dsRNA to induce interferon system and Hsp 70 in fibroblast and epithelial cells in relation to their effects on cell growth. Exp. Cell Res. 1994;213:383–390. doi: 10.1006/excr.1994.1213. [DOI] [PubMed] [Google Scholar]
  86. Chelbi-Alix M.K., Thang M.N. Cloned human interferons alpha: differential affinities for polyinosinic acid and relationship between molecular structure and species specificity. Biochem. Biophys. Res. Commun. 1987;145:426–435. doi: 10.1016/0006-291x(87)91339-8. [DOI] [PubMed] [Google Scholar]
  87. Chelbi-Alix M.K., Brouard A., Boissard C., Pelaprat D., Rostene W., Thang M.N. Induction by vasoactive intestinal peptide of interferon alpha/beta synthesis in glial cells but not in neurons. J. Cell. Physiol. 1994;158:47–54. doi: 10.1002/jcp.1041580107. [DOI] [PubMed] [Google Scholar]
  88. Chen L., Novick D., Rubinstein M., Revel M. Recombinant interferon-beta 2 (interleukin-6) induces myeloid differentiation. FEBS Lett. 1988;239:299–304. doi: 10.1016/0014-5793(88)80939-6. [DOI] [PubMed] [Google Scholar]
  89. Chen L.-C., Dollbaum C., Smith H.S. Loss of heterozygosity on chromosome 1q in human breast cancer. Proc. Natl. Acad. Sci. USA. 1989;86:7204–7207. doi: 10.1073/pnas.86.18.7204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Chernajovsky Y., Kimchii A., Schmidt A., Zilberstein A., Revel M. Differential effects of two interferon-induced translational inhibitors on initiation of protein synthesis. Eur. J. Biochem. 1979;96:35–41. doi: 10.1111/j.1432-1033.1979.tb13010.x. [DOI] [PubMed] [Google Scholar]
  91. Chousterman S., Chelbi-Alix M.K., Thang M.N. 2′,5′-Oligoadenylate synthetase expression is induced in response to heat shock. J. Biol. Chem. 1987;262:4806–4811. [PubMed] [Google Scholar]
  92. Cirino N.M., Li G., Xiao W., Torrence P.F., Silverman R.H. Vol. 94. 1997. Targeting RNA for decay in respiratory syncytial virus infected cells with 2′ → 5′ oligoadenylate antisense; pp. 1937–1942. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Clemens M.J., Vaquero C.M. Inhibition of protein synthesis by double-stranded RNA in reticulocyte lysates: evidence for activation of an endoribonuclease. Biochem. Biophys. Res. Commun. 1978;83:59–68. doi: 10.1016/0006-291x(78)90397-2. [DOI] [PubMed] [Google Scholar]
  94. Clemens M.J., Williams B.R.G. Inhibition of cell-free protein synthesis by pppA2′p5′A2′p5′A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell. 1978;13:565–572. doi: 10.1016/0092-8674(78)90329-x. [DOI] [PubMed] [Google Scholar]
  95. Coccia E.M., Romeo G., Nissim A., Marziali G., Albertini R., Affabris E., Battistini A., Fiorucci G., Orsatti R., Rossi G.B., Chebath J. A full-length murine 2–5A synthetase cDNA transfected in NIH3T3 cells impairs EMCV but not VSV replication. Virology. 1990;179:228–233. doi: 10.1016/0042-6822(90)90292-y. [DOI] [PubMed] [Google Scholar]
  96. Cochran B.H., Zullo J., Verma I.M., Stiles C.D. Expression of the c-fos gene and of a fos-related gene is stimulated by platelet-derived growth factor. Science. 1984;226:1080–1082. doi: 10.1126/science.6093261. [DOI] [PubMed] [Google Scholar]
  97. Cohen B., Gothelf Y., Vaiman D., Chen L., Revel M., Chebath J. Interleukin-6 induces the (2′–5′) oligoadenylate synthetase gene in M1 cells through an effect on the interferon-responsive enhancer. Cytokine. 1991;3:83–91. doi: 10.1016/1043-4666(91)90027-b. [DOI] [PubMed] [Google Scholar]
  98. Cohrs R.J., Goswami B.B., Sharma O.K. Occurrence of 2–5A and RNA degradation in the chick oviduct during rapid estrogen withdrawal. Biochemistry. 1988;27:3246–3252. doi: 10.1021/bi00409a019. [DOI] [PubMed] [Google Scholar]
  99. Cole J.L., Carroll S.S., Kuo L.C. Stoichiometry of 2′,5′-oligoadenylate-induced dimerization of ribonuclease L. J. Biol. Chem. 1996;271:3979–3981. doi: 10.1074/jbc.271.8.3979. [DOI] [PubMed] [Google Scholar]
  100. Corrias M.V., Gribaudo G., Guarnaccia F., Ponzoni M. Induction of 2–5 OAS gene expression and activity is not sufficient for IFN-gamma-induced neuroblastoma cell differentiation. Int. J. Cancer. 1995;62:223–229. doi: 10.1002/ijc.2910620219. [DOI] [PubMed] [Google Scholar]
  101. Creasey A.A., Eppstein D.A., Marsh V., Khan Z., Merigan T.C. Growth regulation of melanoma cells by interferon and (2′–5′)oligoadenylate synthetase. Mol. Cell. Biol. 1983;3:780–786. doi: 10.1128/mcb.3.5.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Crick F.H.C. The origin of the genetic code. J. Mol. Biol. 1968;38:367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
  103. D'Andrea S., Chousterman S., Flechon J.E., La Bonnardiere C. Paracrine activities of porcine trophoblastic interferons. J. Reprod. Fertil. 1994;102:185–194. doi: 10.1530/jrf.0.1020185. [DOI] [PubMed] [Google Scholar]
  104. De Benedetti A., Pytel B.A., Baglioni C. Vol. 84. 1987. Loss of (2′–5′)oligoadenylate synthetase activity by production of antisense RNA results in lack of protection by interferon from viral infections; pp. 658–662. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  105. De Clercq E., Stewart W.E., De Somer P. Increased toxicity of double-stranded ribonucleic acid in virus-infected animals. Infect. Immun. 1973;7:167–172. doi: 10.1128/iai.7.2.167-172.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. den Hartog J.A.J., Doornbos J., Crea R., Van Boom J.H. Synthesis of the 5′-triphosphate of a trimer containing 2′–5′-internucleotide linked riboadenosines. Recueil. 1979;98:469–470. [Google Scholar]
  107. den Hartog J.A.J., Wijnands R.A., Van Boom J.H. Chemical synthesis of pppA2′p5′A2′p5′A, an interferon-induced inhibitor of protein synthesis and some functional analogues. J. Org. Chem. 1981;46:2242–2251. [Google Scholar]
  108. Desai S.Y., Patel R.C., Sen G.C., Malhotra P., Ghadge G.D., Timmapaya B. Activation of interferon-inducible 2′–5′ oligoadenylate synthetase by adenoviral VAI RNA. J. Biol. Chem. 1995;270:3454–3461. doi: 10.1074/jbc.270.7.3454. [DOI] [PubMed] [Google Scholar]
  109. De Vroom E., Fidder A., Saris C.P., Van Der Marel G.A., Van Boom J.H. Preparation of the individual diastereomers of adenylyl-(2′–5′)-P-thiadenylyl-(2′–5′)-adenosine and their 5′-phosphorylated derivatives. Nucl. Acids Res. 1987;15:9933–9943. doi: 10.1093/nar/15.23.9933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Dhingra M.M., Sarma R.H. Why do nucleic acids have 3′,5′-phosphodiester bonds? Nature. 1978;272:798–804. doi: 10.1038/272798a0. [DOI] [PubMed] [Google Scholar]
  111. Dianzani F., Zucca M., Scupham A., Georgiades J.A. Immune and virus-induced interferons may activate cells by different derepressional mechanisms. Nature. 1980;283:400–402. doi: 10.1038/283400a0. [DOI] [PubMed] [Google Scholar]
  112. Doetsch P., Wu J.M., Sawada Y., Suhadolnik R.J. Synthesis and characterization of (2′–5′)ppp3′dA(p3′dA)n, and analogue of (2′–5′)pppA(pA)n. Nature. 1981;291:355–358. doi: 10.1038/291355a0. [DOI] [PubMed] [Google Scholar]
  113. Dong B., Silverman R.H. 2–5A-dependent RNase molecules dimerize during activation by 2–5A. J. Biol. Chem. 1995;270:4133–4137. doi: 10.1074/jbc.270.8.4133. [DOI] [PubMed] [Google Scholar]
  114. Dong B., Silverman R.H. A bipartite model of 2–5A-dependent RNase L. J. Biol. Chem. 1997;272:22236–22242. doi: 10.1074/jbc.272.35.22236. [DOI] [PubMed] [Google Scholar]
  115. Dong B., Xu L., Zhou A., Hassel B.A., Lee X., Torrence P.F., Silverman R.H. Intrinsic molecular activities of the interferon-induced 2–5A-dependent RNase. J. Biol. Chem. 1994;269:14153–14158. [PubMed] [Google Scholar]
  116. Doornbos J., DenHartog J.A., Van Boom J.H., Altona C. Conformational analysis of the nucleotides A2′–5′A, A2′–5′ A2′–5′A and A2′–5′U from nuclear magnetic resonance and circular dichroism studies. Eur. J. Biochem. 1981;116:403–412. doi: 10.1111/j.1432-1033.1981.tb05349.x. [DOI] [PubMed] [Google Scholar]
  117. Doornbos J., Charubala R., Pfleiderer W., Altona C. Conformational analysis of the trinucleoside diphosphate 3′d(A2′–5′A2′–5′A). An NMR and CD study. Nucl. Acids Res. 1983;11:4569–4582. doi: 10.1093/nar/11.13.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Dougherty J.P., Samanta H., Farrell P.J., Lengyel P. Interferon, double-stranded RNA, and RNA degradation. Isolation of homogenous pppA(2′p5′A)n −1 synthetase from Ehrlich ascites tumor cells. J. Biol. Chem. 1980;255:3813–3816. [PubMed] [Google Scholar]
  119. Dougherty J.P., Rizzo C.J., Breslow R. Oligodeoxy-nucleotides that contain 2′,5′ linkages: synthesis and hybridization properties. J. Am. Chem. Soc. 1992;114:6254–6255. [Google Scholar]
  120. Drocourt J.-L, Dieffenbach C.W., Ts'O P.O.P., Justesen J., Thang M.N. Stuctural requirements of (2′–5′)oligoadenylate for protein synthesis inhibition in human fibroblasts. Nucl. Acids Res. 1982;10:2163–2174. doi: 10.1093/nar/10.6.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Duesberg P.H., Colby C. Vol. 64. 1969. On the biosynthesis and structure of double-stranded RNA in vaccinia virus-infected cells; pp. 396–403. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Edery I., Petryshyn R., Sonenberg N. Activation of double-stranded RNA-dependent kinase (dsI) by the TAR region of HIV-1 mRNA: a novel translational control mechanism. Cell. 1989;56:303–312. doi: 10.1016/0092-8674(89)90904-5. [DOI] [PubMed] [Google Scholar]
  123. Engels J. Synthesis of 2′-end modified 2′,5′-adenylate trimers. Tetrahedron Lett. 1980;21:4339–4342. [Google Scholar]
  124. Engels J., Krahmer U. Directed synthesis of the trimeric isodenylate A2′p5′A2′p5′A. Angew. Chem. Int. Ed. Engl. 1979;18:942–943. [Google Scholar]
  125. Eppstein D.A., Peterson T.C., Samuel C.E. Mechanism of interferon action: synthesis and activity of the interferon-mediated low-molecular-weight oligonucleotide from murine and human cells. Virology. 1979;98:9–19. doi: 10.1016/0042-6822(79)90520-8. [DOI] [PubMed] [Google Scholar]
  126. Eppstein D.A., Van Der Pas M.A., Schryver B.B., Sawai H., Lesiak K., Imai J., Torrence P.F. Cordycepin analogs of ppp5′A2′p5′A2′p5′A (2–5A) inhibit protein synthesis through activation of the 2–5A-dependent endonuclease. J. Biol. Chem. 1985;260:3666–3671. [PubMed] [Google Scholar]
  127. Eppstein D.A., Schryver B.B., Marsh Y.V. Stereoconfiguration markedly affects the biochemical and biological properties of phosphorothioate analogs of 2–5A core, (A2′p5′)2A. J. Biol. Chem. 1986;261:5999–6003. [PubMed] [Google Scholar]
  128. Etienne-Smekens M., Vassart G., Content J., Dumont J.E. Presence of 2′–5′ A synthetase in dog liver. FEBS Lett. 1981;125:146–150. doi: 10.1016/0014-5793(81)80705-3. [DOI] [PubMed] [Google Scholar]
  129. Etienne-Smekens M., Vandenbussche P., Content J., Dumont J.E. Vol. 80. 1983. (2′,5′)Oligoadenylate in rat liver: modulation after partial hepatectomy; pp. 4609–4613. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Falcoff E., Falcoff R., Lebleu B., Revel M. Correlation between the antiviral effect of interferon pretreatment and the inhibition of in vitro mRNA translation in noninfected L cells. J. Virol. 1973;12:421–430. doi: 10.1128/jvi.12.3.421-430.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Faltynek C.G., McCandless S., Chebath J., Baglioni C. Different mechanisms for activation of gene transcription by interferons α and γ. Virology. 1985;144:173–180. doi: 10.1016/0042-6822(85)90315-0. [DOI] [PubMed] [Google Scholar]
  132. Faltynek C.R., Princler G.L., Ruscetti F.W., Birchenall-Sparks M. Lectins modulate the internalization of recombinant interferon-alpha A and the induction of 2′,5′-oligo(A) synthetase. J. Biol. Chem. 1988;263:7112–7117. [PubMed] [Google Scholar]
  133. Faltynek C.R., Princler G.L., Gusella G.L., Varesio L., Radzioch D. A functional protein kinase C is required for induction of 2–5A synthetase by recombinant interferon-alpha A in Daudi cells. J. Biol. Chem. 1989;264:14305–14311. [PubMed] [Google Scholar]
  134. Farrell P.J., Sen G.C., Dubois M.F., Ratner L., Slattery E., Lengyel P. Vol. 75. 1978. Interferon action: two distinct pathways for inhibition of protein by synthesis by double-stranded RNA; pp. 5893–5897. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Feldman D., Goldstein A.L., Cox D., Grimley P.M. Cultured human endothelial cells treated with recombimant leukocyte A interferon. Lab. Invest. 1988;58:584–589. [PubMed] [Google Scholar]
  136. Ferbus D., Justesen J., Besacon F., Thang M.N. The 2′5′ oligoadenylate synthetase has a multifunctional 2′–5′ nucleotidyl-transferase activity. Biochem. Biophys. Res. Commun. 1981;100:847–856. doi: 10.1016/s0006-291x(81)80251-3. [DOI] [PubMed] [Google Scholar]
  137. Ferbus D., Justesen J., Bertrand H., Thang M.N. (2′–5′) Oligoadenylate synthetase in the maturation of rabbit reticulocytes. Mol. Cell. Biochem. 1984;62:51–55. doi: 10.1007/BF00230077. [DOI] [PubMed] [Google Scholar]
  138. Ferbus D., Testa U., Titeux M., Louache F., Thang M.N. Induction of (2′–5′) oligoadenylate synthetase activity during granulocyte and monocyte differentiation. Mol. Cell Biochem. 1985;67:125–133. doi: 10.1007/BF02370171. [DOI] [PubMed] [Google Scholar]
  139. Floyd-Smith G., Denton J.S. A (2′–5′)-dependent endonuclease: tissue distribution in BALB/c mice and the effects of IFN-β-treatment and anti-IFN-αβ immunoglobulin on the levels of the enzyme. J. Interferon Res. 1988;8:517–525. doi: 10.1089/jir.1988.8.517. [DOI] [PubMed] [Google Scholar]
  140. Floyd-Smith G., Denton J.S. Vol. 189. 1988. Age-dependent changes are observed in the levels of an enzyme mediator of interferon action: a (2′–5′)-dependent endonuclease; pp. 329–337. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  141. Floyd-Smith G., Slattery E., Lengyel P. Interferon action: RNA cleavage pattern of a (2′–5′)oligoadenylate-dependent endonuclease. Science. 1981;212:1030–1032. doi: 10.1126/science.6165080. [DOI] [PubMed] [Google Scholar]
  142. Floyd-Smith G., Yoshie O., Lengyel P. Interferon action. Covalent linkage of pppApApA(32P)pCp to (2′–5′) (A)n-dependent ribonucleases in cell extracts by ultraviolet irradiation. J. Biol. Chem. 1982;257:8584–8587. [PubMed] [Google Scholar]
  143. Foulis A.K., Farquharson M.A., Meager A. Immunoreactive alpha-interferon in insulin-secreting beta cells in type I diabetes mellitus. Lancet. 1987;ii:1423–1427. doi: 10.1016/s0140-6736(87)91128-7. [DOI] [PubMed] [Google Scholar]
  144. Franco B., Lai L.-W., Patterson D., Ledbetter D.H., Trask B.J., Van den Engh G., Iannoccone S., Frances S., Patel P.I., Lupski J.R. Molecular characteristics of a patient with del(1)(q23-q25) Hum. Genet. 1991;87:269–277. doi: 10.1007/BF00200903. [DOI] [PubMed] [Google Scholar]
  145. Freedman M.H., Estrov Z., Williams B.R., Gelfand E.W. Clinical and in vitro antiproliferative properties of recombinant DNA-derived human interferon-alpha 2. Am. J. Pediatr. Hematol. Oncol. 1986;8:178–182. doi: 10.1097/00043426-198623000-00002. [DOI] [PubMed] [Google Scholar]
  146. Friedman R.M., Esteban R.M., Metz D.H., Tovell D.R., Kerr I.M. Translation of RNA by L cell extracts: effects of interferon. FEBS Lett. 1972;24:273–277. doi: 10.1016/0014-5793(72)80371-5. [DOI] [PubMed] [Google Scholar]
  147. Friedman R.M., Metz E.H., Esteban R.M., Tovell D.R., Ball L.A., Kerr I.M. Mechanism of interferon action: inhibition of viral messenger ribonucleic acid translation in L-cell extracts. J. Virol. 1972;10:1184–1198. doi: 10.1128/jvi.10.6.1184-1198.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Fujii N., Kimura K., Murakami T., Indoh T., Ishida S., Fujinaga K., Oguma K. Suppression of interferon-induced oligo-2′,5′-adenylate synthetase induction in persistent infection. J. Gen. Virol. 1990;71:3071–3074. doi: 10.1099/0022-1317-71-12-3071. [DOI] [PubMed] [Google Scholar]
  149. Fujii N., Kwon K.W., Yashiki T., Kimura K., Isogai E., Isogai H., Sekiguchi S., Oguma K. Oligo-2′,5′-adenylate synthetase activity in cells persistently infected with human T-lymphotropic virus type I (HTLV-I) Microbiol. Immunol. 1992;36:425–429. doi: 10.1111/j.1348-0421.1992.tb02041.x. [DOI] [PubMed] [Google Scholar]
  150. Fulton R.W., Morton R.J., Burge L.J., Short E.C., Payton M.E. Action of quail and chicken interferons on a quail cell line, QT35. J. Interferon Cytokine Res. 1995;15:297–300. doi: 10.1089/jir.1995.15.297. [DOI] [PubMed] [Google Scholar]
  151. Gachet Y., La Bonnardiere C., Thang M.N., Chousterman S. Induction of atypical interferon after heat shock. C. R. Acad. Sci. III. 1993;316:337–340. [PubMed] [Google Scholar]
  152. Gallant J.A. Stringent control in E. coli. Annu. Rev. Genet. 1979;13:393–415. doi: 10.1146/annurev.ge.13.120179.002141. [DOI] [PubMed] [Google Scholar]
  153. Gamble D.R. The epidemiology of insulin dependent diabetes, with particular reference to the relationship of virus infection to its etiology. Epidemiol. Rev. 1980;2:49–70. doi: 10.1093/oxfordjournals.epirev.a036226. [DOI] [PubMed] [Google Scholar]
  154. Garcia-Blanco M.A., Lengyel P., Morrison E., Brownlee C., Stiles C.D., Rutherford M., Hannigan G., Williams B.R. Regulation of 2′,5′-oligoadenylate synthetase gene expression by interferons and platelet-derived growth factor. Mol. Cell. Biol. 1989;9:1060–1068. doi: 10.1128/mcb.9.3.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Genazzani A.A., Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide NAADP. Trends Pharmacol. Sci. 1997;18:108–110. doi: 10.1016/s0165-6147(96)01036-x. [DOI] [PubMed] [Google Scholar]
  156. Gerdes A.-M., Horder M., Bonnevie-Nielsen V. Increased IFN-α-induced sensitivity but reduced reactivity of 2′,5′-oligoadenylate synthetase (2,5AS) in trisomy 21 blood lymphocytes. Clin. Exp. Immunol. 1993;93:93–96. doi: 10.1111/j.1365-2249.1993.tb06502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Gesteland R.F., Atkins J.F., editors. The RNA World. Cold Spring Harbor Laboratory Press; Plainview: 1993. [Google Scholar]
  158. Ghislain J., Sussman G., Goelz S., Ling L.E., Fish E.N. Configuration of the interferon-alpha/beta receptor complex determines the context of the biological response. J. Biol. Chem. 1995;270:21785–21792. doi: 10.1074/jbc.270.37.21785. [DOI] [PubMed] [Google Scholar]
  159. Ghosh S.K., Kusari J., Bandyopadhyay S.K., Samanta H., Kumar R., Sen G.C. Cloning, sequencing, and expression of two murine 2′–5′-oligoadenylate synthetases. Structure-function relationships. J. Biol. Chem. 1991;266:15293–15299. [PubMed] [Google Scholar]
  160. Giannaris P.A., Damha M.J. Oligoribonucleotides containing 2′,5-phosphodiester linkages exhibit binding selectivity for 3′,5-RNA over 3′,5-ssDNA. Nucl. Acids Res. 1993;21:4742–4749. doi: 10.1093/nar/21.20.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Gilbert W. The RNA world. Nature. 1986;319:618. [Google Scholar]
  162. Gill T.J., III Type I conceptus interferons: maternal recognition of pregnancy signals and potential therapeutic agents. Am. J. Reprod. Immunol. 1991;26:19–22. doi: 10.1111/j.1600-0897.1991.tb00696.x. [DOI] [PubMed] [Google Scholar]
  163. Ginsberg-Fellner F., Fedun B., Taub F., Dobersen M.J., McEvoy R.C., Cooper Z., Notkins A.L., Rubinstein P. Diabetes mellitus and autoimmunity in patients with congenital rubella syndrome. Rev. Infect. Dis. 1985;7(Suppl. 1):S170–S175. doi: 10.1093/clinids/7.supplement_1.s170. [DOI] [PubMed] [Google Scholar]
  164. Gioeli C., Kwiatkowski M., Oberg B., Chattopadyaya J.B. The tetraisopropyldisiloxane-1,3-diyl: a versatile protecting group for the synthesis of adenylyl-(2′–5′)-adenylyl-(2′-5′)-adenosine(2–5A core) Tetrahedron Lett. 1981;22:1741–1744. [Google Scholar]
  165. Gosselin G., Imbach J.-L. Synthese du trimere de la B-D-xylofuranosyl-9-adenine liaisons internucleotidiques 2′–5′. Tetrahedron Lett. 1981;22:4699–4702. [Google Scholar]
  166. Gosselin G., Imbach J.-L. Nucleosides de synthese XXII. Obtention, comme synthons oligoxylonucleotidiques, de D-xylofuranosyl adenine specifiquement substitues. J. Heterocycl. Chem. 1982;19:597–602. [Google Scholar]
  167. Goswami B.B., Sharma O.K. Degradation of rRNA in interferon-treated vaccinia virus-infected cells. J. Biol. Chem. 1984;259:1371–1374. [PubMed] [Google Scholar]
  168. Gothelf Y., Raber J., Chen L., Schattner A., Chebath J., Revel M. Terminal differentiation of myeloleukemic M1 cells induced by IL-6, role of endogenous interferon. Lymphokine Cytokine Res. 1991;10:369–375. [PubMed] [Google Scholar]
  169. Gribaudo G., Fizzotti M., Cocciolo M.G., Cavallo G., Landolfo S. Different mechanisms regulate the IFN-inducible expression of 40 kDa human 2′–5′ oligo(A) synthetase in HeLa and Molt 4 cells. Int. J. Biol. Markers. 1989;4:221–225. doi: 10.1177/172460088900400407. [DOI] [PubMed] [Google Scholar]
  170. Gribaudo G., Lembo D., Cavallo G., Landolfo S., Lengyel P. Interferon action: binding of viral RNA to the 40-kilodalton 2′–5′-oligoadenylate synthetase in interferon-treated HeLa cells infected with encephalomyocarditis virus. J. Virol. 1991;65:1748–1757. doi: 10.1128/jvi.65.4.1748-1757.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Grimley P.M., Schaff Z. Significance of tubuloreticular inclusions in the pathobiology of human diseases. Pathobiol. Annu. 1976;6:221–257. [PubMed] [Google Scholar]
  172. Grimley P.M., Rutherford M.N., Kang Y.-H., Williams T., Woody J.N., Silverman R.H. Formation of tubuloreticular inclusions in human lymphoma cells compared to the induction of 2′,5′-oligoadenylate synthetase by leukocyte interferon in dose-effect and kinetic studies. Cancer Res. 1984;44:3480–3488. [PubMed] [Google Scholar]
  173. Grun J., Kroon E., Zoller B., Krempien U., Jungwirth C. Reduced steady-state levels of vaccinia virus-specific early mRNAs in interferon-treated chick embryo fibroblasts. Virology. 1987;158:28–33. doi: 10.1016/0042-6822(87)90234-0. [DOI] [PubMed] [Google Scholar]
  174. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983;35:849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  175. Gupta S.L., Sopori M.L., Lengyel P. Inhibition of protein synthesis directed by added viral and cellular messenger RNAs in extracts of interferon-treated Ehrlich ascites tumor cells. Location and dominance of the inhibitor(s) Biochem. Biophys. Res. Commun. 1973;54:777–783. doi: 10.1016/0006-291x(73)91491-5. [DOI] [PubMed] [Google Scholar]
  176. Gupta S.L., Graziadei W.D., III, Weideli H., Sopori M.L., Lengyel P. Selective inhibition of viral protein accumulation in interferon-treated cells: nondiscriminate inhibition of the translation of added viral and cellular messenger RNAs in their extracts. Virology. 1974;57:49–63. doi: 10.1016/0042-6822(74)90107-x. [DOI] [PubMed] [Google Scholar]
  177. Gupta S.L., Sopori M.L., Lengyel L. Release of the inhibition of messenger RNA translation in extracts of interferon-treated Ehrlich ascites tumor cells by added transfer RNA. Biochem. Biophys. Res. Commun. 1974;57:763–770. doi: 10.1016/0006-291x(74)90612-3. [DOI] [PubMed] [Google Scholar]
  178. Haines D.S., Suhadolnik R.J., Hubbell H.R., Gillespie D.H. Cellular and enzymatic activities of a synthetic heteropolymer double-stranded RNA of defined size. J. Biol. Chem. 1992;267:18315–18319. [PubMed] [Google Scholar]
  179. Hannigan G.E., Williams B.R.G. Transcriptional regulation of interferon-responsive genes is closely linked to interferon receptor occupancy. EMBO J. 1986;5:1607–1613. doi: 10.1002/j.1460-2075.1986.tb04403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Hansen T.R., Cross J.C., Farin C.E., Imakawa K., Roberts R.M. Slowed transcription and rapid messenger RNA turnover contribute to a decline in synthesis of ovine trophoblast protein-1 during in vitro culture. Biol. Reprod. 1991;45:94–100. doi: 10.1095/biolreprod45.1.94. [DOI] [PubMed] [Google Scholar]
  181. Hashimoto H., Switzer C. Self-association of 2′,5′-linked deoxynucleotides: meta-DNA. J. Am. Chem. Soc. 1992;114:6255–6256. [Google Scholar]
  182. Hassel B.A., Ts'O P.O. A proliferation-related constraint on endogenous and interferon-induced 2–5A synthetase activity in normal and neoplastic Syrian hamster cells. Mol. Carcinog. 1992;5:41–51. doi: 10.1002/mc.2940050109. [DOI] [PubMed] [Google Scholar]
  183. Hassel B.A., Ts'O P.O.P. A sensitive assay for the IFN-regulated 2–5A synthetase enzyme. J. Virol. Methods. 1994;50:323–334. doi: 10.1016/0166-0934(94)90187-2. [DOI] [PubMed] [Google Scholar]
  184. Hassel B.A., Shou A., Sotomayor C., Maran A., Silverman R.S. A dominant negative mutant of 2–5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J. 1993;12:3297–3304. doi: 10.1002/j.1460-2075.1993.tb05999.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Haugh M.C., Cayley P.J., Serafinowska H.T., Norman D.G., Reese C.B., Kerr I.M. Analogues and analogue inhibitors or ppp(A2′p)nA. Their stability and biological activity. Eur. J. Biochem. 1983;132:77–84. doi: 10.1111/j.1432-1033.1983.tb07327.x. [DOI] [PubMed] [Google Scholar]
  186. Hayakawa Y., Nobori T., Noyori R. Vol. 16. 1985. Synthesis of 2′-end modified 2′–5′-oligoadenylates; pp. 129–132. (Nucl. Acids Symp. Ser.). [PubMed] [Google Scholar]
  187. Hayakawa Y., Uchiyama M., Nobori T., Noyori R. A convenient synthesis of 2′–5′ linked oligoribonucleotides. Tetrahedron Lett. 1985;26:761–764. [Google Scholar]
  188. Hearl W.G., Johnston M.I. A misaligned double-stranded RNA, poly(I)-poly(C12U), induces accumulation of 2′,5′-oligoadenylates in mouse tissues. Biochem. Biophys. Res. Commun. 1986;138:40–46. doi: 10.1016/0006-291x(86)90243-3. [DOI] [PubMed] [Google Scholar]
  189. Hearl W.G., Johnston M.I. Accumulation of 2′,5′-oligoadenylates in encephalomycocarditis virus-infected mice. J. Virol. 1987;61:1586–1592. doi: 10.1128/jvi.61.5.1586-1592.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Herdewijn P., Charubala R., Pauwels R., De Clercq E., Pfleiderer W. Synthesis and activity of oligonucleotides containing a biologically active nucleoside at the 2′-end. Nucleosides & Nucleotides. 1987;6:441–442. [Google Scholar]
  191. Herdewijn P., Charubala R., Pauwels R., De Clercq E., Pfleiderer W. Synthesis and biological activity of 3′-modified 2′–5′ adenylate trimers. Nucleosides & Nucleotides. 1987;6:443–444. [Google Scholar]
  192. Herdewijn P., Charubala R., De Clercq E., Pfleiderer W. Synthesis of 2′–5′ connected oligonucleotides. Pro-drugs for antiviral and antitumoral nucleosides. Helv. Chim. Acta. 1989;72:1739–1748. [Google Scholar]
  193. Herdewijn P., Charubala R., Pfleiderer W. Modified oligomeric 2′–5′A analogues: synthesis of 2′–5′ oligonucleotides with 9-(3′-azido-3′-deoxy-β-D-xylofuranosyl)adenine and 9-(3′-amino-3′-deoxy-β-D-xylofuranosyl)adenine as modified nucleosides. Helv. Chim. Acta. 1989;72:1729–1738. [Google Scholar]
  194. Herdewijn P., Ruf K., Pfleiderer W. Synthesis of modified oligomeric 2′-5′A analogues: potential antiviral agents. Helv. Chim. Acta. 1991;74:7–23. [Google Scholar]
  195. Ho A.D., Klotzbucher A., Gross A., Dietz G., Mestan J., Jakobsen H., Hunstein W. Induction of intracellular and plasma 2′,5′-oligoadenylate synthetase by pentostatin. Leukemia. 1992;6:209–214. [PubMed] [Google Scholar]
  196. Ho D.D., Hartshorn K.L., Rota T.R., Andrews C.A., Kaplan J.C., Schooley R.T., Hirsch M.S. Recombinant human interferon alpha-A suppresses HTLV-III replication in vitro. Lancet. 1985;i:602–604. doi: 10.1016/s0140-6736(85)92144-0. [DOI] [PubMed] [Google Scholar]
  197. Horndler C., Pfleiderer W. Synthesis of 3′-deoxyadenylyl-(2′–5′)-3′-O-(2-hydroxyethyl)adenosine and 3′-deoxyadenylyl-(2′–5′)-3′-deoxyadenylyl-(2′–5′)-3′-O-{2[(cholest-5-en-3β-yloxy) carbonyloxy]ethyl}adenosine: a new type of (2′–5′)adenylate trimer conjugate. Helv. Chim. Acta. 1996;79:718–726. [Google Scholar]
  198. Hovanessian A.G., Kerr I.M. The (2′–5′)oligoadenylate (pppA2′p 5′A2′p 5′A) synthetase and protein kinase(s) from interferon-treated cells. Eur. J. Biochem. 1979;93:515–526. doi: 10.1111/j.1432-1033.1979.tb12850.x. [DOI] [PubMed] [Google Scholar]
  199. Hovanessian A.G., Brown R.E., Kerr I.M. Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature. 1977;268:537–540. doi: 10.1038/268537a0. [DOI] [PubMed] [Google Scholar]
  200. Hovanessian A.G., Meurs E., Aujean O., Vaquero C., Stefanos S., Falcoff E. Antiviral response and induction of specific proteins in cells treated with immune T (type II) interferon analogous to that from viral interferon (type I)-treated cells. Virology. 1980;104:195–204. doi: 10.1016/0042-6822(80)90377-3. [DOI] [PubMed] [Google Scholar]
  201. Hovanessian A.G., Brown R.E., Martin E.M., Roberts W.K., Knight M., Kerr I.M. Enzymic synthesis, purification and fractionation of (2′–5′)-oligoadenylic acid. Methods Enzymol. 1981;79:184–193. doi: 10.1016/s0076-6879(81)79028-1. [DOI] [PubMed] [Google Scholar]
  202. Hovanessian A.G., Meurs E., Montagnier L. Lack of systematic correlation between the interferon mediated anti-viral state and the levels of 2–5A synthetase and protein kinase in three different types of murine cells. J. Interferon Res. 1981;1:179–190. doi: 10.1089/jir.1981.1.179. [DOI] [PubMed] [Google Scholar]
  203. Hovanessian A.G., Laurent A.G., Chebath J., Galabru J., Robert N., Svab J. Identification of 69-kd and 100-kd forms of 2–5A synthetase in interferon-treated human cells by specific monoclonal antibodies. EMBO J. 1987;6:1273–1280. doi: 10.1002/j.1460-2075.1987.tb02364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Hovanessian A.G., Svab J., Marie I., Robert N., Chamaret S., Laurent A. Characterization of 69- and 100-kDa forms of 2–5A-synthetase from interferon-treated HeLa cells. J. Biol. Chem. 1988;263:4945–4949. [PubMed] [Google Scholar]
  205. Hubbell H.R., Sheetz P.C., Iogal S.S., Brodsky I., Kariko K., Li S.-W., Suhadolnik R.J., Sobol R.W. Heterogeneous nuclear RNA from hairy cell leukemia patients activates 2′,5′-oligoadenylate synthetase. Anticancer Res. 1991;11:1927–1932. [PubMed] [Google Scholar]
  206. Hubbell H.R., Kariko K., Suhadolnik R.J., Brodsky I. RNase L and increased endoribonuclease activities in the mononuclear cells of patients with chronic myelogenous leukemia. Anticancer Res. 1994;14:341–346. [PubMed] [Google Scholar]
  207. Hughes B.G., Srivastava P.C., Muse D.D., Robins R.K. 2′,5′-Oligoadenylates and related 2′,5′-oligonucleotide analogues. 1. Substrate specificity of the interferon-induced murine 2′,5′-oligoadenylate synthetase and enzymatic synthesis of oligomers. Biochemistry. 1983;22:2116–2126. doi: 10.1021/bi00278a011. [DOI] [PubMed] [Google Scholar]
  208. Ikehara M., Oshie K., Ohtsuka E. Synthesis of a protein biosynthesis inhibitor, 5′-triphosphoryladenylyl-(2′–5′)-adenylyl-(2′–5′)-adenosine. Tetrahedron Lett. 1979;38:3677–3680. [Google Scholar]
  209. Ikehara M., Oshie K., Hasegawa A., Ohtsuka E. Synthesis and properties of 5′-triphosphoryl 2′,5′-oligoadenylates (2–5A), and a general method for synthesis of 3′, 5′-biphosphorylated oligonucleotides. Nucl. Acids Res. 1981;9:2003–2020. doi: 10.1093/nar/9.8.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Ilson D.H., Torrence P.F., Vilcek J. Two molecular weight forms of human 2′,5′-oligoadenylate synthetase have different activation requirements. J. Interferon Res. 1986;6:5–12. doi: 10.1089/jir.1986.6.5. [DOI] [PubMed] [Google Scholar]
  211. Imai J., Torrence P.F. An efficient chemical synthesis of adenylyl (2′–5′)-adenylyl(2′–5′)adenosine(2′,5′-Oligo A) Methods Enzymol. 1981;79B:233–249. [PubMed] [Google Scholar]
  212. Imai J., Torrence P.F. Bis(2,2,2-trichloroethyl)-phosphorochloridite as a reagent for the phosphorylation of oligonucleotides: preparation of 5′-phosphorylated 2′,5′-oligoadenylates. J.Org. Chem. 1981;46:4015–4021. [Google Scholar]
  213. Imai J., Torrence P.F. Synthesis and biological activity of 5′-capped derivatives of 2–5A. Biochemistry. 1984;23:766–774. doi: 10.1021/bi00299a028. [DOI] [PubMed] [Google Scholar]
  214. Imai J., Torrence P.F. Expedient chemical synthesis of sequence-specific 2′,5′-oligoadenylates. J. Org. Chem. 1985;50:1418–1426. [Google Scholar]
  215. Imai J., Johnston M.I., Torrence P.F. Chemical modification potentiates the biological activities of 2–5A and its congeners. J. Biol. Chem. 1982;257:12739–12745. [PubMed] [Google Scholar]
  216. Imai J., Lesiak K., Johnston M.I., Torrence P.F. Vol. 11. 1982. Oligonucleotide structural features involved in binding to and activation of the 2–5A-dependent endoribonuclease of L cells; pp. 97–100. (Nucl. Acid Symp. Ser.). [PubMed] [Google Scholar]
  217. Imai J., Lesiak K., Torrence P.F. Respective role of each of the purine N-6 amino groups of 5′-O-triphosphoryladenylyl(2′ → 5′)adenylyl(2′ → 5′)adenosine in binding to and activation of RNase L. J. Biol. Chem. 1985;260:1390–1393. [PubMed] [Google Scholar]
  218. Inoue T., Orgel L.E. Substituent control of the poly(C)-directed oligomerization of guanosine 5′-phosphoroimidazolide. J. Am. Chem. Soc. 1981;103:7666–7667. [Google Scholar]
  219. Isaacs A., Lindemann J. B147. 1957. Virus interference. I. The interferon; pp. 258–267. (Proc. R. Soc. Lond. Ser. B.). [Google Scholar]
  220. Itkes A.V. Oligoadenylate and cyclic AMP: interrelation and mutual regulation. Prog. Mol. Subcell. Biol. 1994;14:209–221. doi: 10.1007/978-3-642-78549-8_12. [DOI] [PubMed] [Google Scholar]
  221. Itkes A.V., Turpaev K.T., Kartasheva O.N., Kafiani C.A., Severin E.S. Cyclic AMP-dependent regulation of activities of synthetase and phosphodiesterase of 2′,5′-oligoadenylate in NIH 3T3 cells. Mol. Cell. Biochem. 1984;58:165–171. doi: 10.1007/BF00240616. [DOI] [PubMed] [Google Scholar]
  222. Itkes A.V., Turpaev K.T., Kartasheva O.N., Tunitskaaya V.L., Kafiani C.A., Severin E.S. Regulation of 2′,5′-oligo(A) synthetase activity in theophyllin-treated NIH 3T3 cells. FEBS Lett. 1984;166:199–201. doi: 10.1016/0014-5793(84)80072-1. [DOI] [PubMed] [Google Scholar]
  223. Jacobsen H., Czarniecki C.W., Krause D., Friedman R.-M., Silverman R.-H. Interferon-induced synthesis of 2–5A-dependent RNase in mouse JLS-V9R cells. Virology. 1983;125:496–501. doi: 10.1016/0042-6822(83)90222-2. [DOI] [PubMed] [Google Scholar]
  224. Jacobsen H., Krause D., Friedman R.-M., Silverman R.-H. Vol. 80. 1983. Induction of ppp(A2′p)nA-dependent RNase in murine JLS-V9R cells during growth inhibition; pp. 4954–4958. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. James K.D., Ellington A.D. The search for missing links between self-replicating nucleic acids and the RNA world. Origins Life Evolution Biosphere. 1995;25:515–530. doi: 10.1007/BF01582021. [DOI] [PubMed] [Google Scholar]
  226. Jamoulle J.-C., Torrence P.F. Synthesis and biological activity of a guanosine and 7-deazaadenosine subsituted analog or 2–5A:p5′G2′p5′(c7A)2′p5′(c7A) Eur. J. Med. Chem. 1986;21:517–519. [Google Scholar]
  227. Jamoulle J.-C., Lesiak K., Torrence P.F. Synthesis and biological activity of tubercidin analogues of ppp5′A2′ p(5′A2′p)n5′A. Biochemistry. 1984;23:3063–3069. doi: 10.1021/bi00308a033. [DOI] [PubMed] [Google Scholar]
  228. Jamoulle J.-C., Lesiak K., Torrence P.F. Respective role of each of the purine N7 nitrogens of 5′-O-triphosphoryladenylyl(2′ → 5′)adenyl(2′ → 5′)adenosine in binding to and activation of the RNase L or mouse cells. Biochemistry. 1987;26:376–383. doi: 10.1021/bi00376a007. [DOI] [PubMed] [Google Scholar]
  229. Jiang P.H., Chany-Fournier F., Galabru J., Nadine R., Hovanessian A.G., Chany C. Interferon- and sarcolectin-dependent cellular regulatory interferons. J. Biol. Chem. 1988;263:19154–19158. [PubMed] [Google Scholar]
  230. Jin R., Chapman W.H., Jr., Srinivasan A.R., Olson W.K., Breslow R., Breslauer K.J. Vol. 90. 1993. Comparative spectroscopic, calorimetric, and computational studies of nucleic acid complexes with 2′,5′-versus 3′,5′-phosphodiester linkages; pp. 10568–10572. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Johnston M.I., Torrence P.F. The role of interferon-induced proteins, double-stranded RNA and 2′,5′-oligoadenylate in the interferon-mediated inhibition of viral translation. In: Freidman R.M., editor. Interferon: Mechanism of Production and Action. Elsevier; Amsterdam: 1984. pp. 189–298. [Google Scholar]
  232. Johnston M.I., Freidman R.M., Torrence P.F. 2′–5′-Oligoadenylate synthetase: a new assay and preliminary structure-activity relationships for enzyme activation by nucleic acids. Ann. NY Acad. Sci. 1980;350:603–604. [Google Scholar]
  233. Johnston M.I., Zoon K.C., Friedman R.M., De Clercq E., Torrence P. Oligo(2′–5′)adenylate synthetase in human lymphoblastoid cells. Biochem. Biophys. Res. Commun. 1980;97:375–383. doi: 10.1016/0006-291x(80)90275-2. [DOI] [PubMed] [Google Scholar]
  234. Johnston M.I., Imai J., Lesiak K., Torrence P.F. Immunochemical analysis of the structure of 2′,5′-oligoadenylate. Biochemistry. 1983;22:3453–3460. [Google Scholar]
  235. Joklik W.K., Merigan T.C. Vol. 56. 1966. Concerning the mechanism of action of interferon; pp. 558–565. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Jones S.S., Reese C.B. Chemical synthesis of 5′-O-triphosphoryladenylyl-(2′–5′)-adenylyl-(2′–5′)adenosine(2–5A) J. Am. Chem. Soc. 1979;101:7399–7401. [Google Scholar]
  237. Joyce G.F. Vol. 52. 1987. Nonenzymatic template-directed synthesis of informational molecules; pp. 41–51. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  238. Jung K., Switzer C. 2′,5′-DNA containing guanine and cytosine forms stable duplexes. J. Am. Chem. Soc. 1994;116:6059–6061. [Google Scholar]
  239. Justesen J., Kjeldgaard N.O. Spectrophotometric pyrophosphate assay of 2′,5′-oligoadenylate synthetase. Anal. Biochem. 1992;207:90–93. doi: 10.1016/0003-2697(92)90506-3. [DOI] [PubMed] [Google Scholar]
  240. Justesen J., Ferbus D., Thang M.N. 2′,5′-Oligoadenylate synthetase, an interferon induced enzyme: direct assay methods for the products, 2′,5′-oligoadenylates and 2′5′ coadenylates. Nucl. Acids Res. 1980;8:3073–3085. doi: 10.1093/nar/8.14.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Kariko K., Ludwig J. n-Decyl-NHpppA2′p5′A2′p5′A a phosphatase-resistant active pppA2′p5′A2′p5′A analog. Biochem. Biophys. Res. Commun. 1985;128:695–698. doi: 10.1016/0006-291x(85)90102-0. [DOI] [PubMed] [Google Scholar]
  242. Kariko K., Li S.W., Sobol R.W., Suhadolnik R.J., Charabula R., Pfleiderer W. Phosphorothioate analogues of 2′,5′-oligoadenylate. Activation of 2′,5′-oligoadenylate-dependent endoribonuclease by 2′,5′-phosphorothioate cores and 5′-monophosphates. Biochemistry. 1987;26:7136–7142. doi: 10.1021/bi00396a040. [DOI] [PubMed] [Google Scholar]
  243. Kariko K., Sobol R.W., Jr., Suhadolnik L., Li S.W., Reichenbach N.L., Suhadolnik R.J., Charubala R., Pfleiderer W. Phosphorothioate analogues of 2′,5′-oligoadenylate. Enzymatically synthesized 2′,5′-phosphorothioate dimer and trimer: unequivocal structural assignment and activation of 2′,5′-oligoadenylate-dependent endoribonuclease. Biochemistry. 1987;26:7127–7135. doi: 10.1021/bi00396a039. [DOI] [PubMed] [Google Scholar]
  244. Karpeisky M.Y., Beigelman L.N., Mikhailov S.N., Padyukova N.S., Smrt J. Synthesis of adenylyl-(2′ → 5′)adenylyl-(2′ → 5′)adenosine. Collect. Czech. Chem. Commun. 1982;47:156–165. [Google Scholar]
  245. Kelve M., Truve E., Aaspollu A., Kuusksalu A., Dapper J., Perovic S., Muller W.E., Schroder H.C. Rapid reduction of mRNA coding for 2′–5′-oligoadenylate synthetase in rat pheochromocytoma PC12 cells during apoptosis. Cell. Mol. Biol. 1994;40:165–173. [PubMed] [Google Scholar]
  246. Kerr I.M. Protein synthesis in cell-free systems: an effect of interferon. J. Virol. 1971;7:448–459. doi: 10.1128/jvi.7.4.448-459.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Kerr I.M., Brown R.E. Vol. 75. 1978. pppA2′p5′A2′p5′A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells; pp. 256–280. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Kerr I.M., Friedman R.M., Esteban R.M., Brown R.E., Ball L.A., Metz D.A., Risby D., Tovell D.R., Sonnabend J.A. The control of protein synthesis in interferon-treated cells. Adv. Biosci. 1973;11:109–126. [Google Scholar]
  249. Kerr I.M., Brown R.E., Ball L.A. Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment. Nature. 1974;250:57–59. doi: 10.1038/250057a0. [DOI] [PubMed] [Google Scholar]
  250. Kerr I.M., Friedman R.M., Brown R.E., Ball L.A., Brown J.C. Inhibition of protein synthesis in cell-free systems from interferon-treated, infected cells: further characterization and effect of formyl-methionyl-tRNAf. J. Virol. 1974;13:9–21. doi: 10.1128/jvi.13.1.9-21.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Kerr I.M., Brown R.E., Clemens M.J., Gilbert C.S. Interferon-mediated inhibition of cell-free protein synthesis in response to double-stranded RNA. Eur. J. Biochem. 1976;69:551–561. [Google Scholar]
  252. Kerr I.M., Brown R.E., Hovanessian A.G. Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature. 1977;268:540–542. doi: 10.1038/268540a0. [DOI] [PubMed] [Google Scholar]
  253. Kierzek R., He L., Turner D.H. Association of 2′–5′ oligonucleotides. Nucl. Acids Res. 1992;20:1685–1690. doi: 10.1093/nar/20.7.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Kimchi A., Shure H., Revel M. Antimitogenic function of interferon-induced (2′–5′)oligo(adenylate) and growth-related variations in enzymes that synthesize and degrade this oligonucleotide. Eur. J. Biochem. 1981;114:5–10. doi: 10.1111/j.1432-1033.1981.tb06163.x. [DOI] [PubMed] [Google Scholar]
  255. Kinjo J.-E., Pabuccouglu A., Alster D.K., Lesiak K., Torrence P.F. Synthesis and biological activity of uronic acid analogues of 2–5A[5′-O-triphophoryladenylyl(2′ → 5′)adenylyl-(2′ → 5′)adenosine] Drug Dis. Discov. 1992;8:241–254. [PubMed] [Google Scholar]
  256. Kitade Y., Alster D.K., Pabuccuoglu A., Torrence P.F. Uridine analogs of 2′,5′-oligoadenylates: on the biological role of the middle base of 2–5A trimer. Bioorg. Chem. 1991;19:283–299. [Google Scholar]
  257. Kitade Y., Nakata Y., Hirota K., Maki Y., Pabuccocuoglu A., Torrence P.F. 8-Methyladenosine-substituted analogues of 2–5A: synthesis and their biological activities. Nucl. Acids Res. 1991;19:4103–4108. doi: 10.1093/nar/19.15.4103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Knight M., Cayley P.J., Silverman R.H., Wreschner D.H., Gilbert C.S., Brown R.E., Kerr I.M. Radioimmune, radiobinding and HPLC analysis of 2–5A and related oligonucleotides from intact cells. Nature. 1980;288:189–192. doi: 10.1038/288189a0. [DOI] [PubMed] [Google Scholar]
  259. Knight M., Wreschner D.H., Silverman R.H., Kerr I.M. Radioimmune and radiobinding assays for A2′p5′ A2′p5′A, pppA2′p5′A2′p5′A and related oligonucleotides. Methods Enzymol. 1981;79:216–227. [PubMed] [Google Scholar]
  260. Kon N., Suhadolnik R.J. Identification of the ATP binding domain recombinant human 40-kDa 2′,5′-oligoadenylate synthetase by photoaffinity labeling with 8-azido-[32P]ATP. J. Biol. Chem. 1996;271:19983–19990. doi: 10.1074/jbc.271.33.19983. [DOI] [PubMed] [Google Scholar]
  261. Kondo N.S., Holmes H.M., Stempel L.M., Ts'O P.O.P. Influence of the phosphodiester linkage (3′–5′, 2′–5′, and 5′–5′) on the conformation of dinucleoside monophosphate. Biochemistry. 1970;9:3479–3498. doi: 10.1021/bi00820a002. [DOI] [PubMed] [Google Scholar]
  262. Kovacs T., Pabuccuoglu A., Lesiak K., Torrence P.F. Fluorodeoxy sugar analogues of 2′,5′-oligoadenylate probes of hydrogen bonding in enzymes of the 2–5A system. Bioorg. Chem. 1993;21:192–208. [Google Scholar]
  263. Kovacs T., Van Aerschot A., Herdewijn P., Torrence P.F. Solid phase synthesis of 2′,5′-oligoadenylates containing 3′-fluorinated ribose. Nucleosides & Nucleotides. 1995;14:1259–1267. [Google Scholar]
  264. Krause D.L., Silverman R.H. Tissue-related and species-specific differences in the 2–5A oligomer size requirement for activation of 2–5A-dependent RNase. J. Interferon Res. 1993;13:13–16. doi: 10.1089/jir.1993.13.13. [DOI] [PubMed] [Google Scholar]
  265. Krause D., Panet A., Arad G., Dieffenbach C.W., Silverman R.H. Independent regulation of ppp(A2′p)nA-dependent RNase in NIH3T3 clone 1 cells by growth arrest and interferon treatment. J. Biol. Chem. 1985;260:9501–9507. [PubMed] [Google Scholar]
  266. Krause D., Silverman R.H., Jacobsen H., Leisy S.A., Dieffenbach C.W., Freidman R.M. Regulation of ppp(A2′p)nA-dependent RNase levels during interferon treatment and cell differentiation. Eur. J. Biochem. 1985;146:611–618. doi: 10.1111/j.1432-1033.1985.tb08695.x. [DOI] [PubMed] [Google Scholar]
  267. Krause D., Lesiak K., Imai J., Sawai H., Torrence P.F., Silverman R.H. Activation of 2–5A-dependent RNase by analogs of 2–5A (5′-O-triphosphoryladenylyl(2′ → 5′)adenylyl(2′ → 5′)adenosine) using 2′,5′-tetraadenylate (core)-cellulose. J. Biol. Chem. 1986;261:6836–6839. [PubMed] [Google Scholar]
  268. Krause D., Mullins J.M., Penafiel L.M., Meister R., Nardone R.L. Microwave exposure alters the expression of 2–5A-dependent RNase. Radiat. Res. 1991;127:164–170. [PubMed] [Google Scholar]
  269. Krishnamurti C., Besancon F., Justesen J., Poulsen K., Ankel H. Inhibition of mouse fibroblast interferon by gangliosides. Differential effects on biological activity and on induction of (2′–5′)oligoadenylate synthetase. Eur. J. Biochem. 1982;124:1–6. doi: 10.1111/j.1432-1033.1982.tb05899.x. [DOI] [PubMed] [Google Scholar]
  270. Krishnan I., Baglioni C. 2′,5′oligo(A) polymerase activity in serum of mice infected with EMC virus or treated with interferon. Nature. 1980;285:485–488. doi: 10.1038/285485a0. [DOI] [PubMed] [Google Scholar]
  271. Krishnan I., Baglioni C. Vol. 77. 1980. Increased levels of (2′-5′)oligo(A) polymerase in human lymphoblastoid cells treated with glucocorticoids; pp. 6506–6510. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Krishnan I., Baglioni C. Elevated levels of (2′–5′)oligoadenylic acid polymerase activity in growth-arrested human lymphoblastoid Namalva cells. Mol. Cell. Biol. 1981;1:932–938. doi: 10.1128/mcb.1.10.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., Cech T.R. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982;31:147–157. doi: 10.1016/0092-8674(82)90414-7. [DOI] [PubMed] [Google Scholar]
  274. Kuhr T., Hala K., Dietrich H., Herold M., Wick G. Genetically determined target organ susceptibility in the pathogenesis of spontaneous autoimmune thyroiditis: aberrant expression of MHC-class II antigens and the possible role of virus. J. Autoimmun. 1994;7:13–25. doi: 10.1006/jaut.1994.1002. [DOI] [PubMed] [Google Scholar]
  275. Kumar R., Korutla L. Growth inhibition of human acute promyelocytic leukemia NB-4 cells by interferons and alltrans retinoic acid: trans-modulation of inducible gene expression pathways. Anticancer Res. 1995;15:353–360. [PubMed] [Google Scholar]
  276. Kumar R., Mendelsohn J. Role of 2′–5′-oligoadenylate synthetase in gamma-interferon-mediated growth inhibition of A431 cells. Cancer Res. 1989;49:5180–5184. [PubMed] [Google Scholar]
  277. Kumar R., Mendelsohn J. Growth regulation of A431 cells. J. Biol. Chem. 1990;265:4578–4582. [PubMed] [Google Scholar]
  278. Kuusksalu A., Pihlak A., Muller W.E., Kelve M. The (2′–5′)oligoadenylate synthetase is present in the lowest multicellular organisms, the marine sponges. Demonstration of the existence and identification of its reaction products. Eur. J. Biochem. 1995;232:351–357. [PubMed] [Google Scholar]
  279. Kvasyuk E.I., Kulak T.L., Khripach N.B., Mikhailopulo I.A., Uhlmann E., Charubala R., Pfleiderer W. Nucleotides XXIV: preparative synthesis of trimeric (2′–5′) oligoadenylic acid. Synthesis. 1987;1987:535–541. [Google Scholar]
  280. Kvasyuk E.I., Kulak T.I., Mikhailopulo I., Charubala R., Pfleiderer W. Synthesis of new (2′–5′)adenylate trimers, containing 5′-amino-5′-deoxyadenosine residues at the 5′-end of the oligoadenylate chain, and of its analogues, carrying a 9-[(2-hydroxyethoxy)methyl]adenine residue at the 2′-terminus. Helv. Chim. Acta. 1995;78:1777–1784. [Google Scholar]
  281. Kvasyuk E.I., Kulak T.I., Shulyakovskaya S.M., Makarenko M.V., Mikhailopulo I.A., Charubala R., Pfleiderer W. Synthesis of a new 125I-labeled tyrosine methyl ester conjugate of adenylyl-(2′–5′)-adenylyl-(2′–5′)-[2′,3′-di-O-(2-carboxyethyl)ethylidene]adenosine. Bioorg. Med. Chem. Lett. 1996;6:521–524. [Google Scholar]
  282. Kwiatkowski M., Gioli C., Oberg B., Chattopadhyaya J. Synthesis and properties of ara-adenylyl-(2′ → 5′)-ara-adenylyl-(2′ → 5′)araA[ara-(A2′p5′A2′p5′A)] Chem. Scr. 1981;18:95–96. [Google Scholar]
  283. Kwiatkowski M., Gioli C., Chattopadhyaya J. Chemical synthesis and conformation of “arabino analogues” of (2′ → 5′)-isoadenylates and their application as probes to determine the structural requirements of cellular exonucleases. Chem. Scr. 1982;19:49–56. [Google Scholar]
  284. Lab M., Thang M.N., Soteriadou K., Koehren F., Justesen J. Regulation of 2–5A synthetase activity and antiviral state in interferon treated chick cells. Biochem. Biophys. Res. Commun. 1982;105:412–418. doi: 10.1016/0006-291x(82)91449-8. [DOI] [PubMed] [Google Scholar]
  285. Landolfo S., Gariglio M., Gribaudo G., Jemma C., Giovarelli M., Cavallo G. Interferon-gamma is not an antiviral, but a growth-promoting factor for T lymphocytes. Eur. J. Immunol. 1988;18:503–509. doi: 10.1002/eji.1830180403. [DOI] [PubMed] [Google Scholar]
  286. Laurence L., Marti J., Roux D., Cailla H. Vol. 81. 1984. Immunological evidence for the in vivo occurrence of (2′–5′)adenyladenosine oligonucleotides in eukaryotes and prokaryotes; pp. 2322–2326. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Lazcano A., Miller S.L. The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell. 1996;85:793–798. doi: 10.1016/s0092-8674(00)81263-5. [DOI] [PubMed] [Google Scholar]
  288. Lebo R.V., Chance P.F., Dyck P.J., Redila-Flores M.T., Lynch E.D., Golbus M.S., Bird T.D., King M.C., Anderson L.A., Hall J., Wiegant J., Jiang Z., Dazen P.F., Punnett H.H., Schongerg S.A., Moore K., Shull M.M., Gendler S., Hurko O., Lovelace R.E., Latov N., Trofatter J., Conneally P.M. Chromosomel Charcot-Marie-Tooth disease (CMT1B) locus in the Fcg receptor gene region. Hum. Genet. 1991;88:1–12. doi: 10.1007/BF00204921. [DOI] [PubMed] [Google Scholar]
  289. Lengyel P. Double-stranded RNA and interferon action. J. Interferon Res. 1987;7:511–519. doi: 10.1089/jir.1987.7.511. [DOI] [PubMed] [Google Scholar]
  290. Lesiak K., Torrence P.F. Synthesis and biological activity of a fluorescent analog of 2–5A. FEBS Lett. 1983;151:291–296. doi: 10.1016/0014-5793(83)80089-1. [DOI] [PubMed] [Google Scholar]
  291. Lesiak K., Torrence P.F. Phosphorylation of 2–5A core 5′-diphosphate to 2–5A in mouse L cell extracts. Biochem. Biophys. Res. Commun. 1985;126:917–921. doi: 10.1016/0006-291x(85)90273-6. [DOI] [PubMed] [Google Scholar]
  292. Lesiak K., Torrence P.F. Synthesis and biological activities of oligo(8-bromoadenylates) as analogues of 5′-O-triphosphoadenylyl(2′ → 5′)adenylyl(2′ → 5′)adenosine. J. Med. Chem. 1986;29:1015–1022. doi: 10.1021/jm00156a020. [DOI] [PubMed] [Google Scholar]
  293. Lesiak K., Torrence P.F. Purine 8-bromination modulates the ribonuclease L binding and activation abilities of 2,5-oligoadenylates. Possible influence of glycosyl torsion angle. J. Biol. Chem. 1987;262:1961–1965. [PubMed] [Google Scholar]
  294. Lesiak K., Imai J., Floyd-Smith G., Torrence P.F. Biological activities of phosphodiester linkage isomers of 2–5A. J. Biol. Chem. 1983;258:13082–13088. [PubMed] [Google Scholar]
  295. Lesiak K., De Clercq E., Torrence P.F. Adducts of mannose-6-phosphate with 5-iodo-2′-deoxyuridine and 2–5A as potential antiviral agents. Nucleosides & Nucleotides. 1989;8:1387–1398. [Google Scholar]
  296. Lesiak K., Khamnei S., Torrence P.F. 2′,5′-Oligoadenylate:antisense chimeras—synthesis and properties. Bioconjug. Chem. 1993;4:467–472. doi: 10.1021/bc00024a008. [DOI] [PubMed] [Google Scholar]
  297. Lewin R. RNA catalysis gives fresh perspective on the origin of life. Science. 1986;231:545–546. doi: 10.1126/science.231.4738.545. [DOI] [PubMed] [Google Scholar]
  298. Lewis J.A. Induction of an antiviral state by interferon in the absence of elevated levels of 2,5-oligo(A) synthetase and eIF-2 kinase. Virology. 1988;162:118–127. doi: 10.1016/0042-6822(88)90400-x. [DOI] [PubMed] [Google Scholar]
  299. Lewis J.A., Falcoff R. Assay of double-stranded RNA-dependent endonuclease activity. Methods Enzymol. 1981;79:265–273. doi: 10.1016/s0076-6879(81)79038-4. [DOI] [PubMed] [Google Scholar]
  300. Lewis J.A., Falcoff E., Falcoff R. Dual action of double-stranded RNA in inhibiting protein synthesis in extracts of interferon-treated mouse L cells. Translation is impaired at the level of initiation and by mRNA degradation. Eur. J. Biochem. 1978;86:497–509. doi: 10.1111/j.1432-1033.1978.tb12333.x. [DOI] [PubMed] [Google Scholar]
  301. Li S.W., Moskow J.J., Suhadolnik R.J. 8-Azido double-stranded RNA photoaffinity probes. Enzymatic synthesis, characterization, and biological properties of poly(I, 8-azidoI)poly(C) and poly(I, 8-azidoI)·poly(C12U) with 2′,5′-oligoadenylate synthetase and protein kinase. J. Biol. Chem. 1990;265:5470–5474. [PubMed] [Google Scholar]
  302. Lin S.L., Ts'O P.O., Hollenberg M.D. Epidermal growth factor-urogastrone action: induction of 2′,5′-oligoadenylate synthetase activity and enhancement of the mitogenic effect by anti-interferon antibody. Life Sci. 1983;28:1479–1488. doi: 10.1016/0024-3205(83)90914-1. [DOI] [PubMed] [Google Scholar]
  303. Litton G.J., Hong R., Grossberg S.E., Vechlekar D., Goodavish C.N., Borden E.C. Biological and clinical effects of the oral immunomodulator 3,6-bis(2-piperidino-ethoxy)acridine trihydrochloride in patients with malignancy. J. Biol. Response Modif. 1990;9:61–70. [PubMed] [Google Scholar]
  304. Liu D.K., Owens G.F. Methylxanthine treatment of rats reduces 2,5-oligoadenylate synthesis in liver nuclei. J. Toxicol. Environ. Health. 1987;20:379–386. doi: 10.1080/15287398709530991. [DOI] [PubMed] [Google Scholar]
  305. Lodemann E., Nitsche E.M., Lang M.H., Gerein V., Altmeyer P., Holzmann H., Kornhuber B. Serum interferon level and (2′–5′)oligoadenylate synthetase activity in lymphocytes during clinical interferon application. J. Interferon Res. 1985;5:621–628. doi: 10.1089/jir.1985.5.621. [DOI] [PubMed] [Google Scholar]
  306. Maitra R.K., McMillan N.A., Desai S., McSwiggen J., Hovanessian A.G., Sen G., Williams B.R.G., Silverman R.H. HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes. Virology. 1994;204:823–827. doi: 10.1006/viro.1994.1601. [DOI] [PubMed] [Google Scholar]
  307. Maitra R.K., Li G., Xiao W., Dong B., Torrence P., Silverman R.H. Catalytic cleavage of an RNA target by 2–5A antisense and RNase L. J. Biol. Chem. 1995;270:15071–15075. doi: 10.1074/jbc.270.25.15071. [DOI] [PubMed] [Google Scholar]
  308. Mallucci L., Chebath J., Revel M., Wells V., Benech P. Interferon and 2–5A synthetase gene expression during the cell cycle. In: Dianzani F., Rossi G.B., editors. The Interferon System. Raven Press; New York: 1985. pp. 165–170. [Google Scholar]
  309. Mallucci L., Wells V., Chebath J., Revel M. (2′,5′) OligoA synthetase gene expression as related to endogenous interferon. In: Stewart W.E. II, Schellekens H., editors. The Biology of the Interferon System. Elsevier Science; Amsterdam: 1986. pp. 125–130. [Google Scholar]
  310. Maor G., Salzberg S., Silbermann M. The activity of 2,5-oligoadenylate synthetase, an interferon-induced enzyme, is coupled to the differentiation state of mouse condylar cartilage. Differentiation. 1990;44:18–24. doi: 10.1111/j.1432-0436.1990.tb00532.x. [DOI] [PubMed] [Google Scholar]
  311. Maran A., Maitra R.K., Kumar A., Dong B., Xiao W., Li G., Williams B.R.G., Torrence P.F., Silverman R.H. Blockage of NF-κB signaling by selective ablation of an mRNA target by 2–5A antisense chimeras. Science. 1994;265:789–792. doi: 10.1126/science.7914032. [DOI] [PubMed] [Google Scholar]
  312. Marcus P.I., Salb J.M. Molecular basis of interferon action: inhibition of viral RNA translation. Virology. 1966;30:502–516. doi: 10.1016/0042-6822(66)90126-7. [DOI] [PubMed] [Google Scholar]
  313. Marie I., Hovanessian A.G. The 69-kDa 2–5 synthetase is composed of two homologous and adjacent functional domains. J. Biol. Chem. 1992;267:9933–9939. [PubMed] [Google Scholar]
  314. Marie I., Galabru J., Svab J., Hovanessian A.G. Preparation and characterization of polyclonal antibodies specific for the 69 and 100 K-Dalton forms of human 2–5A synthetase. Biochem. Biophys. Res. Commun. 1989;160:580–587. doi: 10.1016/0006-291x(89)92472-8. [DOI] [PubMed] [Google Scholar]
  315. Marie I., Svab J., Hovanessian A.G. The binding of the 69- and 100-kD forms of 2′,5′-oligoadenylate synthetase to different polynucleotides. J. Interferon Res. 1990;10:571–578. doi: 10.1089/jir.1990.10.571. [DOI] [PubMed] [Google Scholar]
  316. Marie I., Svab J., Robert N., Galabru J., Hovanessian A.G. Differential expression and distinct structure of 69-and 100-kDa forms of 2–5A synthetase in human cells treated with interferon. J. Biol. Chem. 1990;265:18601–18607. [PubMed] [Google Scholar]
  317. Markham A.F., Porter R.A., Gait M.J., Sheppard R.C., Kerr I.M. Rapid chemical synthesis and circular dichroism properties of some 2′,5′-linked oligoriboadenylates. Nucl. Acids Res. 1979;6:2569–2582. doi: 10.1093/nar/6.7.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Martyre M.C., Beaupain R., Falcoff E. Human lung cancer nodules in organotypic culture: no evidence of correlation between the antiproliferative effects of interferons and the induction of 2′,5′-oligoadenylate synthetase. Tumor Biol. 1988;9:263–269. doi: 10.1159/000217570. [DOI] [PubMed] [Google Scholar]
  319. Matthews M.B., Shenk T. Adenovirus virus-associated RNA and translation control. J. Virol. 1991;65:5657–5662. doi: 10.1128/jvi.65.11.5657-5662.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. McNair A.N., Cheng D., Monjardino J., Thomas H.C., Kerr I.M. Hepatitis delta virus replication in vitro is not affected by interferon-alpha or -gamma despite intact cellular responses to interferon and dsRNA. J. Gen. Virol. 1994;75:1371–1378. doi: 10.1099/0022-1317-75-6-1371. [DOI] [PubMed] [Google Scholar]
  321. Menon S.D., Yap W.H., Lim A., Tan Y.H. Arachidonic acid regulates the binding of human interferon in human skin fibroblasts. Lipids. 1990;25:321–327. doi: 10.1007/BF02544341. [DOI] [PubMed] [Google Scholar]
  322. Merlin G., Revel M., Wallach D. The interferoninduced enzyme oligo-isoadenylate synthetase: rapid determination of its in vitro products. Anal. Biochem. 1981;110:190–196. doi: 10.1016/0003-2697(81)90134-2. [DOI] [PubMed] [Google Scholar]
  323. Merlin G., Chebath J., Benech P., Metz R., Revel M. Vol. 80. 1983. Molecular cloning and sequence of partial cDNA for interferon-induced (2′–5′)oligo(A) synthetase mRNA from human cells; pp. 4904–4908. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  324. Merritt J.A., Ball L.A., Sielaff K.M., Meltzer D.M., Borden E.C. Modulation of 2′,5′-oligoadenylate synthetase in patients treated with alpha-interferon: effects of dose, schedule, and route of administration. J. Interferon Res. 1992;6:189–198. doi: 10.1089/jir.1986.6.189. [DOI] [PubMed] [Google Scholar]
  325. Mestan J., Brockhaus M., Kirchner H., Jacobsen H. Antiviral activity of tumour necrosis factor. Synergism with interferons and induction of oligo-2′,5′-adenylate synthetase. J. Gen. Virol. 1988;69:3113–3120. doi: 10.1099/0022-1317-69-12-3113. [DOI] [PubMed] [Google Scholar]
  326. Meurs E., Hovanessian A.G., Montagnier L. Interferon-mediated antiviral state in human MRC5 cells in the absence of detectable levels of 2–5A synthetase and protein kinase. J. Interferon Res. 1981;1:219–232. doi: 10.1089/jir.1981.1.219. [DOI] [PubMed] [Google Scholar]
  327. Meurs E., Krause D., Robert N., Silverman R.H., Hovanessian A.G. The 2–5A system in control and interferon treated K/BALB cells infected with encephalomyocarditis virus. Ann. Inst. Pasteur Virol. 1986;137E:251–272. [PubMed] [Google Scholar]
  328. Miele M.B., Liu D.K., Kan N.C. Fractionation and characterization of 2′,5′-oligoadenylates by polyacrylamide gel electrophoresis: an alternative method for assaying 2′,5′-oligoadenylate synthetase. J. Interferon Res. 1991;11:33–40. doi: 10.1089/jir.1991.11.33. [DOI] [PubMed] [Google Scholar]
  329. Miele M.E., Vesell E.S., Ehmann W.C., Lipton A., Harvey H., Kan N.C. Hormonal and immunological regulation of 2′,5′-oligoadenylate synthetase activity in human peripheral blood mononuclear cells. Clin. Immunol. Immunopathol. 1992;65:183–192. doi: 10.1016/0090-1229(92)90222-a. [DOI] [PubMed] [Google Scholar]
  330. Mikhailov S.N., Pfleiderer W. Synthesis of a new class of acyclic 2′,5′- and 3′,5′-oligonucleotide analogs based on 9-[1,5-dihydroxy-4(S)-hydroxymethyl-3-oxapent-2(R)-yl]-adenine. Tetrahedron Lett. 1985;26:2059–2062. [Google Scholar]
  331. Mikhailov S.N., Charubala R., Pfleiderer W. 3′-Deoxyadenylyl-(2′–5′)-3′-deoxyadenylyl-(2′-ω)-9-(ω-hydroxyalkyl)adenines. Helv. Chim. Acta. 1991;74:887–891. [Google Scholar]
  332. Miller B.C., Bell J.B.G. 2′,5′-Oligoadenylate synthetase levels in patients with multiple myeloma receiving maintenance therapy with interferon alpha 2 beta do not correlate with clinical response. Br. J. Cancer. 1995;72:1525–1530. doi: 10.1038/bjc.1995.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Minks M.A., Benvin S., Maroney P.A., Baglioni C. Synthesis of 2′5′-oligo(A) in extracts of interferontreated HeLa cells. J. Biol. Chem. 1979;254:5058–5064. [PubMed] [Google Scholar]
  334. Minks M.A., Benvin S., Maroney P.A., Baglioni C. Metabolic stability of 2′5′oligo(A) and activity of 2′5′oligo(A)-dependent endonuclease in extracts of interferontreated and control HeLa cells. Nucl. Acids Res. 1979;6:767–780. doi: 10.1093/nar/6.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Minks M.A., West D.K., Benvin S., Baglioni C. Structural requirements of double-stranded RNA for the activation of 2′,5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J. Biol. Chem. 1979;254:10180–10183. [PubMed] [Google Scholar]
  336. Minks M.A., Benvin S., Baglioni C. Mechanism of pppA(2′p5′A)n2′p5′AOH synthesis in extracts of interferon-treated HeLa cells. J. Biol Chem. 1980;255:5031–5035. [PubMed] [Google Scholar]
  337. Minks M.A., West D.K., Benvin S., Greene J.J., Ts'O P.O.P., Baglioni C. Activation of 2′,5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells by 2′-O-methylated poly(inosinic acid)-poly(cytidylic acid) J. Biol. Chem. 1980;255:6403–6407. [PubMed] [Google Scholar]
  338. Mirando M.A., Short E.C., Jr., Geisert R.D., Vallet J.L., Bazer F.W. Stimulation of 2′,5′-oligoadenylate synthetase activity in sheep endometrium during pregnancy, by intrauterine infusion of ovine trophoblast protein-1, and by intramuscular administration of recombinant bovine interferon-α11. J. Reprod. Fertil. 1991;93:599–607. doi: 10.1530/jrf.0.0930599. [DOI] [PubMed] [Google Scholar]
  339. Miyamoto N.G., Jacobs B.L., Samuel C.E. Mechanism of interferon action: effect of double-stranded RNA and the 5-Q-monophosphate form of 2′,5-oligoadenylate on the inhibition of reovirus mRNA translation in vitro. J. Biol. Chem. 1983;258:15232–15237. [PubMed] [Google Scholar]
  340. Mory Y., Vaks B., Chebath J. Production of two human 2′,5′-oligoadenylate synthetase enzymes in Escherichia coli. J. Interferon Res. 1989;9:295–304. doi: 10.1089/jir.1989.9.295. [DOI] [PubMed] [Google Scholar]
  341. Muller W.E.G., Okamoto T., Reuter P., Ugarkovic D., Schroder H.C. Functional characteristics of Tat protein from human immunodeficiency virus: evidence that Tat links viral RNAs to nuclear matrix. J. Biol. Chem. 1990;265:3803–3808. [PubMed] [Google Scholar]
  342. Munoz A., Harvey R., Carrasco L. Cellular RNA is not degraded in interferon-treated HeLa cells after poliovirus infection. FEBS Lett. 1983;160:87–92. doi: 10.1016/0014-5793(83)80942-9. [DOI] [PubMed] [Google Scholar]
  343. Murray-Rust P., Stallings W.C., Monti C.T., Preston R.K., Glusker J.P. Intermolecular interactions of the CF bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J. Am. Chem. Soc. 1983;105:3206–3214. [Google Scholar]
  344. Nakajima Y., Konno S., Perruccio L., Chen Y., Wu J.M., An S., Chiao J., Choudhury M., Mallouh C., Muraki J. Effects of IFN-beta on growth of human prostatic JCA-1 cells. Biochem. Biophys. Res. Commun. 1994;200:467–474. doi: 10.1006/bbrc.1994.1472. [DOI] [PubMed] [Google Scholar]
  345. Nelson P.S., Bach C.T., Verheyden J.P.H. Synthesis of P-thioadenylyl-(2′–5′)-adenosine and P-thioadenylyl-(2′–5′)-P-thioadenylyl-(2′–5′)-adenosine. J. Org. Chem. 1984;49:2314–2317. [Google Scholar]
  346. Nicolas M., Laurence L., Luxembourg A., Cailla H., Marti J. Enzyme immunoassay of 2′–5′-oligoadenylates at the femtomole level. Ann. Inst. Pasteur Immunol. 1987;138:83–96. doi: 10.1016/s0769-2625(87)80098-3. [DOI] [PubMed] [Google Scholar]
  347. Nilsen T.W., Baglioni C. Vol. 76. 1979. Mechanism for discrimination between viral and host mRNA in interferon-treated cells; pp. 2600–2604. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  348. Nilsen T.W., Weismann S.G., Baglioni C. Role of 2′,5′-oligo(adenylic acid)polymerase in the degradation of ribonucleic acid linked to double-stranded ribonucleic acid by extracts of interferon-treated cells. Biochemistry. 1980;19:5574–5579. doi: 10.1021/bi00565a018. [DOI] [PubMed] [Google Scholar]
  349. Nilsen T.W., Wood D.L., Baglioni C. 2′,5′-Oligo(A)-activated endoribonuclease. Tissue distribution and characterization with a binding assay. J. Biol. Chem. 1981;256:10751–10754. [PubMed] [Google Scholar]
  350. Nilsen T.W., Maroney P.A., Baglioni C. Synthesis of (2′–5′)oligoadenylate and activation of an endoribonuclease in interferon-treated HeLa cells infected with Reovirus. J. Virol. 1982;42:1039–1045. doi: 10.1128/jvi.42.3.1039-1045.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  351. Nilsen T.W., Maroney P.A., Robertson H.D., Baglioni C. Heterogeneous nuclear RNA promotes synthesis of (2′, 5′)oligoadenylate-activated endoribonuclease. Mol. Cell. Biol. 1982;2:154–160. doi: 10.1128/mcb.2.2.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  352. Nilsen T.W., Wood D.L., Baglioni C. Presence of 2′,5′-oligo(A) and of enzymes that synthesize, bind, and degrade 2′,5′-oligo(A) in HeLa cell nuclei. J. Biol. Chem. 1982;25:1602–1605. [PubMed] [Google Scholar]
  353. Nilsen T.W., Maroney P.A., Baglioni C. Maintenance of protein synthesis in spite of mRNA breakdown in interferon-treated HeLa cells infected with Reovirus. Mol. Cell. Biol. 1983;3:64–69. doi: 10.1128/mcb.3.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  354. Nolan-Sorden N.L., Lesiak K., Bayard B., Torrence P.F., Silverman R.H. Photochemical crosslinking in oligonucleotide-protein complexes between a bromine-substituted 2–5A analog and 2–5A-dependent RNase by ultraviolet lamp or laser. Anal. Biochem. 1990;184:298–304. doi: 10.1016/0003-2697(90)90684-2. [DOI] [PubMed] [Google Scholar]
  355. Nyilas A., Vrang L., Drake A., Oberg B., Chattopadhayaya J. The cordycepin analogue of 2,5A and its threo isomer. Chemical synthesis, conformation and biological activity. Acta Chem. Scand. 1986;B40:678–688. doi: 10.3891/acta.chem.scand.40b-0678. [DOI] [PubMed] [Google Scholar]
  356. Ogilvie K.K., Theriault N.Y. The synthesis of 2′–5′ linked oligoribonucleotides. Tetrahedron. Lett. 1979;23:2111–2114. [Google Scholar]
  357. Oikarinen J. Cortisol induces (2′–5′) oligoadenylate synthetase in cultured chick embryo tendon fibroblasts. Biochem. Biophys. Res. Commun. 1982;105:876–881. doi: 10.1016/0006-291x(82)91051-8. [DOI] [PubMed] [Google Scholar]
  358. O'Malley B.W., Tsai M.J., Tsai S.Y., Towle H.C. Vol. 42. 1977. Regulation of gene expression in chick oviduct; pp. 605–615. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  359. Onishi E., Bannai H., Yamazaki S. Effect of glucose on antiviral activity of interferon. J. Interferon Res. 1986;6:381–388. doi: 10.1089/jir.1986.6.381. [DOI] [PubMed] [Google Scholar]
  360. Orgel L.E. Evolution of the genetic apparatus. J. Mol. Biol. 1968;38:381–393. doi: 10.1016/0022-2836(68)90393-8. [DOI] [PubMed] [Google Scholar]
  361. Orlic D., Quani F., Kinski A.A., Wu J.M. 2′,5′-Adenylate inhibition of erythropoietin-dependent colony formation. Stem Cells. 1981;1:261–268. [PubMed] [Google Scholar]
  362. Orlic D., Wu J., Carmichael R.D., Quani F., Kobylack M., Gordon A.S. Increased erythropoiesis and 2′-5′-A polymerase activity in the marrow and spleen of phenylhydrazine-injected rats. Exp. Hematol. 1982;10:478–485. [PubMed] [Google Scholar]
  363. Orlic D., Kirk E., Quani F., Babbbott S. The 2′–5′ adenylate (2–5A) system in erythropoiesis. Blood Cells. 1984;10:193–210. [PubMed] [Google Scholar]
  364. Orlic D., Kobylack M., Dornfest B.S. Inhibition of CFU-E in rat bone marrow perfused with 2′-5′-oligoadenylate core. Exp. Hematol. 1984;12:39–43. [PubMed] [Google Scholar]
  365. Orlic D., Kirk E., Quani F. Increased 2′,5′-adenylate synthetase activity in the spleens of BALB/c mice during hypoxia-stimulated erythropoiesis. Exp. Hematol. 1985;7:145–150. [PubMed] [Google Scholar]
  366. Ortega J.A., Wu J., Shore N.A., Dukes D.P., Merigan T.C. Suppressive effect of interferon on erythroid cell proliferation. Exp. Hematol. 1979;7:145–150. [PubMed] [Google Scholar]
  367. Ostlund L., Einhorn S., Robert K.H. Induction of 2′,5′-oligoadenylate synthetase and blast transformation in primary chronic lymphocytic leukemia cells following exposure to interferon in vitro. Cancer Res. 1986;46:2160–2163. [PubMed] [Google Scholar]
  368. Pace N.R., Marsh T.L. RNA catalysis and the origin of life. Origins Life. 1985;16:97–116. doi: 10.1007/BF01809465. [DOI] [PubMed] [Google Scholar]
  369. Palmiter R.D., Mulvihill E.R., McKnight G.S., Senear A.W. Regulation of gene expression in the chick oviduct by steroid hormones. Cold Spring Harbor Quant. Biol. 1977;42:639–647. doi: 10.1101/sqb.1978.042.01.066. [DOI] [PubMed] [Google Scholar]
  370. Parthasarathy R., Malik M., Fridey S.M. Vol. 79. 1982. X-ray structure of a dinucleotide monophosphate A2′p5′C that contains a 2′,5′ link found in (2′–5′)oligo(A)s induced by interferons: single-stranded helical conformation of 2′,5′-linked oligonucleotides; pp. 7292–7296. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  371. Pathak S., Hopwood V.L., Hortobagyi G.N., Evans G.A., Housman D., Ward D.C. Chromosome anomalies in human breast cancer: evidence for specific involvement of 1q region in lymphocyte cultures. Anticancer Res. 1990;11:1055–1060. [PubMed] [Google Scholar]
  372. Pellegrini S., Schindler C. Early events in signalling by interferons. Trends Biochem. Sci. 1993;18:338–342. doi: 10.1016/0968-0004(93)90070-4. [DOI] [PubMed] [Google Scholar]
  373. Percario Z.A., Fiorucci G., Marcolin C., Mangino G., Affabris E., Romeo G. Staurosporine inhibits interferon alpha-induced gene expression in Friend erythroleukemia cells through a PKC independent pathway. J. Biol. Regul. Homeostatic Agents. 1995;9:7–14. [PubMed] [Google Scholar]
  374. Pfleiderer W., Himmelsbach F., Charubala R. Synthesis of new modified 2′,5′-adenylate trimers carrying 3′-amino-3′-deoxyadenosine at the 2′-terminus. Bioorg. Med. Chem. Lett. 1994;4:1047–1052. [Google Scholar]
  375. Pivazian A.D., Susuki H., Vartanian A.A., Zhelkovsky M., Farina B., Leone E., Karpeisky M.Y. Regulation of poly(ADP-ribose) transferase activity by 2′,5′-oligoadenylates. Biochem. Int. 1984;9:143–152. [PubMed] [Google Scholar]
  376. Pledger W.J., Stiles C.D., Antoniades H.N., Scher C.D. Vol. 74. 1977. Induction of DNA synthesis in Balb/c-3T3 cells by serum components: reevaluation of the commitment process; pp. 4481–4485. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  377. Podevin P., Calmus Y., Bonnefis M.T., Veyrunes C., Chereau C., Poupon R. Effect of cholestasis and bile acids on interferon-induced 2′,5′-adenylate synthetase and NK cell activities. Gastroenterology. 1995;108:1192–1198. doi: 10.1016/0016-5085(95)90219-8. [DOI] [PubMed] [Google Scholar]
  378. Polack A., Eick D., Koch E., Bornkamm G.W. Truncation does not abrogate transcriptional downregulation of the c-myc gene by sodium butyrate in Burkitt's lymphoma cells. EMBO J. 1987;6:2959–2964. doi: 10.1002/j.1460-2075.1987.tb02601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  379. Pressova M., Smrt J. Synthesis of 2′-end lipophilized derivatives of 2′,5′-triadenylates. Collect. Czech. Chem. Commun. 1989;54:487–497. [Google Scholar]
  380. Raber J., Eldar H., Lehrer R., Chebath J., Livneh E. Specific regulation of the 100 kDa 2–5 A synthetase by protein kinase C. Eur. Cytokine Netw. 1991;2:281–290. [PubMed] [Google Scholar]
  381. Ralph S.J., Wines B.D., Payne M.J., Grubb D., Hatzinisiriou I., Linnane A.W., Devenish R.J. Resistance of melanoma cell lines to interferons correlates with reduction of IFN-induced tyrosine phosphorylation. Induction of the antiviral state by IFN is prevented by tyrosine kinase inhibitors. J. Immunol. 1995;154:2248–2256. [PubMed] [Google Scholar]
  382. Ratner L., Sen G.C., Brown G.L., Lebleu B., Kawakita M., Cabrer B., Slattery E., Lengyel P. Interferon, double-stranded RNA and RNA degradation. Fractionation of the endonuclease INT system into two macromolecular components; role of a small molecule in nuclease activation. Biochem. Biophys. Res. Commun. 1978;81:947–954. doi: 10.1016/0006-291x(78)91443-2. [DOI] [PubMed] [Google Scholar]
  383. Rayfield E.J. Effects of rubella virus infection on islet function. Curr. Top. Microbiol. Immunol. 1990;156:63–74. doi: 10.1007/978-3-642-75239-1_5. [DOI] [PubMed] [Google Scholar]
  384. Resnitzky D., Yarden A., Zipori D., Kimchi A. Autocrine beta-related interferon controls c-myc suppression and growth arrest during hematopoietic cell differentiation. Cell. 1986;46:31–40. doi: 10.1016/0092-8674(86)90857-3. [DOI] [PubMed] [Google Scholar]
  385. Resnitzky P., Goren T., Shaft D., Trakhtenbrot L., Peled A., Resnitzky D., Zipori D., Haran-Ghera N. Absence of negative growth regulation in three new murine radiation-induced myeloid leukemia cell lines with deletion of chromosome 2. Leukemia. 1992;6:1288–1295. [PubMed] [Google Scholar]
  386. Revel M., Wallach D., Merlin G., Schattner A., Schmidt A., Wolf D., Shulman L., Kimchi A. Interferon-induced enzymes: microassays and their applications: purification and assay of (2′–5′)-oligoadenylate synthetase and assay of 2′-phosphodiesterase. Methods Enzymol. 1981;79:149–161. doi: 10.1016/s0076-6879(81)79024-4. [DOI] [PubMed] [Google Scholar]
  387. Rice A.P., Kerr S.M., Roberts W.K., Brown R.E., Kerr I.M. Novel 2′,5′-oligoadenylates synthesized in interferon-treated, vaccinia virus infected cells. J. Virol. 1985;56:1041–1044. doi: 10.1128/jvi.56.3.1041-1044.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  388. Rimoldi D., Dieffenbach C.W., Friedman R.M., Samid D. 2′,5′-Oligoadenylate synthetase gene expression in revertants of ras-transformed NIH3T3 fibroblasts. Exp. Cell Res. 1990;191:76–82. doi: 10.1016/0014-4827(90)90038-c. [DOI] [PubMed] [Google Scholar]
  389. Rios M., Munoz M., Torrence P.F., Spencer E. Effect of interferon and 2′,5′-oligoadenylates on rotavirus RNA synthesis. Antiviral Res. 1995;26:133–143. doi: 10.1016/0166-3542(94)00070-o. [DOI] [PubMed] [Google Scholar]
  390. Roberts R.M. A role for interferons in early pregnancy. Bioessays. 1991;13:121–126. doi: 10.1002/bies.950130305. [DOI] [PubMed] [Google Scholar]
  391. Roberts W.K., Clemens M.J., Kerr I.M. Vol. 73. 1976. Interferon-induced inhibition of protein synthesis in L-cell extracts: an ATP-dependent step in the activation of an inhibitor by double-stranded RNA; pp. 3136–3140. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  392. Robinson H., Jung K.-E., Switzer C., Wang A.H.-J. DNA with 2′,5′-phosphodiester bonds forms a duplex structure in the A-type conformation. J. Am. Chem. Soc. 1995;117:837–838. [Google Scholar]
  393. Rosen C.A. Regulation of HIV gene expression by RNA-protein interactions. Trends Genet. 1991;7:9–14. doi: 10.1016/0168-9525(91)90015-i. [DOI] [PubMed] [Google Scholar]
  394. Rosenblum M.G., Cheung L., Kessler D. Differential activity of the 30-kD and the 100-kD forms of 2′-5′An synthetase induced by recombinant human interferon-alpha and interferon-gamma. J. Interferon Res. 1988;8:275–282. doi: 10.1089/jir.1988.8.275. [DOI] [PubMed] [Google Scholar]
  395. Rossel S., Voth R., Laubenstein H.P., Muller W.G., Schroder H.C., Meyer zum Bushenfelde K.-H., Hess G. Interferon production in patients infected with HIV-1. J. Infect. Dis. 1989;159:815–821. doi: 10.1093/infdis/159.5.815. [DOI] [PubMed] [Google Scholar]
  396. Rovnak J., Ranu R.S. Purification of 2′,5′-oligoadenylate synthetase from rabbit reticulocytes. J. Interferon Res. 1987;7:231–241. doi: 10.1089/jir.1987.7.231. [DOI] [PubMed] [Google Scholar]
  397. Roy S., Katze M.G., Parkin N.T., Edery I., Hovanessian A.G., Sonenberg N. Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1 tat gene product. Science. 1990;247:1216–1219. doi: 10.1126/science.2180064. [DOI] [PubMed] [Google Scholar]
  398. Rusconi S., Agarossi A., Ravasi L., Tonta A., Conti M., Galli M. Serum 2–5′-oligoadenylate synthetase levels and clinical response to interferon-beta therapy in women with genital human papillomavirus infection. J. Infect. Dis. 1994;169:1112–1115. doi: 10.1093/infdis/169.5.1112. [DOI] [PubMed] [Google Scholar]
  399. Rysiecki G., Gewert D.R., Williams B.R. Constitutive expression of a 2′,5′-oligoadenylate synthetase cDNA results in increased antiviral activity and growth suppression. J. Interferon Res. 1989;9:649–657. doi: 10.1089/jir.1989.9.649. [DOI] [PubMed] [Google Scholar]
  400. Saarma M., Toots U., Raukas E., Zhelkovsky A., Pivazian A., Neuman T. Nerve growth factor induces changes in (2′–5′)oligo(A) synthetase and 2′-phosphodiesterase activities during differentiation of PC12 pheochromocytoma cells. Exp. Cell Res. 1986;166:229–236. doi: 10.1016/0014-4827(86)90522-7. [DOI] [PubMed] [Google Scholar]
  401. Salehzada T., Silhol M., LeBleu B., Bisbal C. Polyclonal antibodies against RNase L: subcellular localization of this enzyme in mouse cells. J. Biol. Chem. 1991;266:5808–5813. [PubMed] [Google Scholar]
  402. Salehzada T., Silhol M., Steff A.M., Lebleu B., Bisbal C. 2′,5′-Oligoadenylate-dependent RNase L is a dimer of regulatory and catalytic subunits. J. Biol. Chem. 1993;268:7733–7740. [PubMed] [Google Scholar]
  403. Salzberg S., Hacohen D., David S., Dovrat S., Ahwan S., Gamliel H., Birnbaum M. Involvement of interferon-system in the regulation of cell growth and differentiation. Scanning Microsc. 1990;4:479–489. [PubMed] [Google Scholar]
  404. Salzberg S., Lanciano F., Hacohen D. Reversibility of the antiproliferative effect of interferon. Nat. Immun. Cell Growth Regul. 1990;9:191–202. [PubMed] [Google Scholar]
  405. Salzberg S., Heller A., Zou J.P., Collart F.R., Huberman E. Interferon-independent activation of (2′–5′)oligoadenylate synthetase in Friend erythroleukemia cell variants exposed to HMBA. J. Cell Sci. 1996;109:1517–1526. doi: 10.1242/jcs.109.6.1517. [DOI] [PubMed] [Google Scholar]
  406. Samanta H., Dougherty J.P., Lengyel P. Synthesis of (2′–5′)(A)n from ATP. Characterization of the reaction catalyzed by (2′–5′)(A)n synthetase purified from mouse Ehrlich ascites tumor cells treated with interferon. J. Biol. Chem. 1980;255:9807–9813. [PubMed] [Google Scholar]
  407. Samid D., Flessate D.M., Friedman R.M. Interferon-induced revertants of ras-transformed cells: resistance to transformation by specific oncogenes and retransformation by 5-azacytidine. Mol. Cell. Biol. 1987;7:2196–2200. doi: 10.1128/mcb.7.6.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  408. Samuel C.E., Ferris D.A. Mechanism of interferon action. Species specificity of interferon and of the interferon-mediated inhibitor of translation from mouse, monkey and human cells. Virology. 1977;77:556–565. doi: 10.1016/0042-6822(77)90481-0. [DOI] [PubMed] [Google Scholar]
  409. Samuel C.E., Joklik W.K. A protein synthesizing system from interferon-treated cells that discriminates between cellular and viral messenger RNAs. Virology. 1974;58:476–491. doi: 10.1016/0042-6822(74)90082-8. [DOI] [PubMed] [Google Scholar]
  410. Sano T., Tsujino T., Kazuhiro Y., Nakayama H., Haruma K., Ito H., Nakamura Y., Kajiyama G., Tahara E. Frequent loss of heterozygosity on chromosome 1q, 5q, and 17p in human gastric carcinomas. Anticancer Res. 1991;11:1055–1060. [PubMed] [Google Scholar]
  411. Saunders M.E., Gewert D.R., Tugwell M.E., McMahon M., Williams B.R.G. Human 2–5A synthetase: characterization of a novel cDNA and corresponding gene structure. EMBO J. 1985;4:1761–1768. doi: 10.1002/j.1460-2075.1985.tb03848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  412. Sawai H. Vol. 16. 1985. Synthesis, properties, and use of β-alanyltyrosine derivatives of 2′,5′-oligoadenylate 5′-triphosphate; pp. 137–140. (Nucl. Acids Res. Symp. Ser.). [PubMed] [Google Scholar]
  413. Sawai H., Shibata T., Ohno M. Synthesis of oligonucleotide inhibitor of protein synthesis: pppA2′p5′A2′p5′A. Tetrahedron Lett. 1979:4573–4576. [Google Scholar]
  414. Sawai H., Shibata T., Ohno M. Preparation of oligoadenylates with 2′–5′ linkage using Pb+2 ion catalyst. Tetrahedron. 1981;37:481–485. [Google Scholar]
  415. Sawai H., Imai J., Lesiak K., Johnston M.I., Torrence P.F. Cordycepin analogues of 2–5A and its derivatives. Chemical synthesis and biological activity. J. Biol. Chem. 1983;258:1671–1677. [PubMed] [Google Scholar]
  416. Sawai H., Kuroda K., Hojo T. Vol. 19. 1988. Efficient oligoadenylate synthesis catalyzed by uranyl ion complex in aqueous solution; pp. 5–7. (Nucl. Acids Symp. Ser.). [PubMed] [Google Scholar]
  417. Sawai H., Ishibashi K., Itoh M., Watanabe S. Sensitive radioimmunoassay for 2′,5′-oligoadenylates using a novel 125I-labeled derivative of 2′,5′-triadenylate 5′-triphosphate. J. Biochem. 1985;98:999–1005. doi: 10.1093/oxfordjournals.jbchem.a135380. [DOI] [PubMed] [Google Scholar]
  418. Sawai H., Lesiak K., Imai J., Torrence P.F. Replacement of the ribofuranose oxygen of 2–5A derivatives by methylene: synthesis of an aristeromycin analog of 2–5A core 5′-monophosphate [5′-O-phosphoryl-adenylyl(2′ → 5′)adenylyl (2′ → 5)adenosine] J. Med. Chem. 1985;28:1376–1380. doi: 10.1021/jm00147a048. [DOI] [PubMed] [Google Scholar]
  419. Schattner A., Merlin G., Wallach D., Rosenberg H., Bini T., Hahn T., Levin S., Revel M. Monitoring of interferon therapy by assay of (2′–5′)oligo-isoadenylate synthetase and interferon blood levels in mice early after viral infection. J. Interferon Res. 1981;2:285–289. doi: 10.1089/jir.1981.1.587. [DOI] [PubMed] [Google Scholar]
  420. Schiller J.H., Storer B., Witt P.L., Nelson B., Brown R.R., Horisberger M., Grossberg S., Borden E.C. Biological and clinical effects of the combination of beta- and gamma-interferons administered as a 5-day continuous infusion. Cancer Res. 1990;50:4588–4594. [PubMed] [Google Scholar]
  421. Schimke R.T., McKnight G.S., Shapiro D.J., Sullivan D., Palacios R. Hormonal regulation of ovalbumin synthesis in the chick oviduct. Recent Prog. Horm. Res. 1975;31:175–211. doi: 10.1016/b978-0-12-571131-9.50009-8. [DOI] [PubMed] [Google Scholar]
  422. Schirmeister H., Pfleiderer W. Synthesis and characterization of modified 2′–5′ adenylate trimers—potential antiviral agents. Helv. Chim. Acta. 1994;77:10–22. [Google Scholar]
  423. Schleich T., Cross B.P., Smith I.C.P. A conformational study of adenylyl-(3′,5′)-adenosine and adenylyl-(2′,5′)-adenosine in aqueous solution by carbon-13 magnetic resonance spectroscopy. Nucl. Acids Res. 1976;3:355–370. doi: 10.1093/nar/3.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  424. Schmidt A., Zilberstein A., Schulman L., Federman P., Berissi H., Revel M. Interferon action: isolation of nuclease F, a translation inhibitor activated by interferon-induced (2′–5′)oligoisoadenylate. FEBS Lett. 1978;95:257–264. doi: 10.1016/0014-5793(78)81006-0. [DOI] [PubMed] [Google Scholar]
  425. Schmidt A., Chernajovsky Y., Schulman L., Federman P., Berissi H., Revel M. Vol. 76. 1979. An interferon-induced phosphodiesterase degrading (2′–5′)oligoisoadenylate and the C-C-A terminus of tRNA; pp. 4788–4792. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  426. Schmitt R.A., Geisert R.D., Zavy M.T., Short E.C., Blair R.M. Uterine cellular changes in 2′,5′-oligoadenylate synthetase during the bovine estrous cycle and early pregnancy. Biol. Reprod. 1993;48:460–466. doi: 10.1095/biolreprod48.3.460. [DOI] [PubMed] [Google Scholar]
  427. Schroder H.C., Wenger R., Rottman M., Muller W.E.G. Alteration of nuclear (2′,5′)oligoriboadenylate synthetase and nuclease activities preceding replication of human immunodeficiency virus in H9 cells. Biol. Chem. Hoppe Seyler. 1988;369:985–995. doi: 10.1515/bchm3.1988.369.2.985. [DOI] [PubMed] [Google Scholar]
  428. Schroder H.C., Wenger R., Kuchino Y., Muller W.E.G. Modulation of nuclear matrix-associated 2′,5′-oligoadenylate metabolism and ribonuclease L activity in H9 cells by human immunodeficiency virus. J. Biol. Chem. 1989;264:5669–5673. [PubMed] [Google Scholar]
  429. Schroder H.C., Kljajic Z., Weiler B.E., Gasic M., Uhlenbruck G., Kurelec B., Muller W.E.G. The galactose-specific lectin from the sponge Chondrilla nucula displays anti-human immunodeficiency virus activity in vitro via stimulation of the (2′–5′)oligoadenylate metabolism. Antiviral Chem. Chemother. 1990;1:99–105. [Google Scholar]
  430. Schroder H.C., Ugarkovic D., Merz H., Kuchino Y., Okamoto T., Muller W.E.G. Protection of HeLa-T4+ cells against human immunodeficiency virus (HIV) infection after stable transfection with HIV LTR-2′,5′-oligoadenylate synthetase hybrid gene. FASEB J. 1990;4:3124–3130. doi: 10.1096/fasebj.4.13.1698680. [DOI] [PubMed] [Google Scholar]
  431. Schroder H.C., Ugarkovic D., Wenger R., Okamoto T., Muller W.E.G. Binding of Tat protein to the TAR region of human immunodeficiency virus type 1 blocks TAR-mediated activation of (2′–5′)oligoadenylate synthetase. AIDS Res. Hum. Retroviruses. 1990;6:659–672. doi: 10.1089/aid.1990.6.659. [DOI] [PubMed] [Google Scholar]
  432. Schroder H.C., Kelve M., Schacke H., Pfleiderer W., Charubala R., Suhadolnik R.J., Muller W.E.G. Inhibition of DNA topoisomerase I activity by 2′,5′-oligoadenylates and mismatched double stranded RNA in uninfected and HIV-1-infected H9 cells. Chem. Biol. Interact. 1994;90:169–183. doi: 10.1016/0009-2797(94)90101-5. [DOI] [PubMed] [Google Scholar]
  433. Schwartz E.L., Nilson L.A. Activation of 2′,5′-oligoadenylate synthetase activity on induction of HL-60 leukemia cell differentiation. Mol. Cell. Biol. 1989;9:3897–3903. doi: 10.1128/mcb.9.9.3897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  434. Sekellick M.J., Biggers W.J., Marcus P.I. Development of the interferon system. I. In chicken cells development in ovo continues on time in vitro. In Vitro Cell Dev. Biol. 1990;26:997–1003. doi: 10.1007/BF02624475. [DOI] [PubMed] [Google Scholar]
  435. Sen G.C., Lengyel P. The interferon system. A bird's eye view of its biochemistry. J. Biol. Chem. 1992;267:5017–5020. [PubMed] [Google Scholar]
  436. Sen G.C., Lebleu B., Brown G.E., Kawakita M., Slattery E., Lengyel P. Interferon, double-stranded RNA and mRNA degradation. Nature. 1976;264:370–373. doi: 10.1038/264370a0. [DOI] [PubMed] [Google Scholar]
  437. SenGupta D.N., Silverman R.H. Activation of interferon-regulated, dsRNA-dependent enzymes by human immunodeficiency virus-1 leader RNA. Nucl. Acids Res. 1989;17:969–978. doi: 10.1093/nar/17.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  438. Shaila S., Lebleu B., Brown G.E., Sen G.C., Lengyel P. Characteristics of extracts from interferon-treated HeLa cells: presence of a protein kinase and endoribonuclease activated by double-stranded RNA and of an inhibitor of mRNA methylation. J. Gen. Virol. 1977;37:535–546. [Google Scholar]
  439. Shan B., Lewis J.A. Interferon-induced expression of different genes is mediated by distinct regulatory pathways. Virology. 1989;170:277–281. doi: 10.1016/0042-6822(89)90378-4. [DOI] [PubMed] [Google Scholar]
  440. Sharp P.A. On the origin of RNA splicing and introns. Cell. 1985;42:397–400. doi: 10.1016/0092-8674(85)90092-3. [DOI] [PubMed] [Google Scholar]
  441. Shefter E., Barlow M., Sparks R.A., Trueblood K.N. The crystal and molecular structure of a dinucleoside phosphate: beta-adenosine-2′-beta-uridine-5′-phosphoric acid. Acta Crystallogr. 1969;B 25:895–908. doi: 10.1107/s0567740869003190. [DOI] [PubMed] [Google Scholar]
  442. Sheppard T.L., Breslow R.C. Selective binding of RNA, but not DNA, by complementary 2′,5′-linked DNA. J. Am. Chem. Soc. 1996;118:9810–9811. [Google Scholar]
  443. Shimazu M., Shinozuka K., Sawai H. Facile and stereoselective synthesis of 2′,5′-oligothioadenylate by UO2+2 ion catalyst. Nucl. Acids Res. 1992;20:105–106. [PubMed] [Google Scholar]
  444. Shimidzu T., Yamana K., Kanda N., Maikuma S. A simple and convenient synthesis of 3′-5′- or 2′-5′-linked oligoribonucleotide by polymerization of unprotected ribonucleotide using phosphorus tris-azole. Nucl. Acids Res. 1984;12:3257–3270. doi: 10.1093/nar/12.7.3257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  445. Shimizu N., Sokawa Y. 2′5′-Oligoadenylate synthetase activity in lymphocytes from normal mouse. J. Biol. Chem. 1979;254:12034–12037. [PubMed] [Google Scholar]
  446. Shimizu N., Sokawa Y. (2′–5′)-Oligoadenylate synthetase in pig spleen: isolation and characterization. J. Biochem. 1983;94:1421–1428. [PubMed] [Google Scholar]
  447. Shimizu N., Sokawa Y., Sokawa J. Immunological cross-reactivity between large and small (2′–5′)oligoadenylate synthetases from pig cells. J. Biochem. 1984;95:1827–1830. doi: 10.1093/oxfordjournals.jbchem.a134797. [DOI] [PubMed] [Google Scholar]
  448. Shiojiri S., Fukunaga R., Ichii Y., Sokawa Y. Structure and expression of a cloned cDNA for human (2′–5′)oligoadenylate synthetase. J. Biochem. 1985;99:1455–1464. doi: 10.1093/oxfordjournals.jbchem.a135615. [DOI] [PubMed] [Google Scholar]
  449. Short E.C., Jr., Geisert R.D., Helmer S.D., Zavy M.T., Fulton R.W. Expression of antiviral activity and induction of 2′,5′-oligoadenylate synthetase by conceptus secretory proteins enriched in bovine trophoblast protein-1. Biol. Reprod. 1991;44:261–268. doi: 10.1095/biolreprod44.2.261. [DOI] [PubMed] [Google Scholar]
  450. Short E.C., Jr., Geisert R.D., Groothuis P.G., Blair R.M., Schmitt R.A., Fulton R.W. Porcine conceptus proteins: antiviral activity and effect on 2′,5′-oligoadenylate synthetase. Biol. Reprod. 1992;46:464–469. doi: 10.1095/biolreprod46.3.464. [DOI] [PubMed] [Google Scholar]
  451. Silverman R.H. Functional analysis of 2–5A-dependent RNase and 2–5A using 2′,5′-oligoadenylate-cellulose. Anal. Biochem. 1985;144:450–460. doi: 10.1016/0003-2697(85)90141-1. [DOI] [PubMed] [Google Scholar]
  452. Silverman R.H., SenGupta D.N. Translational regulation by HIV leader RNA, TAT, and interferon-inducible enzymes. J. Exp. Pathol. 1990;5:69–77. [PubMed] [Google Scholar]
  453. Silverman R.H., Wreschner D.H., Gilbert C.S., Kerr I.M. Synthesis, characterization properties of ppp(A2′p)nApCp and related high-specific-activity 32P-labelled derivatives of ppp(A2′p)nA. Eur. J. Biochem. 1981;115:79–85. doi: 10.1111/j.1432-1033.1981.tb06200.x. [DOI] [PubMed] [Google Scholar]
  454. Silverman R.H., Cayley P.J., Knight M., Gilbert C.S., Kerr I.M. Control of the ppp(A2′p)nA system in HeLa cells. Effects of interferon on virus infection. Eur. J. Biochem. 1982;124:131–138. doi: 10.1111/j.1432-1033.1982.tb05915.x. [DOI] [PubMed] [Google Scholar]
  455. Silverman R.H., Skehel J.J., James T.C., Wreschner D.H., Kerr I.M. rRNA cleavage as an index of ppp(A2′p)nA activity in interferon-treated encephalomycarditis virus-infected cells. J.Virol. 1983;46:1051–1055. doi: 10.1128/jvi.46.3.1051-1055.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  456. Silverman R.H., Jung D.D., Nolan-Sorden N.L., Dieffenbach C.W., Kedar V.P., SenGupta D.N. Purification and analysis of murine 2–5A-dependent RNase. J. Biol. Chem. 1988;263:7336–7341. [PubMed] [Google Scholar]
  457. Slattery E., Ghosh N., Samanta H., Lengyel P. Vol. 76. 1979. Interferon, double-stranded RNA, and RNA degradation: activation of an endonuclease by (2′–5′)An; pp. 4778–4782. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  458. Sleeper H.L., Orgel L.E. The catalysis of nucleotide polymerization by compounds of divalent lead. J. Mol. Evol. 1979;12:357–364. doi: 10.1007/BF01732030. [DOI] [PubMed] [Google Scholar]
  459. Smekens-Etienne M., Goldstein J., Ooms H.A., Dumony J.E. Variation of (2′,5′)oligo(adenylate) synthetase activity during rat liver regeneration. Eur. J. Biochem. 1983;130:269–273. doi: 10.1111/j.1432-1033.1983.tb07146.x. [DOI] [PubMed] [Google Scholar]
  460. Sobol R.W., Charubala R., Pfleiderer W., Suhadolnik R.J. Chemical synthesis and biological characterization of phosphorothioate analogs of 2′,5′-3′-deoxyadenylate trimer. Nucl. Acids Res. 1993;21:2437–2443. doi: 10.1093/nar/21.10.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  461. Sobol R.W., Fisher W.L., Reichenbach N.L., Kumar A., Beard W.A., Wilson S.H., Charubala R., Pfleiderer W., Suhadolnik R.J. HIV-1 reverse transcriptase: inhibition by 2′,5′-oligoadenylates. Biochemistry. 1993;32:12112–12118. doi: 10.1021/bi00096a023. [DOI] [PubMed] [Google Scholar]
  462. Sobol R.W., Henderson E.E., Kon N., Shao J., Hitzges P., Mordechai E., Reichenbach N.L., Charubala R., Schirmeister H., Pfleiderer W., Suhadolnik R.J. Inhibition of HIV-1 replication and activation of RNase L by phosphorothioate/phosphodiester 2′,5′-oligoadenylate derivatives. J. Biol. Chem. 1995;270:5963–5978. doi: 10.1074/jbc.270.11.5963. [DOI] [PubMed] [Google Scholar]
  463. Sokawa J., Sokawa Y. (2′–5′) Oligoadenylate synthetase in chicken embryo erythrocytes and immature red blood cells. J. Biochem. (Tokyo) 1986;99:119–124. doi: 10.1093/oxfordjournals.jbchem.a135450. [DOI] [PubMed] [Google Scholar]
  464. Sperling J., Chebath J., Arad-Dann H., Offen D., Spann P., Lehrer R., Goldblatt D., Jolles B., Sperling R. Vol. 88. 1991. Possible involvement of (2′–5′)-oligoadenylate synthetase activity in pre-mRNA splicing; pp. 10377–10381. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  465. Squire J., Zhou A., Hassel B.A., Nie H., Silverman R.H. Localization of the interferon-induced, 2–5A-dependent RNase gene (RNS4) to human chromosome 1q25. Genomics. 1994;19:174–175. doi: 10.1006/geno.1994.1033. [DOI] [PubMed] [Google Scholar]
  466. Srinivasan A.R., Olson W.K. Conformational studies of (2′–5′) polynucleotides: theoretical comparison of energy, base morphology, helical structure, and duplex formation. Nucl. Acids Res. 1986;14:5461–5479. doi: 10.1093/nar/14.13.5461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  467. Stark G.R., Dower W.J., Schimke R.T., Brown R.E., Kerr I.M. 2–5A synthetase: assay, distribution and variation with growth or hormone status. Nature. 1979;278:471–473. doi: 10.1038/278471a0. [DOI] [PubMed] [Google Scholar]
  468. St. Johnston D., Brown N.H., Gall J.G., Jantsch M. Vol. 89. 1992. A conserved double-stranded RNA-binding domain; pp. 10979–10983. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  469. St. Laurent G., Yoshie O., Floyd-Smith G., Samanta H., Sehgal P.S., Lengyel P. Interferon action: two (2′–5′) (A)n synthetases specified by distinct mRNAs in Ehrlich ascites tumor cells treated with interferon. Cell. 1983;33:95–102. doi: 10.1016/0092-8674(83)90338-0. [DOI] [PubMed] [Google Scholar]
  470. Subramanian M., Kovacs T., Lesiak K., Torrence P.F., Lenard J. Inhibition of the RNA polymerase of vesicular stomatitis virus by ppp5′A2′p5′A and related compounds. Antiviral Res. 1990;13:81–90. doi: 10.1016/0166-3542(90)90024-2. [DOI] [PubMed] [Google Scholar]
  471. Suhadolnik R.J., Kariko K., Sobol R.W., Li S.W., Reichenbach N.L., Haley B.E. 2- and 8-Azido photaffinity probes. I. Enzymatic synthesis, characterization, and biological properties of 2- and 8-azido photoprobes of 2–5A and photolabeling of 2–5A binding proteins. Biochemistry. 1988;27:8840–8846. doi: 10.1021/bi00424a023. [DOI] [PubMed] [Google Scholar]
  472. Suhadolnik R.J., Li S.W., Sobol R.W., Varnum J.M. 2′,5′ A synthetase: allosteric activation by fructose 1,6-bisphosphate. Biochem. Biophys. Res. Commun. 1990;169:1198–1203. doi: 10.1016/0006-291x(90)92023-s. [DOI] [PubMed] [Google Scholar]
  473. Suhadolnik R.J., Reichenbach N.L., Hitzges P., Adelson M.E., Peterson B.H., Cheniey P., Salvato P., Thompson C., Loveless M., Muller W.E.G., Schroder H.C., Strayer D.R., Carter W.A. Upregulation of the 2–5A synthetase/ RNase L antiviral pathway associated with chronic fatigue syndrome. In Vivo. 1994;8:599–604. [PubMed] [Google Scholar]
  474. Suhadolnik R.J., Reichenbach N.L., Hitzges P., Sobol R.W., Peterson B.H., Ablashi D.V., Muller W.E.G., Schroder H.C., Carter W.A., Strayer D.R. Upregulation of the 2–5A synthetase/RNase L antiviral pathway associated with chronic fatigue syndrome. Clin. Infect. Dis. 1994;18:S96–S104. doi: 10.1093/clinids/18.supplement_1.s96. [DOI] [PubMed] [Google Scholar]
  475. Sun J., Herzer P.J., Weinstein M.P., Lampson B.C., Inouye M., Inouye S. Vol. 86. 1989. Extensive diversity of branched-RNA-linked multicopy single-stranded DNAs in clinical strains of Escherichia coli; pp. 7208–7212. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  476. Sund C., Agbeck P., Koole L.H., Sandstrom A., Chattopadhyaya J. Assessment of competing 2′ → 5′ versus 3′ → 5′ stackings in solution structure of branched-RNA by 1H- & 31P-NMR spectroscopy. Tetrahedron. 1992;48:695–718. [Google Scholar]
  477. Takaku H., Ueda S. A convenient method for the synthesis of adenylyl-(2′–5′)adenylyl(2′–5′)-adenosine using 3′-O-benzoyladenosine derivatives. Bull. Chem. Soc. Jpn. 1983;56:1424–1427. [Google Scholar]
  478. Taylor J.L., Witt P.L., Irizarry A., Tom P., O'Brien W.J. 2′,5′-Oligoadenylate synthetase in interferon-alpha- and acyclovir-treated herpes simplex virus-infected cells. J. Interferon Cytokine Res. 1995;15:27–30. doi: 10.1089/jir.1995.15.27. [DOI] [PubMed] [Google Scholar]
  479. Testa U., Ferbus D., Gabbianelli M., Pascucci B., Boccoli G., Louache F., Thang M.N. Effect of endogenous and exogenous interferons on the differentiation of human monocyte cell line U937. Cancer Res. 1988;48:82–88. [PubMed] [Google Scholar]
  480. Tominaga A., Saito S., Kohno S., Sakurai K., Hayakawa Y., Noyori R. Antiviral effects of 2′,5′ oligoadenylates (2–5As) and related compounds. Microbiol. Immunol. 1990;34:737–747. doi: 10.1111/j.1348-0421.1990.tb01051.x. [DOI] [PubMed] [Google Scholar]
  481. Torrence P.F., Friedman R.M. Are double-stranded RNA-directed inhibition of protein synthesis in interferon-treated cells and interferon induction related phenomenon? J. Biol. Chem. 1979;254:1259–1267. [PubMed] [Google Scholar]
  482. Torrence P.F., Imai J., Johnston M.I. Vol. 78. 1981. 5′-O-Monophos-phoryladenylyl(2′–5′)-adenylyl(2′–5′)adenosine is an antagonist of the action of 5′-O-triphosphoryladenylyl(2′–5′)-adenylyl(2′-5-) adenosine (2–5A) and double-stranded RNA; pp. 5993–5997. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  483. Torrence P.F., Johnston M.I., Epstein D.A., Jacobsen H., Friedman R.M. Activation of human and mouse 2–5A synthetase and mouse protein Pl kinase by nucleic acids: structure-activity relationships and correlations with inhibition of protein synthesis and interferon induction. FEBS Lett. 1981;130:291–296. doi: 10.1016/0014-5793(81)81142-8. [DOI] [PubMed] [Google Scholar]
  484. Torrence P.F., Imai J., Lesiak K., Jamoulle J.-C., Sawai H. Oligonucleotide structural parameters that influence binding of 5′-O-triphosphoadenylyl-(2′ → 5′)-adenylyl-(2′ → 5′)-adenosine to the 5′-O-triphosphoadenylyl-(2′ → 5′)-adenylyl-(2′ → 5′)-adenosine dependent endoribonuclease: chain length, phosphorylation state, and heterocyclic base. J. Med. Chem. 1984;27:726–733. doi: 10.1021/jm00372a004. [DOI] [PubMed] [Google Scholar]
  485. Torrence P.F., Brozda D., Alster D., Charubala R., Pfleiderer W. Only one 3′-hydroxyl group of ppp5′A2′p5′A2′p5′A (2–5A) is required for activation of the 2–5A-dependent endonuclease. J. Biol. Chem. 1988;265:1131–1139. [PubMed] [Google Scholar]
  486. Torrence P.F., Brozda D., Alster D.K., Pabuccuoglu A., Lesiak K. A new and potent 2–5A analogue which does not require a 5′-polyphosphate to activate mouse L-cell RNase L. Antiviral Res. 1992;18:275–289. doi: 10.1016/0166-3542(92)90061-9. [DOI] [PubMed] [Google Scholar]
  487. Torrence P.F., Maitra R.K., Lesiak K., Khamnei S., Zhou A., Silverman R.H. Vol. 90. 1993. Targeting RNA for degradation with a (2′–5′)oligoadenylate-antisense chimera; pp. 1300–1304. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  488. Torrence P.F., Xiao W., Li G., Lesiak K., Khamnei S., Maran A., Maitra R., Dong B., Silverman R.H. 2′,5′-Oligoadenylate antisense chimeras for targeted ablation of RNA. In: Sanghvi Y.S., Cook P.D., editors. Carbohydrate Modifications in Antisense Research. American Chemical Society; Washington, D.C: 1994. pp. 119–132. [Google Scholar]
  489. Truve E., Aaspollu A., Honkanen J., Puska R., Mehto M., Hassi A., Teeri T.H., Kelve M., Seppanen P., Saarma M. Transgenic potato plants expressing mammalian 2′–5′ oligoadenylate synthetase are protected from potato virus X infection under field conditions. Biotechnology. 1993;11:1048–1052. doi: 10.1038/nbt0993-1048. [DOI] [PubMed] [Google Scholar]
  490. Truve E., Kelve M., Aaspollu A., Kuusksallu A., Seppanen P., Saarma M. Principles and background for the construction of transgenic plants displaying multiple virus resistance. Arch. Virol. 1994;9:41–50. doi: 10.1007/978-3-7091-9326-6_5. [DOI] [PubMed] [Google Scholar]
  491. Truve E., Kelve M., Aaspollu A., Schroder H.C., Muller W.E.G. Homologies between different forms of 2–5A synthtase. Prog. Mol. Subcell. Biol. 1994;14:139–149. doi: 10.1007/978-3-642-78549-8_8. [DOI] [PubMed] [Google Scholar]
  492. Usher D.A. RNA double helix and the evolution of the 3′,5′ linkage. Nature New Biol. 1968;235:207–208. doi: 10.1038/newbio235207a0. [DOI] [PubMed] [Google Scholar]
  493. Usher D.A. Early chemical evolution of nucleic acids; a theoretical model. Science. 1977;296:311–313. doi: 10.1126/science.583625. [DOI] [PubMed] [Google Scholar]
  494. Usher D.A., McHale A.H. Vol. 73. 1976. Hydrolytic stability of helical RNA: a selective advantage for the natural 3′,5′-bond; pp. 1149–1153. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  495. Ushijima H., Rytik P.G., Schacke H., Scheffer U., Muller W.E.G., Schroder H.C. Mode of action of the anti-AIDS compound poly(I) · poly (C12U) (Ampligen): activator of 2′,5′-oligoadenylate synthetase and double-stranded RNA-dependent kinase. J. Interferon Res. 1993;13:161–171. doi: 10.1089/jir.1993.13.161. [DOI] [PubMed] [Google Scholar]
  496. van den Boogaart J.E., Kalinichenko E.N., Podkopaeve T.L., Mikhailopulo I.A., Altona C. Conformational analysis of 3′-fluorinated A(2′–5′)A(2′–5′)A fragments. Relation between conformation and biological activity. Eur. J. Biochem. 1994;221:759–768. doi: 10.1111/j.1432-1033.1994.tb18789.x. [DOI] [PubMed] [Google Scholar]
  497. van den Hoogen Y.T., Hilgersom C.M., Brozda D., Lesiak K., Torrence P.F., Altona C. Conformational analysis of brominated pA2′-5′A2′-5′A analogs: an NMR and model building study. Eur. J. Biochem. 1989;182:629–637. doi: 10.1111/j.1432-1033.1989.tb14872.x. [DOI] [PubMed] [Google Scholar]
  498. Verhaegen M., Divizia M., Vandenbussche P., Kuwata T., Content J. Vol. 77. 1980. Abnormal behaviour of interferon-induced enzymatic activities in an interferon-resistant cell line; pp. 4479–4483. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  499. Verheijen R., Van Venrooij W., Ramaekers F. The nuclear matrix: structure and composition. J. Cell Sci. 1988;90:11–36. doi: 10.1242/jcs.90.1.11. [DOI] [PubMed] [Google Scholar]
  500. Viano I., Silvestro L., Giubertoni M., Dianzani C., Genazzani E., Di Carlo F. Induction of 2′–5′ oligoadenylate synthetase and activation of ribonuclease in tamoxifen treated human breast cancer cell lines. J. Biol. Regul. Homeostatic Agents. 1989;3:167–174. [PubMed] [Google Scholar]
  501. Visser G.M., Tromp M., Van Westrenen J., Schipperus O., Van Boom J.H. Synthesis of some modified 2′-5′-linked oligoriboadenylates of 2–5A core. Recl. Trav. Chim. Pays-Bas. Belg. 1986;105:85–91. [Google Scholar]
  502. Voet D., Voet J.G. J. Wiley and Sons; New York: 1990. (Biochemistry). [Google Scholar]
  503. Voth R., Rossol S., Hess G., Schutt K.H., Schroder H.C., Meyer zum Buschenfelde K.-H., Muller W.E.G. Differential gene expression of interferon-alpha and tumor necrosis factor-alpha in peripheral blood mononuclear cells from patients with AIDS related complex and AIDS. J. Immunol. 1990;144:970–975. [PubMed] [Google Scholar]
  504. Wallach D., Revel M. An interferon-induced cellular enzyme is incorporated into virions. Nature. 1980;287:68–70. doi: 10.1038/287068a0. [DOI] [PubMed] [Google Scholar]
  505. Wallach D., Fellous M., Revel M. Preferential effect of γ Interferon on the synthesis of HLA antigens and their mRNAs in human cells. Nature. 1982;299:833–836. doi: 10.1038/299833a0. [DOI] [PubMed] [Google Scholar]
  506. Wang C.H., Wu J.M. Age-related differences in the induction of 2–5A synthetase and 2–5A dependent binding protein activities by interferon in guinea pig peritoneal macrophages. Biochem. Biophys. Res. Commun. 1986;140:455–460. doi: 10.1016/0006-291x(86)91112-5. [DOI] [PubMed] [Google Scholar]
  507. Wang L., Zhou A., Vasavada S., Dong B., Nie H., Church J.M., Williams B.R.G., Banerjee S., Silverman R.H. Elevated levels of 2–5 A dependent RNase L occur as an early event in colorectal tumorigenesis. Clin. Cancer Res. 1995;1:1421–1428. [PubMed] [Google Scholar]
  508. Warner S.J., Friedman G.B., Libby P. Immune interferon inhibits proliferation and induces 2′,5′-oligoadenylate synthetase gene expression in human vascular smooth muscle cells. J. Clin. Invest. 1989;83:1174–1182. doi: 10.1172/JCI113998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  509. Warshaw M.M., Cantor C.R. Oligonucleotide interactions. IV. Conformational differences between deoxy- and ribodinucleoside phosphates. Biopolymers. 1970;9:1079–1103. doi: 10.1002/bip.1970.360090910. [DOI] [PubMed] [Google Scholar]
  510. Wasner M., Henderson E.E., Suhadolnik R.J., Pfleiderer W. Synthesis, characterization, and biological activity of monomeric and trimeric cordycepin-cholesterol conjugates and inhibition of HIV-1 replication. Helv. Chim. Acta. 1994;77:1757–1767. [Google Scholar]
  511. Wasner M., Suhadolnik R.J., Horvath S.E., Adelson M.E., Kou N., Guan M.-X., Henderson E.E., Pfleiderer W. Synthesis and characterization of cordycepin-trimervitamin and lipid-conjugates. Potential inhibitors of HIV-1 replication. Helv. Chim. Acta. 1996;79:619–633. [Google Scholar]
  512. Wathelet M., Mouteschen S., Cravador A., DeWitt L., Defilippi P., Huez G., Content J. Full-length sequence and expression of the 42 kDa 2–5A synthetase induced by human interferon. FEBS Lett. 1986;196:113–120. doi: 10.1016/0014-5793(86)80224-1. [DOI] [PubMed] [Google Scholar]
  513. Watling D., Serafinowska H.T., Reese C.B., Kerr I.M. Analogue inhibitor of 2–5A-action: effect on the interferon-mediated inhibition of encephalomyocarditis virus replication. EMBO J. 1985;4:431–436. doi: 10.1002/j.1460-2075.1985.tb03647.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  514. Weaver J.L., Williams R.W. Raman spectroscopic measurements of base stacking in solutions of adenosine, AMP, ATP, and oligoadenylates. Biochemistry. 1988;27:8899–8903. doi: 10.1021/bi00425a005. [DOI] [PubMed] [Google Scholar]
  515. Wells J.A., Swyryd E.A., Stark G.R. An improved method for purifying 2′,5′-oligoadenylate synthetases. J. Biol. Chem. 1984;259:1363–1370. [PubMed] [Google Scholar]
  516. Wells V., Mallucci L. Expression of the 2–5A system during the cell cycle. Exp. Cell Res. 1985;159:27–36. doi: 10.1016/s0014-4827(85)80034-3. [DOI] [PubMed] [Google Scholar]
  517. Wells V., Mallucci L. Cell cycle regulation (G1) by autocrine interferon and dissociation between autocrine interferon and 2′,5′-oligoadenylate synthetase expression. J. Interferon Res. 1988;8:793–802. doi: 10.1089/jir.1988.8.793. [DOI] [PubMed] [Google Scholar]
  518. West D.K., Ball L.A. Induction and maintenance of 2′, 5′-oligoadenylate synthetase in interferon-treated chicken embryo cells. Mol. Cell. Biol. 1982;2:1436–1443. doi: 10.1128/mcb.2.11.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  519. Westheimer F. Pseudo-rotation in the hydrolysis of phosphate esters. Acc. Chem. Res. 1968;1:70–81. [Google Scholar]
  520. White J.C., Williams R.W., Johnston M.I. Raman spectroscopy of interferon-induced 2′,5′-linked oligoadenylates. Biochemistry. 1987;26:7737–7744. doi: 10.1021/bi00398a030. [DOI] [PubMed] [Google Scholar]
  521. Wietzerbin J., Gaudelet C., Catinot L., Chebath J., Falcoff R. Synergistic effect of interferon-gamma and tumor necrosis factor-alpha on antiviral activity and (2′–5′) oligo (A) synthetase induction in a myelomonocytic cell line. J. Leukocyte Biol. 1990;48:149–155. doi: 10.1002/jlb.48.2.149. [DOI] [PubMed] [Google Scholar]
  522. Williams B.R.G., Read S.E. Detection of elevated levels of the interferon-induced enzyme, 2–5A synthetase in infectious diseases and on parturition. In: De Maeyer E., Galasso G., Schellekens H., editors. The Biology of the Interferon System. Elsevier/North-Holland Biomedical Press; Amsterdam: 1981. pp. 111–114. [Google Scholar]
  523. Williams B.R.G., Kerr I.M., Gilbert C.S., White C.N., Ball L.A. Synthesis and breakdown of pppA2′p5′A2′p5′A and transient inhibition of protein synthesis in extracts from interferon-treated and control cells. Eur. J. Biochem. 1978;92:455–462. doi: 10.1111/j.1432-1033.1978.tb12767.x. [DOI] [PubMed] [Google Scholar]
  524. Williams B.R.G., Gilbert C.S., Kerr I.M. The respective roles of the protein kinase and pppA2′p5′A2′p5′A-activated endoribonuclease in the inhibition of protein synthesis by single-stranded RNA in rabbit reticulocyte lysate. Nucl. Acids Res. 1979;6:1335–1340. doi: 10.1093/nar/6.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  525. Williams B.R.G., Golgher R.R., Brown R.E., Gilbert C.S., Kerr I.M. Natural occurrence of 2–5A in interferon-treated EMC virus-infected L cells. Nature. 1979;282:582–586. doi: 10.1038/282582a0. [DOI] [PubMed] [Google Scholar]
  526. Williams B.R.G., Brown R.E., Gilbert C.S., Golgher R.R., Wreschner D.H., Robert W.K., Silverman R.H., Kerr I.M. Assay of (2′–5′)-oligo(A) synthesized in vitro and the analysis of naturally occurring (2′–5′)-oligo(A) from intact cells. Methods Enzymol. 1981;79:199–208. doi: 10.1016/s0076-6879(81)79030-x. [DOI] [PubMed] [Google Scholar]
  527. Williams B.R.G., Saunders M.E., Willard H.F. Interferon-regulated human 2–5A synthetase gene maps to chromosome 12. Somat. Cell Mol. Genet. 1986;12:403–408. doi: 10.1007/BF01570735. [DOI] [PubMed] [Google Scholar]
  528. Witt P.L., Storer B., Helgeson D.O., Borden E.C. Interferon-induced proteins in clinical trials: 2–5 adenylate synthetase as a prototype. In: Kawade Y., Kobayshe S., editors. Biology of Interferon Systems 1988. Kodansha Scientific; Tokyo: 1989. pp. 195–200. [Google Scholar]
  529. Witt P.L., Spear G.T., Helgeson D.O., Lindstrom M.J., Smalley R.V., Borden E.C. Basal and interferon-induced 2′,5′-oligoadenylate synthetase in human monocytes, lymphocytes and peritoneal macrophages. J. Interferon Res. 1990;10:393–402. doi: 10.1089/jir.1990.10.393. [DOI] [PubMed] [Google Scholar]
  530. Witt P.L., Marie I., Robert N., Irizarry A., Borden E.C., Hovanessian A.G. Isoforms p69 and p100 of 2′,5′-oligoadenylate synthetase induced differentially by interferons in vivo and in vitro. J. Interferon Res. 1993;13:17–23. doi: 10.1089/jir.1993.13.17. [DOI] [PubMed] [Google Scholar]
  531. Witt P.L., Ritch P.S., Reding D., McAuliffe T.L., Westrick L., Grossberg S.E., Borden E.C. Phase I trial of an oral immunomodulator and interferon inducer in cancer patients. Cancer Res. 1993;53:5176–5180. [PubMed] [Google Scholar]
  532. Woese C. Harper & Row; New York: 1967. The Genetic Code. [Google Scholar]
  533. Wreschner D.H., James T.C., Silverman R.H., Kerr I.M. Ribosomal RNA cleavage, nuclease activation and 2–5A (ppp(A2′p)nA) in interferon-treated cells. Nucl. Acids Res. 1981;9:1571–1581. doi: 10.1093/nar/9.7.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  534. Wreschner D.H., McCauley J.W., Skehel J.J., Kerr I.M. Interferon action-sequence specificity of the ppp(A2′p)nA-dependent ribonuclease. Nature. 1981;289:414–417. doi: 10.1038/289414a0. [DOI] [PubMed] [Google Scholar]
  535. Wreschner D.H., Silverman R.H., James T.C., Gilbert C.S., Kerr I.M. Affinity labelling and characterization of the ppp(A2′p)nA-dependent endoribonuclease from different mammalian sources. Eur. J. Biochem. 1982;124:261–268. doi: 10.1111/j.1432-1033.1982.tb06586.x. [DOI] [PubMed] [Google Scholar]
  536. Wu J.M., Eslami B., Semproni A.R. Effect of temperature on ppp(A2′p)nA binding protein activities in rabbit reticulocyte lysates and other mamalian extracts. Biochem. Biophys. Res. Commun. 1983;117:57–64. doi: 10.1016/0006-291x(83)91540-1. [DOI] [PubMed] [Google Scholar]
  537. Wu J.M., Shang C.-C., Chiao J.W., Wang C.-H. 2′,5′-Oligoadenylate (2–5A) binding protein (RNase L) changes in AIDS and mammalian cells/tissues. J. Exp. Pathol. 1990;5:79–88. [PubMed] [Google Scholar]
  538. Xiao W., Player M.R., Li G., Zhang K., Lesiak K., Torrence P.F. Synthesis and characterization of composite nucleic acids containing 2′,5-oligoriboadenylate linked to anti-sense DNA. Antisense Nucl. Acid Drug Dev. 1996;6:247–258. doi: 10.1089/oli.1.1996.6.247. [DOI] [PubMed] [Google Scholar]
  539. Yan C., Sehgal P.B., Tamm I. Vol. 86. 1989. Signal transduction pathways in the induction of 2′,5′-oligoadenylate synthetase gene expression by interferon alpha/beta; pp. 2243–2247. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  540. Yang K., Samanta H., Dougherty J., Jayaram B., Broeze R., Lengyel P. Interferons, double-stranded RNA, and RNA degradation. J. Biol. Chem. 1981;256:9324–9328. [PubMed] [Google Scholar]
  541. Yap W.H., Teo T.S., Tan Y.H. An early event in the interferon-induced transmembrane signaling process. Science. 1986;234:355–358. doi: 10.1126/science.2429366. [DOI] [PubMed] [Google Scholar]
  542. Yoon J.W., Austin M., Onodera T., Notkins A.L. Virus induced diabetes mellitus: isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N. Engl. J. Med. 1979;300:1173–1179. doi: 10.1056/NEJM197905243002102. [DOI] [PubMed] [Google Scholar]
  543. Yoshida S., Takaku H. Vol. 16. 1986. Synthesis and properties of a modified 2′,5′-adenylate trimer containing 2′-terminal 8-bromoadenosine; pp. 133–136. (Nucl. Acids Symp. Ser.). [PubMed] [Google Scholar]
  544. Yoshida S., Takaku H. Synthesis and properties of 2′,5′-adenylate trimers bearing 2′-terminal 8-bromo- or 8-hydroxyadenosine. Chem. Pharm. Bull. 1986;34:2456–2461. [Google Scholar]
  545. Zamecnik P.C., Stephenson M.L., Janeway C.M., Randerrath K. Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl s-RNA synthetase. Biochem. Biophys. Res. Commun. 1966;24:91–97. doi: 10.1016/0006-291x(66)90415-3. [DOI] [PubMed] [Google Scholar]
  546. Zhou A., Hassel B.A., Silverman R.S. Expression cloning of 2–5A-dependent RNAse: a uniquely regulated mediator of interferon action. Cell. 1993;72:753–765. doi: 10.1016/0092-8674(93)90403-d. [DOI] [PubMed] [Google Scholar]
  547. Zullo J.N., Cochran B.H., Huang A.S., Stiles C.D. Platelet-derived growth factor and double-stranded ribonucleic acids stimulate expression of the same genes in 3T3 cells. Cell. 1985;43:793–800. doi: 10.1016/0092-8674(85)90252-1. [DOI] [PubMed] [Google Scholar]

Articles from Pharmacology & Therapeutics are provided here courtesy of Elsevier

RESOURCES