Abstract
This study tested whether Gd‐BOPTA/Dimeg or Gd‐DTPA exerts greater relaxation enhancement for blood and reperfused infarcted myocardium. Relaxivity of Gd‐BOPTA is increased by weak binding to serum albumin. Thirty‐six rats were subjected to reperfused infarction before contrast (doses = 0.05, 0.1, and 0.2 mmol/kg). ΔR1 was repeatedly measured over 30 min. Gd‐BOPTA caused greater ΔR1 for blood and myocardium than did Gd‐DTPA clearance of both agents from normal and infarcted myocardium was similar to blood clearance; plots of ΔR1myocardium/ΔR1blood showed equilibrium phase contrast distribution. Fractional contrast agent distribution volumes were approximately 0.24 for both agents in normal myocardium, 0.98 and 1.6 for Gd‐DTPA and Gd‐BOPTA, respectively, in reperfused infarction. The high value for Gd‐BOPTA was ascribed to greater relaxivity in infarction versus blood. It was concluded that Gd‐BOPTA/Dimeg causes a greater ΔR1 than Gd‐DTPA in regions which contain serum albumin.
Keywords: reperfused myocardial infarction, echo planar MR imaging, MR contrast media, T1 measurement
Presented in part at the 12th‐Annual Meeting of the Society of Magnetic Resonance in Medicine, New York, NY (1993).
References
- 1. Weinmann H. J., Laniado M., Mutzel W., Pharmacokinetics of Gd‐DTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol. Chem. Phys. NMR 16, 167–178 (1988). [PubMed] [Google Scholar]
- 2. Wedeking P., Tweedle M. F., Comparison of the biodistribution of 153Gd‐Iabeled Gd(DTPA)−2 and Gd(DOTA) and Gd(acetate) in mice. Int. J. Rod. Appl. Inst. 15, 395–401 (1988). [DOI] [PubMed] [Google Scholar]
- 3. de Haen C., Gozzini L., Soluble‐type hepatobiliary contrast agents for MR imaging. J. Magn. Reson. Imaging 3, 179–86 (1993). [DOI] [PubMed] [Google Scholar]
- 4. Cavagna F. M., Marzola P., Dapra M., Maggioni F., Vicinanza E., Castelli P. M., de Haen C., Luchinat C., Wendland M. F., Saeed M., Higgins C. B., Binding of gadobenate dimeglumine to Proteins extravasated into interstitial space enhances conspicuity of reperfused infarcts. Invest. Radiol 29, (Suppl. 2), S50–S253 (1994). [DOI] [PubMed] [Google Scholar]
- 5. Sunnergren K. P., Rovetto M. J., Microvascular permeability characteristics of the isolated perfused ischemic rat heart. J. Mol. Cell. Cardiol. 12, 1011–1031 (1980). [DOI] [PubMed] [Google Scholar]
- 6. Weinmann H. J., Brasch R. C., Press W. R., Wesbey G. E., Characterization of gadolinium‐DTPA complex: A potential NMR contrast agent. Am. J. Roentgenol. 142, 619–624 (1984). [DOI] [PubMed] [Google Scholar]
- 7. Koenig S. H., Medical magnetic resonance: a primer, in “Proc., SMRM, 7th Annual Meeting, 1988,” p. 111.
- 8. Davies A., de Haën C., Gadobenic acid dimeglumine salt. Drugs Future 16, 1001–1003 (1991). [Google Scholar]
- 9. Vittendi G., Felder E., Tirone P., Lorusso V., B‐19036: a potential new hepatobiliary contrast agent for MR proton imaging. Invest. Radiol. 23 Suppl 1), 246–248 (1988). [DOI] [PubMed] [Google Scholar]
- 10. Sievers R. E., Schmiedl U., Wolfe C. L., Moseley M. E., Parmley W. W., Brasch R. C., Lipton M. J., A model of acute regional myocardial ischemia and reperfusion in the rat. Magn. Reson. Med. 10, 172–81 (1989). [DOI] [PubMed] [Google Scholar]
- 11. Hale S., Kloner R. A., Effect of early coronary artery reperfusion on infarct development in a model of low collateral flow. Cardiovasc. Res. 21, 668–673 (1987). [DOI] [PubMed] [Google Scholar]
- 12. Ganote C. E., Seabra‐Gomes R., Nayler W. G., Jennings R. B., Irreversible myocardial injury in anoxic rat hearts. Am. J. Pathol. 80, 419–450 (1975). [PMC free article] [PubMed] [Google Scholar]
- 13. Wendland M. F., Saeed M., Masui T., Derugin N., Moseley M. E., Higgins C. B., Echo‐Planar MR imaging of normal and ischemic myocardium with gadodiamide injection. Radiology 186, 535–542 (1993). [DOI] [PubMed] [Google Scholar]
- 14. Wendland M. F., Saeed M., Yu K. K., Roberts T. P. L., Lauerma K., Derugin N., Varadarajan J., Watson A. D., Higgins C. B., Inversion recovery EPI of bolus transit in rat myocardium using intravascular and extravascular gadolinium‐based MR contrast media: dose effects on peak signal enhancement. Magn. Reson. Med. 32, 319–329 (1994). [DOI] [PubMed] [Google Scholar]
- 15. Jennings R., Reime K., Lethal myocardial ischemic injury. Am. J. Pathol. 102, 241–255 (1981). [PMC free article] [PubMed] [Google Scholar]
- 16. Geschwind J. F., Wendland M. F., Saeed M., Lauerma K., Derugin N., Higgins C. B., Identification of myocardial cell death in reperfused myocardial injury using dual mechanisms of contrast enhanced magnetic resonance imaging. Acad. Radiol. 1, 319–325 (1994). [DOI] [PubMed] [Google Scholar]
- 17. Saeed M., Wendland M. F., Masui T., Higgins C. B., Reperfused myocardial infarctions on T1‐ and susceptibility‐enhanced MRI: evidence for loss of compartmentalization of contrast media. Magn. Reson. Med. 31, 31–39 (1994). [DOI] [PubMed] [Google Scholar]
- 18. Garcia‐Dorado D., Theroux P., Solares J., Alonso J., Fernandez‐Aviles F., Elizaga J., Soriano J., Botas J., Munoz R., Determinants of hemorrhagic infarcts. Histologic observations from experiments involving coronary occlusion, coronary reperfusion and reocclusion. Am. J. Pathol. 137, 301–311 (1990). [PMC free article] [PubMed] [Google Scholar]
- 19. Ito H., Tomooka T., Sakai N., Yu H., Higashino Y., Fujii K., Masuyama T., Kitabatake A., Minamino T., Lack of myocardial perfusion immediately after successful thrombolysis. A predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 85, 1699–1705 (1992). [DOI] [PubMed] [Google Scholar]
- 20. Kloner R. A., Ganote C. E., Jennings R. B., The “no reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54, 1496–1508 (1974). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. de Roos A., van Rossum A. C., van der Wall E., Postema S., Doornbos J., Matheijssen N., van Dijkman P. R., Visser F. C., van Voorthuisen A. E., Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd‐DTPA‐enhanced MR imaging. Radiology 172, 717–720 (1989). [DOI] [PubMed] [Google Scholar]
- 22. Masui T., Saeed M., Wendland M. F., Higgins C. B., Occlusive and reperfused myocardial infarcts: MR imaging differentiation with nonionic Gd‐DTPA‐BMA. Radiology 181, 77–83 (1991). [DOI] [PubMed] [Google Scholar]
- 23. Saeed M., Wendland M. F., Takehara Y., Higgins C. B., Reversible and irreversible injury in the reperfused myocardium: differentiation with contrast material‐enhanced MR imaging. Radiology 175, 633–637 (1990). [DOI] [PubMed] [Google Scholar]
- 24. Saeed M., Wendland M. F., Higgins C. B., Characterization of reperfused myocardial infarctions with T1‐enhancing and magnetic susceptibility‐enhancing contrast media. Invest. Radiol. 26, S239–S241 (1991). [DOI] [PubMed] [Google Scholar]
- 25. Saeed M., Wendland M. F., Takehara Y., Masui T., Higgins C. B., Reperfusion and irreversible myocardial injury: identification with a nonionic MR imaging contrast medium. Radiology 180, 675–683 (1992). [DOI] [PubMed] [Google Scholar]
- 26. Saeed M., Wendland M. F., Yu K. K., Lauerma K., Li H. T., Derugin N., Cavagna F. M., Higgins C. B., Identification of myocardial reperfusion with echo planar magnetic resonance imaging. Discrimination between occlusive and reperfused infarctions. Circulation 90, 1492–501 (1994). [DOI] [PubMed] [Google Scholar]
- 27. Donahue K. M., Burstein D., Manning W. J., Gray M. L., Studies of Gd‐DTPA relaxivity and proton exchange rates in tissue. Magn. Reson. Med. 32, 66–75 (1994). [DOI] [PubMed] [Google Scholar]
- 28. Burstein D., Taratuta E., Manning W., Factors in myocardial “perfusion” imaging with ultrafast MRI and Gd‐DTPA administration. Magn. Reson. Med. 20, 299–305 (1991). [DOI] [PubMed] [Google Scholar]
- 29. Judd R. M., Atalay M. K., Rottman G. A., Zerhouni E. A., Effects of myocardial water exchange on T1 enhancement during bolus administration of MR contrast agents. Magn. Reson. Med. 33, 215–23 (1995). [DOI] [PubMed] [Google Scholar]
- 30. Donahue K. M., Weisskoff R. M. P. D. J., Callahan R. J., Wilkinson R. A., Mandeville J. B., Rosen B. R., Dynamic Gd‐DTPA enhanced MRI measurement of tissue cell volume fraction. Magn. Reson. Med. 34, 423–432 (1995). [DOI] [PubMed] [Google Scholar]
- 31. Dean P. D., Niemi P., Kivisaari L., Kormano M., Comparative pharmacokinetics of gadolinium DTPA and gadolinium chloride. Invest. Radiol. 23, (Suppl 1), S258–S260 (1988). [DOI] [PubMed] [Google Scholar]
- 32. Brown R. J. S., Information available and unavailable from multiexponential relaxation data. J. Magn. Reson. 82, 539–561 (1989). [Google Scholar]
- 33. Prato F. S., Wisenberg G., Marshall T. P., Uksik P., Zabel P., Comparison of the biodistribution of gadolinium‐153 DTPA and technetium‐99 M DTPA in rats. J. Nucl. Med. 29, 1683–1687 (1988). [PubMed] [Google Scholar]
- 34. Diesbourg L. D., Prato F. S., Wisenberg G., Drost D. J., Marshall T. P., Carroll S. E., O'Neill B., Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd‐DTPA: kinetic modeling in canine ischemic disease. Magn. Reson. Med. 23, 239–253 (1992). [DOI] [PubMed] [Google Scholar]