Abstract
Summary: The mucosae and exocrine glands harbour the largest activated B‐cell system of the body, amounting to some 80–90% of all immunoglobulins (Ig)‐producing cells. The major product of these immunocytes is polymeric (p)IgA (mainly dimers) with associated J chain. Both pIgA and pentameric IgM contain a binding site for the polymeric Ig receptor (pIgR), or secretory component (SC), which is a requirement for their active external transport through secretory epithelia. The pIgR/SC binding site depends on covalent incorporation of the J chain into the quaternary structure of the polymers when they are produced by the local immunocytes. This important differentiation characteristic appears to be sufficient functional justification for the J chain to be expressed also by most B cells terminating at secretory effector sites with IgD or IgG production; they probably represent a ‘spin‐off’ from sequential downstream CH switching on its way to pIgA expression, thus apparently reflecting a maturational stage of effector B‐cell clones compatible with homing to these sites. Observations in IgA‐deficient individuals suggest that the magnitude of this homing is fairly well maintained even when the differentiation pathway to IgA is blocked. Certain microenvironmental elements such as specific cytokines and dendritic cells appear to be required for induction of IgA synthesis, but it remains virtually unknown why this isotype normally is such a dominating product of local immunocytes and why they have such a high level of J chain expression. Also, despite the recent identification of some important requirements in terms of adhesion molecules (e.g. integrin α4β7 and MAdCAM‐1) that explain the “gut‐seeking” properties of enterically induced B cells, the origin of regionalized homing of B cells to secretory effector sites outside the gut remains elusive. Moreover, little is known about immune regulation underlying the striking disparity of both the class (IgD, IgM) and subclass (IgA1, IgA2, IgGI, IgG2) production patterns shown by local iinmttnocytes in various regions of the body, although the topical microbiota and other environmental stimuli might be important. Rational design of local vaccines will depend on better knowledge of both inductive and migratory properties of human mucosal B cells.
Acknowledgements This work was supported by the Norwegian Cancer Society, the Research Council of Norway, and Anders Jahre's Foundation. Ms. Hege Eliassen Bryne and Mr Erik Kulø Hagen are gratefully acknowledged for excellent assistance with the manuscript.
References
- 1. Hanson LÅ, Brandtzaeg P. The discovery of secretory IgA and the mucosal immune system. Immunol Today 1993;14:416–417. [DOI] [PubMed] [Google Scholar]
- 2. Tomasi TB, Tan EM, Solomon A, Prendergast RA. Characteristics of an immune system common lo certain external secretions. J Exp Med 1965;121:101–124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. South MA, Cooper MD, Wollheim FA, Hong R., Good RA. The IgA system. L Studies of the transport and immunochemistry of IgA in the saliva. J Exp Med 1966;123:615–627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Crabbé PA, Carbonara AO, Heremans JF. The normal human intestinal mucosa as a major source of plasma cells containing. A‐immunoglobulin. Lab Invest 1965;14;235–248. [PubMed] [Google Scholar]
- 5. Brandtzaeg P, Baklien K. Immunohistochemical studies of the formation and epithelial transport of immunoglobulins in normal and diseased human Intestinal mucosa. Scand J Gastroenterol 1976;11 (Suppl 36): 1–45. [PubMed] [Google Scholar]
- 6. Brandtzaeg P. Two types of IgA immunocytes 10 in man. Nature 1973;243: 142–143. [DOI] [PubMed] [Google Scholar]
- 7. Brandtzaeg P, Fjellanger I, Gjeruldsen ST. Immunoglobulin M: local synthesis and selective secretion in patients with immunoglobulin A deficiency. Science 1968;160:789–791. [DOI] [PubMed] [Google Scholar]
- 8. Brandtzaeg P. Human secretory immunoglobulin M. An immunochemical and immunohistochemical study. Immunology 1975;29:559–570. [PMC free article] [PubMed] [Google Scholar]
- 9. Brown WR, Isobe Y., Nakane PK. Studies on translocation of immunoglobulins across intestinal epithelium. II. Immunoelectron‐microscopic localization of immunoglobulins and secretory component in human intestinal mucosa. Gastroenterology 1976;71:985–995. [PubMed] [Google Scholar]
- 10. Brandtzaeg P. Mucosal and glandular distribution of immunoglobulin components. Differential localization of free and bound SC in secretory epithelial cells, J Immunol 1974;112:1553–1559. [PubMed] [Google Scholar]
- 11. Brandtzaeg P. Mucosal and glandular distribution of immunoglobulin components. Immunohistochemistry with a cold ethanol‐fixation technique. Immunology 1974:26:1101–1114. [PMC free article] [PubMed] [Google Scholar]
- 12. Halpern MS, Koshland ME. Novel subunit in secretory IgA. Nature 1970;228:1276–1278. [DOI] [PubMed] [Google Scholar]
- 13. Mestecky J, Zikan J, Butler W. Immunoglobulin M and secretory immunoglobulin A: evidence for a common polypeptide chain different from light chains. Science 1971; 171:1163–1165. [DOI] [PubMed] [Google Scholar]
- 14. Bastian A, Kratzin H. Eckart K., Hilschmann N. Intra‐ and interchain disulfide bridges of the human J chain in secretory immunoglobulin A. Biol Chem Hoppe Seyler 1992:373:1255–1263. [DOI] [PubMed] [Google Scholar]
- 15. Brandtzaeg P, Prydz H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 1984:311:71–73. [DOI] [PubMed] [Google Scholar]
- 16. Vaerman J‐P et al. Antibody against the human J chain inhibits polymeric Ig receptor‐ mediated biliary and epithelial transport of human polymeric IgA. Eur J Immunol 1998:28:171–182. [DOI] [PubMed] [Google Scholar]
- 17. Vaerman JP, Langendries A, Giffroy D, Brandtzaeg P, Kobayashi K. Lack of SC/pIgR‐ mediated epithelial transport of a human polymeric IgA devoid of J chain: in vitro and in vivo studies. Immunology 1998:95:90–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Johansen F‐E, Norderhaug IN, Røe M., Sandlie I, Brandizaeg P. Recombinant expression of polymeric IgA: incorporation of J chain and secretory component of human origin. Eur J Immunol 1999:29:1701–1708. [DOI] [PubMed] [Google Scholar]
- 19. Brandtzaeg P. Presence of J chain in human immunocytes containing various immunoglobulin classes. Nature 1974:252:418–420. [DOI] [PubMed] [Google Scholar]
- 20. Brandtzaeg P. Immunohistochemical characterization of intracellular J‐chain and binding site for secretory component (SC) in human immunoglobulin (Ig) producing cells. Mol Immunol 1983;20:941–966. [DOI] [PubMed] [Google Scholar]
- 21. Castrignano SB, Carlsson B., Carneiro‐Sampaio MS, Soderstrom T., Hanson LA. IgA and IgG subclass deficiency in a poor population in a developing country, Scand) Immunol 1993;37:509–514. [DOI] [PubMed] [Google Scholar]
- 22. Brandtzaeg P Nilssen DE. Mucosal aspects of primary B‐cell deficiency and gastrointestinal infections, Curr Opin Gastroenterol 1995;11:532–540. [Google Scholar]
- 23. Cunningham‐Rundles C. Disorders of the IgA system In: Stiehm ER, eds. Immunologic disorders in infants and children. 4th ed, London : Saunders: 1996, p. 423–442. [Google Scholar]
- 24. McLoughlin GA, Hede JE, Temple JG, Bradley J, Chapman DM, McFarland J. The role of IgA in the prevention of bacterial colonization of the jejunum in the vagotomized subject. Br J Surg 1978;65:435–437. [DOI] [PubMed] [Google Scholar]
- 25. Brandtzaeg P, Gjeruldsen ST, Korsrud F., Bakhen K., Berdal P, Ek J. The human secretory immune system shows striking heterogeneity with regard to involvement of J chain positive IgD immunocytes. J Immunol 1979;122:503–510. [PubMed] [Google Scholar]
- 26. Cataldo F., Marino V, Ventura A, Bottaro G, Corazza GR. Prevalence and clinical features of selective immunoglobulin A deficiency in coeliac disease: an Italian multicentre study. Italian Society of Paediatric Gastroenterology and Hepatology (SIGEP) and “Club del Tenue” Working Groups on Coeliac Disease. Gut 1998:42:362–365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Brandtzaeg P Baklien K., Bjerke K., Rognum TO, Scott H, Valnes K. Nature and properties of the human gastrointestinal immune system In: Miller K. Nicklln S, eds. Immunology of the gastrointestinal tract. Vol I Boca Raton , Florida : CRC Press; 1987, p, 1–85. [Google Scholar]
- 28. Brandtzaeg P. Immune responses to gut virus infections In: Farthing MJG, ed. Viruses and the gut. London : Smith Kline, French Laboratories Ltd; 1989, p. 45–54. [Google Scholar]
- 29. Johansen F‐E, et al. Absence of epithelial IgA transport, with increased mucosal leakiness, in pIgR/SC‐deficient mice. J Exp Med (In press). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Brandtzaeg P, et al. Regional specialization in the mucosal immune system: what happens in the microcompartments Immunol Today 1999;20:141–151. [DOI] [PubMed] [Google Scholar]
- 31. Langman JM, Rowland R. The number and distribution of lymphoid follicles in the human large intestine. J. Anat 1986:149:189–194. [PMC free article] [PubMed] [Google Scholar]
- 32. Goldblum RM, Hanson LÅ, Brandtzaeg P. The mucosal defense system In: Stiehm ER. ed. Immunologic disorders in infants and children, 4th ed, Philadelphia : WB Saunders; 1996. p. 159–199. [Google Scholar]
- 33. Braudtzaeg P Farstad IN, Haraldsen G. Regional specialization in the mucosal immune system: primed cells do not always home along the same track. Immunol Today 1999:20:267–277. [DOI] [PubMed] [Google Scholar]
- 34. Hanson LÅ, et al. Child health and the population increase. Peace, Health and Development 1993;4:31–38. [Google Scholar]
- 35. Anonymous . A warm chain for breastfeeding. Lancet 1994:344:1239–1241. [PubMed] [Google Scholar]
- 36. Wright AL, Bauer M., Naylor A, Sutcliffe E, Clark L. Increasing breastfeeding rates to reduce infant illness at the community level. Pediatrics 1998:101:837–844. [DOI] [PubMed] [Google Scholar]
- 37. Saarinen UM, Kajosaari M. Breastfeeding as prophylaxis against atopic disease: prospective follow‐up study until 17 years old. Lancet 1995:346:1065–1069. [DOI] [PubMed] [Google Scholar]
- 38. Brandtzaeg P. Development of the intestinal immune system and its relation to coeliac disease In: Mäki M. Collin P. Visakorpi JK, eds. Coeliac disease. Proceedings of the Seventh International Symposium on Coeliac Disease. Tampere : Coeliac Disease Study Group; 1997, p. 221–244. [Google Scholar]
- 39. Dickinson EC, et al. Immunoglobulin A supplementation abrogates bacterial translocation and preserves the architecture of the intestinal epithelium. Surgery 1998:124:284–290. [PubMed] [Google Scholar]
- 40. Berneman A, Belec L., Fischetti VA, Bouvet JP. The specificity patterns of human immunoglobulin G antibodies in serum differ from those in autologous secretions. Infect Immun 1998:66:4163–4168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Persson CG, et al. Contribution of plasma‐derived molecules to mucosal immune defence, disease and repair in the airways. Scand J Immunol 1998:47:302–313. [DOI] [PubMed] [Google Scholar]
- 42. Mbawuike IN, Pacheco S. Acuna CL, Switzer KC, Zhang Y., Harriman GR. Mucosal immunity to influenza without IgA: An IgA knockout mouse model. J Immunol 1999;162:2530–2537. [PubMed] [Google Scholar]
- 43. Brandtzaeg P. Mucosal immunity m the female genital tract. J Reprod Immunol 1997:36:23–50. [DOI] [PubMed] [Google Scholar]
- 44. Mazanec MB, Nedrud JG, Kaetzel CS, Lamm ME. A three‐tiered view of the role of IgA in mucosal defense. Immunol Today 1993;14:430–435. [DOI] [PubMed] [Google Scholar]
- 45. Burns JW, Siadat‐Pajouh M., Krishnaney AA, Greenberg HB. Protective effect of rotavirus VP6‐specific IgA monoclonal antibodies that lack neutralizing activity. Science 1996:272:104–107. [DOI] [PubMed] [Google Scholar]
- 46. Bomsel M., et al. Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti‐HIV envelope protein dIg A or IgM, Immunity 1998:9:277–287. [DOI] [PubMed] [Google Scholar]
- 47. Fujioka H, et al. Immunocytochemical colocalization of specific immunoglobulin A with sendai virus protein in infected polarized epithelium. J Exp Med 1998;188:1223–1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol Rev 1997;156:145–166. [DOI] [PubMed] [Google Scholar]
- 49. Christ AD, Blumberg RS. The intestinal epithelial cell: immunological aspects. Springer Semin Immunopathol 1997;18:449–461. [DOI] [PubMed] [Google Scholar]
- 50. Brandtzaeg P. History of oral tolerance and mucosal immunity. Ann NY Acad Sci 1996:778:1–27. [DOI] [PubMed] [Google Scholar]
- 51. Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol Today 1998; 19:173–181. [DOI] [PubMed] [Google Scholar]
- 52. Rugtveit J, Bakka A, Brandtzaeg P. Differential distribution of B7.1 (CD80) and B7.2 (CD86) co‐stimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clin Exp Immunol 1997;110:104–113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Viney JL, Mowat AM, O'Malley JM, Williamson E, Fanger NA. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 1998:160;5815–825. [PubMed] [Google Scholar]
- 54. Gütgemann I, Fahrer AM, Altman JD, Davis MM, Chien YH. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 1998:8:667–673. [DOI] [PubMed] [Google Scholar]
- 55. Sallusto F., Lanzavecchia A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 1999:189:611–614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Scott H, et al. Immunopathology of gluten‐ sensitive enteropathy. Springer Semin Immunopathol 1997:18:535–553. [DOI] [PubMed] [Google Scholar]
- 57. Brandtzaeg P, Haraldsen G, Rugtveit J. Immunopathology of human inflammatory bowel disease. Springer Semin Immunopathol 1997;18;585–589. [DOI] [PubMed] [Google Scholar]
- 58. Rubin W., Fauci AS, Sleisenger MH, Jeffries GH. Immunofluorescent studies in adult celiac disease. J Clin Invest 1965;44:475–485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Van der Heijden PJ, Stok W., Bianchi AT. Contribution of immunoglobulin‐secreting cells in the murine small intestine to the total ‘background’ immunoglobulin production. Immunology 1987:62:551–555. [PMC free article] [PubMed] [Google Scholar]
- 60. Brandtzaeg P, et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology 1989:97:1562–1584. [DOI] [PubMed] [Google Scholar]
- 61. Turesson I. Distribution of immunoglobulin‐ containing cells in human bone marrow and lymphoid tissues, Acta Med Scand 1976:199:293–304. [DOI] [PubMed] [Google Scholar]
- 62. Tseng J. Expression of immunoglobulin isotypes by lymphoid cells of mouse intestinal lamina propria. Cell Immunol 1982;73:324–336. [DOI] [PubMed] [Google Scholar]
- 63. Liu Y‐J, Banchereau J. The paths and molecular controls of peripheral B‐cell development. Immunologist 1996;4:55–66. [Google Scholar]
- 64. Fossum S, Rolstad B., Tjernshaugen H. Selective loss of S‐phase cells when making cell suspensions from lymphoid tissue. Cell Immunol 1979;48:149–154. [DOI] [PubMed] [Google Scholar]
- 65. Mayrhofer G. Physiology of the intestinal immune system In: Newby TJ, Stokes CR, eds. Local immune responses of the gut, Boca Raton , Florida : CRC Press: 1984. p. 1–96. [Google Scholar]
- 66. Farstad IN, Halstensen TS, Lazarovits Al, Norstein J, Fausa O, Brandtzaeg P. Human intestinal B‐cell blasts and plasma cells express the mucosal homing receptor integrin α4β7. Scand J Immunol 1995:42:662–672. [DOI] [PubMed] [Google Scholar]
- 67. Bienenstock J, Befus D, McDermott M., Mirski S, Rosenthal K. Regulation of lymphoblast traffic and localization in mucosal tissues, with emphasis on IgA. Fed Proc 1983:42:3213–3217. [PubMed] [Google Scholar]
- 68. Husband AJ. Kinetics of extravasation and redistribution of IgA‐specific antibody‐ containing cells in the intestine. J Immunol 1982;128:1355–1359. [PubMed] [Google Scholar]
- 69. Baklien K., Brandtzaeg P, Fausa O. Immunoglobulins in jejunal mucosa and serum from patients with adult coeliac disease. Scand J Gastroenterol 1977:12: 149–159. [PubMed] [Google Scholar]
- 70. André C., Andre F., Fargier MC. Distribution of IgA1 and IgA2 plasma cells in various normal human tissues and in the jejunum of plasma IgA‐deficient patients. Clin Exp Immunol 1978;33;227–231. [PMC free article] [PubMed] [Google Scholar]
- 71. Crago SS, et al. Distribution of IgA1‐, IgA2‐, and J chain‐containing cells in human tissues. J Immunol 1984:132:16–18. [PubMed] [Google Scholar]
- 72. Jonard PP, Rambaud JC, Dive C., Vaerman JP, Galian A, Delacroix DL. Secretion of immunoglobulins and plasma proteins from the jejunal mucosa. Transport rate and origin of polymeric immunoglobulin A. J Clin invest 1984:74: 525–535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73. Kett K., Brandtzaeg P, Radl J, Haaijman JJ. Different subclass distribution of IgA‐ producing cells in human lymphoid organs and various secretory tissues. J Immunol 1986:136:3631–3635. [PubMed] [Google Scholar]
- 74. Burnett D, Crocker J, Stockley RA. Cells containing IgA subclasses in bronchi of subjects with and without chronic obstructive lung disease. Clin Pathol 1987:40:1217–1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75. Müller F., Frøland SS, Hvatum M., Radl J, Brandtzaeg P. Both IgA subclasses are reduced in parotid saliva from patients with AIDS. Clin Exp Immunol 1991:83:203–209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76. Feltelius N, Hvatum M., Brandtzaeg P Knutson L., Hallgren R. Increased jejunal secretory IgA and IgM in ankylosing spondylitis: normalization after treatment with sulfasalazine, J Rheumatol 1994:21:2076–2081. [PubMed] [Google Scholar]
- 77. Brandtzaeg P. Human secretory component. VI. Immunoglobulin-binding properties. Immunochemistry 1977;14;179–188. [DOI] [PubMed] [Google Scholar]
- 78. Kilian M., Reinholdt J, Lomholt H, Poulsen K., Frandsen EV. Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. APMIS 1996:104:321–338. [DOI] [PubMed] [Google Scholar]
- 79. Mestecky J, Russell MW. IgA subclasses. Monogr Allergy 1986;19:277–301. [PubMed] [Google Scholar]
- 80. Tarkowski A, Lue C., Moldoveanu Z, Kiyono H, McGhee JR, Mestecky J. Immunization of humans with polysaccharide vaccines induces systemic, predominantly polymeric IgA2‐subclass antibody responses. J Immunol 1990:144:3770–3778. [PubMed] [Google Scholar]
- 81. Kett K., Baklien K., Bakken A, Kral JG, Fausa O, Brandtzaeg P. Intestinal B‐cell isotype response in relation to local bacterial load: evidence for immunoglobulin A subclass adaptation. Gastroenterology 1995:109:819–825. [DOI] [PubMed] [Google Scholar]
- 82. Brandtzaeg P, Karlsson G, Hansson G, Petruson B., Björkander J, Hanson LÅ. The clinical condition of IgA‐deficient patients is related to the proportion of IgD‐ and IgM‐producing cells in their nasal mucosa. Clin Exp Immunol 1987;67:626–636. [PMC free article] [PubMed] [Google Scholar]
- 83. Valnes K., Brandtzaeg P, Elgjo K., Stave R. Quantitative distribution of immunoglobulin‐producing cells in gastric mucosa: relation to chronic gastritis and glandular atrophy. Gut 1986:27:505–514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84. Korsrud FR, Brandtzaeg P. Quantitative immuno histochemistry of immunoglobulin‐ and J‐chain‐producing cells in human parotid and submandibular glands. Immunology 1980:39:129–140. [PMC free article] [PubMed] [Google Scholar]
- 85. Brandtzaeg P. Mechanisms of gastrointestinal reactions to food. Environ Toxicol Pharmacol 1997:4:9–24. [DOI] [PubMed] [Google Scholar]
- 86. Bjerke K., Brandtzaeg P. Terminally differentiated human intestinal B cells. IgA and IgG subclass‐producing immunocytes in the distal ileum, including Peyer's patches, compared with lymph nodes and palatine tonsils. Scand J Immunol 1990:32:61–67. [DOI] [PubMed] [Google Scholar]
- 87. Nilssen DE, et al. Isotype distribution of mucosal IgG‐producing cells in patients with various IgG subclass deficiencies. Clin Exp Immunol 1991;83;17–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88. Helgeland L., et al. The IgG subclass distribution in serum and rectal mucosa of monozygotic twins with or without inflammatory bowel disease. Gut 1992:33;1358–1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89. Flanagan JG, Rabbitts TH. Arrangement of human immunoglobulin heavy chain constant region genes implies evolutionary duplication of a segment containing γ, ɛ and α genes. Nature 1982;300:709–713. [DOI] [PubMed] [Google Scholar]
- 90. Papadea C., Check IJ. Human immunoglobulin G and immunoglobulin G subclasses; biochemical, genetic, and clinical aspects. Crit Rev Gin Lab Sa 1989;27:27–58. [DOI] [PubMed] [Google Scholar]
- 91. Takahashi T., et al. The joining (J) chain is present in invertebrates that do not express immunoglobulins. Proc Natl Acad Sci USA 1996;93;1886–1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Eskeland T., Brandtzaeg P. Does J chain mediate the combination of 19S IgM and dimeric IgA with the secretory component rather than being necessary for their polymerization Immunochemistry 1974:11;161–163. [DOI] [PubMed] [Google Scholar]
- 93. Brandtzaeg P. Complex formation between secretory component and human immunoglobulins related to their content of J chain. Scand J Immunol 1976;5;411–419. [DOI] [PubMed] [Google Scholar]
- 94. Brandtzaeg P. Role of J chain and secretory component in receptor‐mediated glandular and hepatic transport of immunoglobulins in man. Scand J Immunol 1985:22;111–146. [DOI] [PubMed] [Google Scholar]
- 95. Hendrickson BA, et al. Lack of association of secretory component with IgA in J chain‐deficient mice. J Immunol 1996;157;750–754. [PubMed] [Google Scholar]
- 96. Ma JK, et al. Generation and assembly of secretory antibodies in plants. Science 1995:268;716–719. [DOI] [PubMed] [Google Scholar]
- 97. Brewer JW, Randall TD, Parkhouse RM, Corley RB. IgM hexamers Immunol Today 1994;15;165–168. [DOI] [PubMed] [Google Scholar]
- 98. Wiersma EJ, Collins C., Fazel S, Shulman MJ. Structural and functional analysis of J chain‐deficient IgM. J Immunol 1998:160: 5979–5989. [PubMed] [Google Scholar]
- 99. Sorensen V, Sundvold V, Michaelsen TE, Sandlie I. Polymerization of IgA and IgM: roles of Cys109/Cys414 and the secretory tailpiece. J Immunol 1999:162:3448–3455. [PubMed] [Google Scholar]
- 100. Brandtzaeg P, Korsrud FR. Significance of different J chain profiles in human tissues: generation of IgA and IgM with binding site for secretory component is related to the J chain expressing capacity of the total local immunocyte population, including IgG and IgD producing cells, and depends on the clinical state of the tissue. Clin Exp Immunol 1984:58:709–718. [PMC free article] [PubMed] [Google Scholar]
- 101. Stott SI. Biosynthesis and assembly of IgM. Addition of J‐chain to intracellular pools of 8S and 19S IgM. Immunochemistry 1976;13:157–163. [DOI] [PubMed] [Google Scholar]
- 102. Brewer JW, Corley RB. Late events in assembly determine the polymeric structure and biological activity of secretory IgM. Mol Immunol 1997: 34:323–331. [DOI] [PubMed] [Google Scholar]
- 103. Parkhouse RMF, Della Corte E. Control of IgA biosynthesis In: Beers RE, Bassett EG, eds. The role of immunological factors in infections, allergic, and autoimmune processes. New York : Raven Press; 1976. p. 389–401. [Google Scholar]
- 104. Roth R., Mather EL, Koshland ME. Intracellular events in the differentiation of B lymphocytes to pentamer IgM synthesis In: Pernis B., Vogel HJ, eds. Cells of immunoglobulin synthesis. London ; Academic Press: 1979. p. 141–151. [Google Scholar]
- 105. Kett K., Brandtzaeg P, Fausa O. J‐chain expression is more prominent in immunoglobulin A2 than in immunoglobulin A1 colonic immunocytes and is decreased in both subclasses associated with inflammatory bowel disease. Gastroenterology 1988:94; 1419–1425. [DOI] [PubMed] [Google Scholar]
- 106. Bull DM, Bienenstock J, Tomasi TB. Studies on human intestinal immunoglobulin A. Gastroenterology 1971:60:370–380. [PubMed] [Google Scholar]
- 107. MacDennott RP, et al. Altered patterns of secretion of monomeric IgA and IgA subclass 1 by intestinal mononuclear cells in inflammatory bowel disease. Gastroenterology 1986:91:379–385. [DOI] [PubMed] [Google Scholar]
- 108. Kutteh WH, Koopman WJ, Conley ME, Egan ML, Mestecky J. Production of predominantly polymeric IgA by human peripheral blood lymphocytes stimulated in vitro with mitogens. J Exp Med 1980;152;1424–1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109. Moldoveanu Z, Egan ML, Mestecky J. Cellular origins of human polymeric and monomeric IgA: intracellular and secreted forms of IgA. J Immunol 1984;133;3156–3162. [PubMed] [Google Scholar]
- 110. Nagura H, Brandtzaeg P, Nakane PK, Brown WR. Ultrastructural localization of J chain in human intestinal mucosa. J Immunol 1979;123:1044–1050. [PubMed] [Google Scholar]
- 111. Moro I, Iwase T., Komiyama K., Moldoveanu Z, Mestecky J. Immunoglobulin A (IgA) polymerization sites in human immunocytes: immunoelectron microscopic study. Cell Struct Funct 1990;15;85–91. [DOI] [PubMed] [Google Scholar]
- 112. Della Corte E, Parkhouse RME. Biosynthesis of immunoglobulin A (IgA) and immunoglobulin M (IgM). Requirement for J‐chain and a disulphide exchange enzyme for polymerization. Biochem J 1973;136:597–606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113. Mestecky J, Winchester RJ, Hoffman T., Kunkel HG. Parallel synthesis of immunoglobulins and J chain in pokeweed mitogen‐stimulated normal cells and in lymphoblastoid cell lines. J Exp Med 1977:145;760–765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114. Roth RA, Koshland ME. Identification of a lymphocyte enzyme that catalyzes pentamer immunoglobulin M assembly. J Biol Chem 1981:256:4633–4639. [PubMed] [Google Scholar]
- 115. Delamette F., Marty MC, Panijel J. In vitro study of IgM polymerization. Cell Immunol 1975;19;262–275. [DOI] [PubMed] [Google Scholar]
- 116. Meng YG, Criss AB, Georgiadis KE. J chain deficiency in human IgM monoclonal anti bodies produced by Epstein‐Barr virus‐transformed B lymphocytes. Eur J Immunol 1990;20;2505–2508. [DOI] [PubMed] [Google Scholar]
- 117. Bjerke K., Brandtzaeg P. Terminally differentiated human intestinal B cells. J chain expression of IgA and IgG subclass‐producing immunocytes in the distal ileum compared with mesenteric and peripheral lymph nodes. Clin Exp Immunol 1990;82:411–415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118. Nilssen DE, Brandtzaeg P Frøland SS, Fausa O. Subclass composition and J‐chain expression of the “compensatory” gastrointestinal IgG cell population in selective IgA deficiency, Clin Exp Immunol 1992;87;237–245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119. Mosmann TR, Gravel Y., Williamson AR, Baumal R. Modification and fate of J chain in myeloma cells in the presence and absence of immunoglobulin secretion. Eur J Immunol 1978;8;94–101. [DOI] [PubMed] [Google Scholar]
- 120. Ahmed R., Gray D. Immunological memory and protective immunity: understanding their relation. Science 1996;272:54–60. [DOI] [PubMed] [Google Scholar]
- 121. Bjerke K., Brandtzaeg P. Immunoglobulin‐ and J‐chain‐producing cells associated with the lymphoid follicles of human appendix, colon and ileum, including the Peyer's patches. Clin Exp Immunol 1986:64:432–441. [PMC free article] [PubMed] [Google Scholar]
- 122. Bjerke K., Brandtzaeg P, Rognum TO. Distribution of immunoglobulin producing cells is different in normal human appendix and colon mucosa. Gut 1986:27:667–669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123. Korsrud FR, Brandtzaeg P. Immunohistochemical evaluation of J‐chain expression by intra‐ and extra follicular immunoglobulin‐producing human tonsillar cells. Scand J Immunol 1981: 13:271–280. [DOI] [PubMed] [Google Scholar]
- 124. Brandtzaeg P. Immune functions and immunopathology of Palatine and nasopharyngeal tonsils In: Bernstein JM, Ogra PL, eds. Immunology of the ear. New York : Raven Press; 1987. p. 63–106. [Google Scholar]
- 125. Koshiand ME. The coming of age of the immunoglobulin J chain. Annu Rev Immunol 1985:3:425–453. [DOI] [PubMed] [Google Scholar]
- 126. Rinkenberger JL, Wallin JJ, Johnson KW, Koshland ME. An interlcukin‐2 signal relieves BSAP (Pax5)‐mediated repression of the immunoglobulin J chain gene. Immunity 1996;5:377–386. [DOI] [PubMed] [Google Scholar]
- 127. Shin MK, Koshland ME. Ets‐related protein PU. 1 regulates expression of the immunoglobulin J-chain gene through a novel Ets-binding element. Genes Dev 1993:7:2006–2015. [DOI] [PubMed] [Google Scholar]
- 128. Rao S, Karray S, Gackstetter ER, Koshland ME. Myocyte enhancer factor‐related B‐MEE2 is developmentally expressed in B cells and regulates the immunoglobulin J chain promoter. J Biol Chem 1998:273:26123–26129. [DOI] [PubMed] [Google Scholar]
- 129. Turner CA, Mack DH, Davis MM. Blimp‐1, a novel zinc finger‐containing protein that can drive the maturation of B lymphocytes into immunoglobulin‐secreting cells. Cell 1994;77;297–306. [DOI] [PubMed] [Google Scholar]
- 130. Takayasu H, Brooks KH. IL‐2 and IL‐5 both induce μ, and J chain mRNA in a clonal B cell line, but differ in their cell‐cycle dependency for optimal signaling. Cell Immunol 1991:136:472–485. [DOI] [PubMed] [Google Scholar]
- 131. Randall TD, Parkhouse RM, Corley RB. J chain synthesis and secretion of hexameric IgM is differentially regulated by lipopolysaccharide and interleukin 5. Proc Natl Acad Sci USA 1992:89:962–966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132. Tigges MÁ, Casey LS, Koshland ME. Mechanism of interieukin‐2, signaling: mediation of different outcomes by a single receptor and transduction pathway. Science 1989;243:781–786. [DOI] [PubMed] [Google Scholar]
- 133. Kang CJ, Sheridan C., Koshland ME. A stage‐specific enhancer of immunoglobulin J chain gene is induced by interleukin‐2 in a presecretor B cell stage. Immunity 1998:8:285–295. [DOI] [PubMed] [Google Scholar]
- 134. McCune JM, Fu SM, Kunkel HG. J chain biosynthesis in pre‐B cells and other possible precursor B cells. J Exp Med 1981:154:138–145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135. Hadju I, Moldoveanu Z, Cooper M., Mestecky J. Ultrastructural studies of human lymphoid cells. β and J chain expression as a function of B cell differentiation. J Exp Med 1983:158:1993–2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136. Max EE, Korsmeyer SJ. Human J chain gene. Structure and expression in B lymphoid cells. J Exp Med 1985:161:832–849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137. Kubagawa H, Burrows PD, Grossi CE, Mestecky J, Cooper MD. Precursor B ceils transformed by Epstein‐Barr virus undergo sterile plasma‐cell differentiation: J‐chain expression without immunoglobulin. Proc Natl Acad Sci USA 1988:85:875–879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138. Iwase T., et al. Early expression of human J chain and u chain gene in the fetal liver. Cell Struct Funct 1993;18:297–302. [DOI] [PubMed] [Google Scholar]
- 139. Bertrand FE, Billips LG, Gartland GL, Kubagawa H, Schroeder HW. The J chain gene is transcribed during B and T lymphopoiesis in humans. J Immunol 1996:156:4240–4244. [PubMed] [Google Scholar]
- 140. Savidge TC. The life and times of an intestinal M cell. Trends Microbiol 1996:4:301–306. [DOI] [PubMed] [Google Scholar]
- 141. Brandtzaeg P. Immunological functions of adenoids In: van Cauwenberge P, Wang D‐Y, Ingels K., Bachert C., eds. The nose. The Hague : Kugler Publications: 1998. p. 233–246. [Google Scholar]
- 142. Brandtzaeg P. Regionalized immune function of tonsils and adenoids. Immunol Today 1999:20:383–384. [DOI] [PubMed] [Google Scholar]
- 143. Brandtzaeg P, Nilssen DE, Rognum TO, Thrane PS. Ontogeny of the mucosal immune system and IgA deficiency, Gastroenterol Clin North Am 1991;20:397–439. [PubMed] [Google Scholar]
- 144. Kapasi ZF, et al. Follicular dendritic cell (FDC) precursors in primary lymphoid tissues. J Immunol 1998:160:1078–1084. [PubMed] [Google Scholar]
- 145. Tarlinton D. Germinal centers: form and function. Curr Opin Immunol 1998: 10:245–251. [DOI] [PubMed] [Google Scholar]
- 146. Chaplin DD, Fu Y. Cytokine regulation of secondary lymphoid organ development. Curr Opin Immunol 1998:10:289–297. [DOI] [PubMed] [Google Scholar]
- 147. Fu YX, Huang G, Wang Y., Chaplin DD. B lymphocytes induce the formation of follicular dendritic ceil clusters in a lymphotoxin α dependent fashion. J Exp Med 1998:187:1009–1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148. Liu Y‐J, de Bouteiller O, Fugier‐Vivier I. Mechanisms of selection and differentiation in germinal centers. Curr Opin Immunol 1997:9:256–262. [DOI] [PubMed] [Google Scholar]
- 149. MacLennan ICM. Germinal centers, Annu Rev Immunol 1994: 12:117–139. [DOI] [PubMed] [Google Scholar]
- 150. Liu Y‐J, Arpin C. Germinal center development, Immunol Rev 1997:156:111–126. [DOI] [PubMed] [Google Scholar]
- 151. MacLennan IC, et al. The changing preference of T and B cells for partners as T‐dependent antibody responses develop. Immunol Rev 1997:156:53–66. [DOI] [PubMed] [Google Scholar]
- 152. Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ, Jenkins MK. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 1998;281;96–99. [DOI] [PubMed] [Google Scholar]
- 153. Lindhout E, Koopman G, Pals ST, de Groot C. Triple check for antigen specificity of B cells during germinal centre reactions. Immunol Today 1997:18;573–577. [DOI] [PubMed] [Google Scholar]
- 154. Ehrenstein MR, O'Keefe TL, Davies SL, Neuberger MS. Targeted gene disruption reveals a role for natural secretory IgM in (he maturation of the primary immune response. Proc Natl Acad Sci USA 1998:95:10089–10093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155. Forster R., Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B ceil migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996:87:1037–1047. [DOI] [PubMed] [Google Scholar]
- 156. Goodnow CC, Cyster JG. Lymphocyte homing; the scent of a follicle. Curr Biol 1997:7;R219–R222. [DOI] [PubMed] [Google Scholar]
- 157. Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT. A B‐cell‐homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor‐1. Nature 1998;391:799–803. [DOI] [PubMed] [Google Scholar]
- 158. Legler DE, Loetscher M., Roos RS, Clark‐Lewis I, Baggiolini M., Moser B. B cell‐attracting chemokine 1. a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 1998;187:655–660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159. Bleul CC, Schultze JL, Springer TA. B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement. J Exp Med 1998:187:753–762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160. Szabo MC, Butcher EC, McEvoy LM. Specialization of mucosal follicular dendritic ceils revealed by mucosal addressin‐cell adhesion moiecuie‐1 display J Immunol 1997:158:5584–5588. [PubMed] [Google Scholar]
- 161. Brandtzaeg P, Halstensen TS. Immunology and immunopathology of tonsils, Adv Otorhinoiaryngol 1992;47:64–75. [DOI] [PubMed] [Google Scholar]
- 162. Lampert IA, Schofield JB, Amlot P, van Noorden S. Protection of germinal centres from complement attack: decay‐accelerating factor (DAF) is a constitutive protein on follicular dendritic cells. A study in reactive and neoplastic follicles. J Pathol 1993:170:115–120. [DOI] [PubMed] [Google Scholar]
- 163. Pulendran B., van Driel R., Nossal GJ. Immunological tolerance in germinal centres. Immunol Today 1997: 18:27–32. [DOI] [PubMed] [Google Scholar]
- 164. Cleary AM, Fortune SM, Yellin MJ, Chess L., Lederman S. Opposing roles of CD95 (Fas/APO‐1) and CD40 in the death and rescue of human low density tonsillar B cells. J Immunol 1995: 155:3329–3337. [PubMed] [Google Scholar]
- 165. Koopman G, Keehnen RM, Lindhout E, Zhou DF, de Groot C., Pals ST. Germinal center B cells rescued from apoptosis by CD40 ligation or attachment to follicular dendritic cells, but not by engagement of surface immunoglobulin or adhesion receptors, become resistant to CD95‐induced apoptosis. Eur J Immunol 1997:27:1–7. [DOI] [PubMed] [Google Scholar]
- 166. Grouard G, Durand I, Filgueira L., Banchereau J, Liu YJ. Dendritic cells capable of stimulating T cells in germinal centres. Nature 1996;384:364–367. [DOI] [PubMed] [Google Scholar]
- 167. Randall TD, Heath AW, Santos‐Argumedo L., Howard MC, Weissman IL, Lund FE. Arrest of H lymphocyte terminal differentiation by CD40 signaling; mechanism for lack of antibody‐secreting cells in germinal centers. Immunity 1998:8:733–742. [DOI] [PubMed] [Google Scholar]
- 168. Arpin C., Banchereau J, Liu YJ. Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing. J Exp Med 1997:186:931–940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169. Ngo VN, Tang HL, Cyster JG. Epstein‐Barr virus‐induced moilcule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med 1998;188;181–191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170. Liu YJ, Barthelemy C., de Bouteiller O, Arpin C., Durand I, Banchereau J. Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid up‐regulation of B7‐1 and B7‐2. Immunity 1995;2:239–248. [DOI] [PubMed] [Google Scholar]
- 171. Slifka MK, Ahmed R. Long‐lived plasma cells: a mechanism for maintaining persistent antibody production. Curr Opin Immunol 1998;10:252–258. [DOI] [PubMed] [Google Scholar]
- 172. Strober W., Sneller MC. Cellular and molecular events accompanying IgA B cell differentiation, Monogr Allergy 1988;24:181–190. [PubMed] [Google Scholar]
- 173. Conley ME, Barteh MS. In vitro regulation of IgA subclass synthesis. II. The source of IgA2 plasma cells. J Immunol 1984;133:2312–2316. [PubMed] [Google Scholar]
- 174. Zan H, Cerutti A, Dramitinos P, Schaffer A, Casali P. CD40 engagement triggers switching to IgA1 and IgA2 in human B cells through induction of endogenous TGP‐P; evidence for TGF‐β but not IL‐10‐dependent direct Sμ→Sα and sequential Sμ→Sγ, Sγ→Sα DNA recombination. J Immunol 1998;161;5217–5225. [PMC free article] [PubMed] [Google Scholar]
- 175. Arpin C., et al. The normal counterpart of IgD myeloma cells in germinal center displays extensively mutated IgVH gene, Cμ Cδ switch, and λ light chain expression. J Exp Med 1998;187:1169–1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176. Brandtzaeg P, Johansen F‐E, Baekkevold FS, Earstad IN. Compartmentalization of the human mucosal immune system. A tonsillar B‐cell subset (sIgD+IgM‐CD38+) homes to regional effector sites but not to the gut [Abstract|. Scand J Immunol 1998;47;620. [Google Scholar]
- 177. Ruan MR, Akkoyuniu M., Grubb A, Forsgren A. Protein D of Haemophilus influenzae. A novel bacterial surface protein with affinity for human IgD. J Immunol 1990;145;3379–3384. [PubMed] [Google Scholar]
- 178. Janson H, Heden LO, Grubb A, Ruan MR, Eorsgren A. Protein D. an immunoglobulin D‐binding protein of Haemophilus influenzae; cloning, nucleotide sequence, and expression Infect Immun 1991;59;119–125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179. Parkhouse RME, Cooper MD. A model for the differentiation of B lymphocytes with implications for the biological role of IgD, Immunol Rev 1977;37:105–126. [DOI] [PubMed] [Google Scholar]
- 180. Schrader CE, George A, Kerlin RL, Cebra JJ. Dendritic cells support production of IgA and other non‐IgM isotypes in clonal microculture. Int Immunol 1990;2:563–570. [DOI] [PubMed] [Google Scholar]
- 181. Fayette J, et al. Human dendritic cells skew isotype switching of CD40‐activated naive B cells towards IgA1 and IgA2. J Exp Med 1997;185:1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182. Brandtzaeg P. Molecular and cellular aspects of the secretory immunoglobulin system. APMIS 1995;103:1–19. [DOI] [PubMed] [Google Scholar]
- 183. Nilsen EM, Lundin KEA, Krajči P, Scott H, Sollid LM, Brandtzaeg P. Gluten‐specific, HLA‐DQ restricted T cells from coeliac mucosa produce cytokines with Th 1 or Th0 profile dominated by interferon γ. Gut 1995;37:766–776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 184. Fujihaslii K., et al. Human appendix B cells naturally express receptors for and respond to interleukin 6 with selective IgA1 and lgA2 synthesis. J Clin Invest 1991;88:248–252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185. Briere F., et al. Interleukin 10 induces B lymphocytes from IgA‐deficient patients to secrete IgA. J Clin Invest 1994;94:97–104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186. Defrance T., Vanbervliet B., Briere E, Durand I, Rousset F., Banchereau J. Interleukin 10 and transforming growth factor β cooperate to induce anci‐CD40‐activated naive human B cells to secrete immunogiobulin A. J Exp Med 1992;175:671–682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187. Kimata H, Fujimoto M. Induction of lgA1 and IgA2 production in immature human fetal B cells and pre‐B cells by vasoactive intestinal peptide. Blood 1995;85:2098–2104. [PubMed] [Google Scholar]
- 188. Boirivant M., Fais S, Annibale B., Agostini D, Delle Fave G, Pallone F. Vasoactive intestinal polypeptide modulates the m vitro immunoglobulin A production by intestinal lamina propria lymphocytes. Gastroenterology 1994; 106:576–582. [DOI] [PubMed] [Google Scholar]
- 189. Pascual DW Xu‐Amano JC, Kiyono H, McGhee JR, Bost KL. Substance P acts directly upon cloned B lymphoma cells to enhance IgA and IgM production. J Immunol 1991;146:2130–2136. [PubMed] [Google Scholar]
- 190. Fujihashi, et al. γ/δ T cell‐deficient mice have impaired mucosal immunogiobulin A responses. J Exp Med 1996;183:1929–1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 191. Jahnsen FL, Farstad IN, Aanesen JP, Brandtzaeg P. Phenotypic distribution of T cells in human nasal mucosa differs from that in the gut. Am J Respir Cell Molec Biol 1998;18:392–401. [DOI] [PubMed] [Google Scholar]
- 192. Kelt K., Scott H, Fausa O, Brandtzaeg P. Secretory immunity in cellac disease: cellular expression of immunoglobulin A subclass and joining chain. Gastroenterology 1990;99:386–392. [DOI] [PubMed] [Google Scholar]
- 193. Watanabe M., et al. Interieukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 1995;95:2945–2953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 194. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996;272:60–66. [DOI] [PubMed] [Google Scholar]
- 195. Briskin M., et al. Human mucosal addressin cell adhesion molecule‐ is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 1997; 151:97–110. [PMC free article] [PubMed] [Google Scholar]
- 196. Streeter PR, Berg EL, Rouse BT, Bargatze RF, Butcher EC. A tissue‐specific endothelial cell molecule involved in lymphocyte homing. Nature 1988;331:41–46. [DOI] [PubMed] [Google Scholar]
- 197. Shyjan AM, Bertagnolli M., Kenney CJ, Briskin MJ. Human mucosal addressin cell adhesion molecule‐1 (MAdCAM‐1) demonstrates structural and functional similarities to the αβ7‐integrin binding domains of murine MAdCAM‐1, but extreme divergence of mucin‐like sequences. J Immunol 1996;156:2851–2857. [PubMed] [Google Scholar]
- 198. Denis V, et al. Selective induction of peripheral and mucosal endothelial cell addressins with peripheral lymph nodes and Peyer's patch cell‐conditioned media. J Leukoc Biol 1996;60:744–752. [DOI] [PubMed] [Google Scholar]
- 199. Berg EL, McEvoy LM, Berlin C., Bargatze RF, Butcher EC. L‐selectin‐mediated lymphocyte rolling on MAdCAM‐1, Nature 1993;366:695–698. [DOI] [PubMed] [Google Scholar]
- 200. Berlin C., et al. α4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 1995;80:413–422. [DOI] [PubMed] [Google Scholar]
- 201. Pachynski RK, Wu SW, Gunn MD, Erie DJ. Secondary lymphoid‐tissue eliemokine (SLC) stimulates integrin α4β7‐mediated adhesion of lymphocytes to mucosal addressin cell adhesion molecule‐1 (MAdCAM‐1) under flow. J Immunol 1998;161:952–956. [PubMed] [Google Scholar]
- 202. Farstad IN, Haistensen TS, Lien B., Kilshaw PJ, Lazarovits AI, Brandtzaeg P. Distribution of β7 integrins in human intestinal mucosa and organized gut‐associated lymphoid tissue. Immunology 1996;89:227–237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203. Farstad IN, Haistensen TS, Kvale D, Eausa O, Brandtzaeg P. Topographic distribution of homing receptors on B and T cells in human gut‐associated lymphoid tissue. Relation of L‐ selectin and integrm α4β7 to naive and memory phenotypes. Ant J Pathol 1997;150:187–199. [PMC free article] [PubMed] [Google Scholar]
- 204. Baggiolini M. Chemokines and leukocyte traffic, Nature 1998;392:565–568. [DOI] [PubMed] [Google Scholar]
- 205. Del Pozo MA, Sanchez‐Mateos R Sanchez‐Madrid F. Cellular polarization induced by chemokines: a mechanism for leucocyte recruitment Immunol Today 1996; 17:127–131. [DOI] [PubMed] [Google Scholar]
- 206. Nakano H, et al. Genetic defect in T lymphocyte‐Specific homing into peripheral lymph nodes. Eur J Immunol 1997;27:215–221. [DOI] [PubMed] [Google Scholar]
- 207. Gunn MD, et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Esp Med 1999;189:451–460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 208. Campbell JJ, Hedrick J, Zlotnik A, Siant MA, Thompson DA, Butcher EC. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 1998;279:381–384. [DOI] [PubMed] [Google Scholar]
- 209. Middieton J, et al. Transcytosis and surface presentation of IL‐8 by venular endothehal cells. Cell 1997;91:385–395. [DOI] [PubMed] [Google Scholar]
- 210. Gunn MD, Tangemann K., Tam C., Cyster JG, Rosen SD, Williams LT. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 1998;95:258–263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211. Campbell JJ, et al. 6‐C‐kine (SLC), a lymphocyte adhesion‐triggering chemokine expressed by high endothelium, is an agonist for the MIP‐3β receptor CCR7. J Cell Biol 1998;141:1053–1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 212. Willimann K., et al. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Immunol 1998;28:2025–2034. [DOI] [PubMed] [Google Scholar]
- 213. Postigo AA, Sanchez‐Mateos P, Lazarovits AI, Sanchez‐Madrid F., de Landazuri MO. α4β7 integrin mediates B cell binding to fibronectin and vascular cell adhesion molecule‐ 1: expression and function of K4 integrins on human B lymphocytes. J Immunol 1993;151:2471. [PubMed] [Google Scholar]
- 214. Ohtsuka A, Piazza AJ, Ermak TH, Owen RL. Correlation of extracellular matrix components with the cytoarchitecture of mouse Peyer's patches. Cell Tissue Res 1992;269:403–410. [DOI] [PubMed] [Google Scholar]
- 215. Gretz JE, Anderson AO, Shaw S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex, Immunol Rev 1997; 156:11–24. [DOI] [PubMed] [Google Scholar]
- 216. Bianchi E, Bender JR, Blasi F., Pardi R. Through and beyond the wall: late steps in leukocyte transendothelial migration. Immunol Today 1997;18:586–591. [DOI] [PubMed] [Google Scholar]
- 217. Farstad IN, Norstein J, Brandtzaeg P. Phenoiypes of B and T cells in human intestinal and mesenteric lymph. Gastroenterology 1997; 112:163–173. [DOI] [PubMed] [Google Scholar]
- 218. Fujisaka M., Ohtani O, Watanabe Y. Distribution of lymphatics in human palatine tonsils; a study by enzyme‐histochemistry and scanning electron microscopy of lymphatic corrosion casts. Arch Histol Cytol 1996;59:273–280. [DOI] [PubMed] [Google Scholar]
- 219. Hub E, Rot A. Binding of RANTES, MCP‐1, MCP‐3, and MlP‐ la to cells in human skin. Am J Pathol 1998;152:749–757. [PMC free article] [PubMed] [Google Scholar]
- 220. Bradley LM, Watson SR. Lymphocyte migration into tissue: the paradigm derived from CD4 subsets. Curr Opin Immunol 1996;8:312–320. [DOI] [PubMed] [Google Scholar]
- 221. Rott LS, Briskin MJ, Andrew DP Berg EL, Butcher EC. A fundamental subdivision of circulating lymphocytes defined by adhesion to mucosal addressin cell adhesion molecule‐1, Comparison with vascular cell adhesion molecule‐ 1 and correlation with 157 integrins and memory differentiation. J Immunol 1996;156:3727. [PubMed] [Google Scholar]
- 222. Guy‐Grand D, Griscelli C., Vassalh P. The gut‐associated lymphoid system: nature and properties of the large dividing cells. Eur J Immunol 1974;4:435–443. [DOI] [PubMed] [Google Scholar]
- 223. Parrott DM. The gut as a lymphoid organ. Clin Gastroenterol 1976;5:211–228. [PubMed] [Google Scholar]
- 224. Bos NA, et al. Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect Immun 1996;64:616–623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 225. Dunn‐Walters DK, Boursier L., Spencer J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur J Immunol 1997;27:2959. [DOI] [PubMed] [Google Scholar]
- 226. Fischer M., Kuppers R. Human IgA‐ and IgM‐secreting intestinal plasma cells carry heavily mutated V., region genes, Eur J Immunol 1998;28:2971–2977. [DOI] [PubMed] [Google Scholar]
- 227. Dunn‐Wahers DK, Isaacson PG, Spencer J. Sequence analysis of human igVH genes indicates that ileal lamina propria plasma cells are derived from Peyer's patches. Eur J Immunol 1997;27:463–467. [DOI] [PubMed] [Google Scholar]
- 228. Lue C., et al. Intraperitoneal immunization of human subjects with tetanus toxoid induces specific antibody‐secreting cells in the peritoneal cavity and in the circulation, but fails to elicit a secretory IgA response. Clin Exp Immunol 1994;96:356–363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229. Quiding‐Jarbrink M., et al. Human circulating specific antibody‐forming cells after systemic and mucosal immunizations: differential homing commitments and cell surface differentiation markers. Eur J Immunol 1995;25:322–327. [DOI] [PubMed] [Google Scholar]
- 230. Quiding‐Jarbrink M., et al. Differential expression of tissue‐specific adhesion molecules on human circulating antibody‐forming cells after systemic, enteric, and nasal immunizations, A molecular basis for the compartmentalization of effector B cell responses. J Clin Invest 1997;99:1281–1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 231. Kantele A, et al. Homing potentials of circulating lymphocytes in humans depend on the site of activation: oral, but not parenteral. typhoid vaccination induces circulating antibody‐secreting cells that ail bear homing receptors directing them to the gut. J Immunol 1997;158:574–579. [PubMed] [Google Scholar]
- 232. Halstead TE, Hall JG. The homing of lymph‐borne immunoblasts to the small gut of neonatal rats. Transplantation 1972;14:339–346. [DOI] [PubMed] [Google Scholar]
- 233. Parrott DM, Ferguson A. Selective migration of lymphocytes within the mouse small intestine. Immunology 1974;26:571–588. [PMC free article] [PubMed] [Google Scholar]
- 234. Bode U, Wonigeit K., Pabst R., Westermann J. The fate of activated T cells migrating through the body: rescue from apoptosis in the tissue of origin. Bur J Immunol 1997;27:2087–2093. [DOI] [PubMed] [Google Scholar]
- 235. Janeway CA, et al. Quantitative variation in la antigen expression plays a central role in immune regulation. Immunol Today 1984;5:99–105. [DOI] [PubMed] [Google Scholar]
- 236. Thrane PS, Sollid LM, Haanes HR, Brandtzaeg P. Clusiering of IgA‐producing immunocytes related to HLA‐DR‐positive ducts in normal and inflamed salivary glands. Scand J Immunol 1992;35:43–51. [DOI] [PubMed] [Google Scholar]
- 237. Newman RA, Ormerod MG, Greaves MP. The presence of HLA‐DR antigens on lactating human breast epithelium and milk fat globule membranes. Clin Exp Immunol 1980;41:478–486. [PMC free article] [PubMed] [Google Scholar]
- 238. Brandtzaeg P. The secretory immune system of lactating human mammary glands compared with other exocrine organs. Ann NY Acad Sci 1983;409:353–381. [DOI] [PubMed] [Google Scholar]
- 239. Eerola E, Jalkatien S, Granfors K., Toivanen A. Immune capacity of the chicken bursectomized at 60 h of incubation. Effect of bursal epithehal cells and bursal epithelium‐ conditioned medium on the production of immunogiobulins and specific antibodies in vitro, Scand J Immunol 1984;19:493–500. [DOI] [PubMed] [Google Scholar]
- 240. Kremmidiotis G, Zola H. Changes in CD44 expression during B cell differentiation in the human tonsil. Cell Immunol 1995;161:147–157. [DOI] [PubMed] [Google Scholar]
- 241. Merville P et al. Bd‐2+ tonsillar plasma cells are rescued from apoptosis by bone marrow fibroblasts. J Exp Med 1996;183:227–236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242. Husband AJ, Monié HJ, Gowans JL. The natural history of cells producing IgA in the gut. Ciba Found Symp 1977;46:29–42. [DOI] [PubMed] [Google Scholar]
- 243. Lange S, Nygren H, Svennerholm A‐M, Holmgren J. Antitoxic cholera immunity in mice: influence of antigen deposition on antitoxin‐containing cells and protective immunity in different parts of tile intestine, Infect Immun 1980;28:17–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 244. Pierce NF, Gowans JL. Cellular kinetics of the intestinal immune response to cholera toxoid in rats. J Exp Med 1975;142 1550–1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 245. Ogra PL, Karzon DT. The role of immunoglobulins in the mechanism of mucosal immunity to virus infection. Pediatr Clin North Am 1970; 17:385–400. [DOI] [PubMed] [Google Scholar]
- 246. Hopkins S, et al. A recombinant Salmonella typhimurium vaccine induces local immunity by four different routes of immunization. Infect Immun 1995;63:3279–3286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 247. Kantele A, et al. Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect Immun 1998;66:5630–5635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 248. Eriksson K. Specific‐antibody‐secreting cells in the rectums and genital tracts of nonhuman primates following vaccination. Infect Immun 1998;66:5889–5896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 249. Mizoguchi A, Mizoguchi F., Chiba C., Bhan AK. Role of appendix in the development of inflammatory bowel disease in TCR‐α mutant mice. J Exp Med 1996;184:707–715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250. Dunkley ML, Husband AJ. The role of non‐B cells in localizing an IgA plasma cell response in the intestine. Reg lmmunol 199091;3:336–340. [PubMed] [Google Scholar]
- 251. McDermott MR, Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 1979;122:1892–1898. [PubMed] [Google Scholar]
- 252. Sminia T., van der Brugge‐Gamelkoorn GJ, Jeurissen SH. Structure and function of bronchus‐associated lymphoid tissue (BALT). Grit Rev Immunol 1989;9:119–150. [PubMed] [Google Scholar]
- 253. VanCott JL, Brim TA, Lunney JK, Saif LJ. Contribution of antibody‐secreting cells induced in mucosal lymphoid (issues of pigs inoculated with respiratory or enteric strains of coronavirus to immunity against enteric coronavirus challenge. J Immunol 1994;152:3980–3990. [PubMed] [Google Scholar]
- 254. Nadal D, Albini B., Chen CY, Schläpfer E, Bernstein JM, Ogra PL. Distribution and engraftment patterns of human tonsillar mononuclear cells and immunoglobulin‐secreting cells in mice with severe combined immunodeficiency: role of the Epstein‐Barr virus. Int Arch Allergy Appl lmmunol 1991;95:34l–351. [DOI] [PubMed] [Google Scholar]
- 255. Perry LL, Feilzer K., Portis JL, Caldwell HD. Distinct homing pathways direct T lymphocytes to the genital and intestinal mucosae in Chiamydia‐infected mice. J Immunol 1998;160:2905–2914. [PubMed] [Google Scholar]
- 256. Picker LJ, et al. Differential expression of lymphocyte homing receptors by human memory/effector T cells in pulmonary versus cutaneous immune effector sites. Eur J Immunol 1994;24:1269–1277. [DOI] [PubMed] [Google Scholar]
- 257. Wagner N, et al. Critical role for β7 integrins in formation of the gut‐associated lymphoid tissue. Nature 1996;382:366–370. [DOI] [PubMed] [Google Scholar]
- 258. Abitorabi MA, Mackay GR, Jerome EH, Osorio O, Butcher EC, Erie DJ. Differential expression of homing molecules on recirculating lymphocytes from sheep gut, peripheral, and lung lymph. J Immunol 1996;156:3111–3117. [PubMed] [Google Scholar]
- 259. Quiding‐Jarbrink M., Granstrom G, Nordstrom I, Holmgren J, Czerkinsky C. Induction of compartmentalized B‐cell responses in human tonsils. Infect Immun 1995;63:853–857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 260. Balmelli C., Roden R., Potts A, Schiller J, de Grandi P, Nardelli‐Haefliger D. Nasal immunization of mice with human papillomavirus type 16 virus‐like particles elicits neutralizing antibodies in mucosal seeretions. J Virol 1998;72:8220–8229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 261. Hordnes K., Tynning T., Kvam AI, Jonsson R., Haneberg B. Colonization in the rectum and uterine cervix with group B streptococci may induce specific antibody responses in cervical secretions of pregnant women. Infect Immun 1996;64: 1643–1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 262. Crowley‐Nowick PA, et al. Rectal immunization for induction of specific antibody in the genital tract of women. J Clin Immunol 1997;17:370–379. [DOI] [PubMed] [Google Scholar]
- 263. Kozlowski PA, Cu‐Uvin S, Neutra MR, Flanigan TP. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun 1997;65:1387–1394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 264. Benttey AM, et al. Expression of endothelial and leukocyte adhesion molecules interacellular adhesion molecule‐1, E‐selectin, and vascular cell adhesion molecule‐1 in the bronchial mucosa in steady‐state and allergen‐induced asthma. J Allergy Clin Immunol 1993;92:857–868. [DOI] [PubMed] [Google Scholar]
- 265. Jahnsen FL, Haraldsen G, Aanesen JP Haye R., Brandtzaeg P. Eosinophil infiltration is related to increased expression of vascular cell adhesion moiecuie‐1 in nasal polyps. Am J Respir Cell Molec Biol 1995;12:624–632. [DOI] [PubMed] [Google Scholar]
- 266. Norderhaug IN, Johatisen F‐E, Schjerven H, Brandtzaeg P. Regulation of the formation and epithelial transport of secretory immunogiobulins, Crit Rev Immunol (In press). [PubMed] [Google Scholar]
- 267. Brandtzaeg P. Polymeric IgA is complexed with secretory component (SC) on the surface of human intestinal epithelial cells. Scand J Immunol 1978;8:39–52. [DOI] [PubMed] [Google Scholar]
- 268. Mostov KE, Blobel G. A transmembrane precursor of secretory component. The receptor for transcellular transport of polymeric immunogiobulins. J Biol Chem 1982;157:118 16–11821. [PubMed] [Google Scholar]
- 269. Brandtzaeg P. Immunohistochemical studies on various aspects of glandular immunoglobulin transport in man. Histochem J 1977;9:553–572. [DOI] [PubMed] [Google Scholar]
- 270. Brandtzaeg P, Baklien K. Intestinal secretion of IgA and IgM; a hypothetical model. Ciba Found Symp 1977;46:77–108. [DOI] [PubMed] [Google Scholar]
- 271. Valnes K., Brandtzaeg P, Eigjo K., Stave R. Specific and nonspecific humoral defense factors in the epithelium of normal and inflamed gastric mucosa. Immunohistochemical localization of immunoglobulins. secretory component, lysozyme, and lactoferrin. Gastroenterology 1984;86:402–412. [PubMed] [Google Scholar]
- 272. Roe M., Norderhaug IN, Brandtzaeg P, Johansen F‐E. Fine‐specificity of ligand‐ binding domain 1 in the polymeric immunoglobulin receptor: importance of the CDR2‐containing region for IgM interaction. J Immunol 1999;162:6046–6052. [PubMed] [Google Scholar]
- 273. Norderhaug IN, Johansen F‐E, Krajči P, Brandtzaeg P. Domain deletions in the human polymeric Ig receptor disclose differences between its dimeric IgA and pentameric IgM interaction. Eur J Immunol (In press). [DOI] [PubMed] [Google Scholar]
- 274. Conley ME, Delacroix DL. Intravascular and mucosal immunogiobulin A: two separate but related systems of immune defense Ann Intern Med 1987;106:892–899. [DOI] [PubMed] [Google Scholar]
- 275. Lindh E. Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J Immunol 1975;114:284–286. [PubMed] [Google Scholar]
- 276. Crottet P, Corthesy B. Secretory component delays the conversion of secretory IgA into antigen‐binding competent F(ah')2: a possible implication for mucosal defense. J Immunol 1998;161:5445–5453. [PubMed] [Google Scholar]
- 277. Berdoz J, Blanc GT, Reinhardt M., Kraehenbuhl JP, Corthesy B. In vitro comparison of the antigen‐binding and stability properties of the various molecular forms of IgA antibodies assembled and produced in CHO cells. Proc Natl Acad Sci USA 1999;96;3029–3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 278. Brandtzaeg P. Structure, synthesis and external transfer of mucosal immunoglobulins. Ann Inst Pasteur Immunol 1973;124C: 417–438. [PubMed] [Google Scholar]
- 279. Prigent‐Delecourt L., Coffin B., Colombel JF, Dehennin JP, Vaerman JP, Rambaud JC. Secretion of immunoglobulins and plasma proteins from the colonic mueosa: an in vivo study in man, Clin Exp Immunol 1995;99:221–225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 280. Gidin D, Sasaki T. Immunoglobuhns G.A and M determined in single cells from human tonsil. Science 1969;164:1532–1534. [DOI] [PubMed] [Google Scholar]
- 281. Alberini CM, Bet P, Milstein C., Sitia R. Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Nature 1990;347:485–487. [DOI] [PubMed] [Google Scholar]
- 282. Natvig IB, Johansen F‐E, Nordeng TW, Haraldsen G, Brandtzaeg P. Mechanism for enhanced external transfer of dimeric IgA over pentameric IgM, Studies of diffusion, binding to the human polymeric Ig receptor, and epithelial transcytosis. J Immunol 1997;159:4330–4340. [PubMed] [Google Scholar]
- 283. Song W Bomsel M., Casanova J, Vaerman JP, Mostov K. Stimulation of transcytosis of the polymeric immunoglobulin receptor by dimeric IgA. Proc Natl Acad Sci USA 1994;91:163–166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 284. Song W Vaerman JP, Mostov KE. Dimeric and tetrameric IgA are transcytosed equally by the polymeric Ig receptor. J Immunol 1995;155:715–721. [PubMed] [Google Scholar]
- 285. Giffroy D, et al. In vivo stimulation of polymeric Ig receptor transcytosis by circulating polymeric IgA in rat liver. Int Immunol 1998;10:347–354. [DOI] [PubMed] [Google Scholar]
- 286. Nagura H, Nakane PK, Brown WR. Secretory component in immunoglobulin deficiency and immunoelectron microscopic study of intestinal epithelium. Scand J Immunol 1980;12:359–363. [DOI] [PubMed] [Google Scholar]
- 287. Portis JL, Coe JE. IgM the secretory immunoglobulin of reptiles and amphibians. Nature 1975;258:547–548. [DOI] [PubMed] [Google Scholar]
- 288. St, Louis‐Cormier EA , Osterland CK, Anderson PD. Evidence for a cutaneous secretory immune system in rainbow trout (Salmo gairdneri), Dev Comp Immunol 1984;8:71–80. [DOI] [PubMed] [Google Scholar]
- 289. Mansikka A. Chicken IgAH chains. Implications concerning the evolution of H chain genes. J Immunol 1992; 149:855–861. [PubMed] [Google Scholar]
- 290. Renegar KB, Jackson GD, Mestecky J. In vitro comparison of the biologic activities of monoclonal monomeric IgA, polymeric IgA, and secretory IgA. J Immunol 1998;160: 1219–1223. [PubMed] [Google Scholar]
- 291. Ma JK, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 1998;4:601–606. [DOI] [PubMed] [Google Scholar]
- 292. Russell MW, Reinholdt J, Kilian M. Anti‐inflammatory activity of human IgA antibodies and their Fab a fragments: inhibition of IgG‐mediated complement activation. Eur J Immunol 1989;19;2243–2249. [DOI] [PubMed] [Google Scholar]
- 293. Phillips JO, Everson MP, Moidoveanu Z, LueC, Mestecky J. Synergistic effect of IL‐4 and IFN‐7 on the expression of polymeric Ig receptor (secretory component) and IgA binding by human epithelial cells. J Immunol 1990;145:1740–1744. [PubMed] [Google Scholar]
- 294. Denning GM. IL‐4 and IFN‐7 synergistically increase total polymeric IgA receptor levels in human intestinal epithelial cells. Role of protein tyrosine kinases. J Immunol 1996;156:4807–4814. [PubMed] [Google Scholar]
- 295. Kvale D, Brandtzaeg P. Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion moiecuie‐1 is modulated by bucyrate in the colonic epithdial cdl line HT‐29. Gut 1995;36:737–742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 296. Hayashi M., et al. The polymeric immunoglobulin receptor (secretory component) in a human intestinal epithelial cell line is up‐regulated by interleukin‐1. Immunology 1997;92:220–225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 297. Nilsen EM, Johansen F‐E, Kvale D, Kraj_i P, Brandtzaeg P. Different regulatory pathways employed in cytokine‐enhanced expression of secretory component and epithehal HLA dass I genes. Eur J Immunol 1999;29:168–179. [DOI] [PubMed] [Google Scholar]
- 298. Krajči P, Kvale D, Tasken K., Brandtzaeg P. Molecular cloning and exon‐intron mapping of the gene encoding human transmembrane secretory component (the poly‐Ig receptor), Eur J Immunol 1992;22:2309–2315. [DOI] [PubMed] [Google Scholar]
- 299. Verrijdt G, Swinnen J, Peeters B., Verhoeven G, Rombauts W., Claessens F. Characterization of the human secretory component gene promoter. Biochim Biophys Acta 1997;1350:147–154. [DOI] [PubMed] [Google Scholar]
- 300. Johansen F‐E, Bosløven B., Krajči P, Brandtzaeg P. A composite DNA element in the promoter of the polymeric immunoglobulin receptor promoter regulates its constitutive expression. Eur J Immunol 1998;28:1161–1171. [DOI] [PubMed] [Google Scholar]
- 301. Piskurich JF, et al. Transcriptional regulation of the human polymeric immunoglobulin receptor gene by interferon‐γ Mol Immunol 1997;34:75–91. [DOI] [PubMed] [Google Scholar]
- 302. Kaetzd CS, Bianch VJ, Hempen PM, Phillips KM, Piskurich JF, Youngman KR. The polymeric immunoglobulin receptor: structure and synthesis. Biochem Soc Trans 1997;25:475–480. [DOI] [PubMed] [Google Scholar]
- 303. Martin MG. Characterization of the 5′‐flanking region of the murine polymeric IgA receptor gene. Am J Physiol 1998;275: G778–G788. [DOI] [PubMed] [Google Scholar]
- 304. Blanch VJ, Piskurich JF, Kaetzel CS. Cutting edge; coordinate regulation of IFN regulatory factor‐1 and the polymeric ig receptor by proinflammatory cytokines. J Immunol 1999; 162:1232–1235. [PubMed] [Google Scholar]
- 305. Schjerven H, Nilsen EM, Brandtzaeg P, Johansen F‐E. IL‐4 and TNF‐α enhance the expression of human pIg‐receptor through DNA elements in the first intron, 29th Ann, Meeting of SSI, Abstract 36. Scand J Immunol 1998;47:623. [Google Scholar]
- 306. Brandtzaeg P, Halstensen TS, Huitfeldt HS, Krajfi K., Kvale D, Scott H, Thrane PS. Epithelial expression of HLA, secretory component (poly‐lg receptor), and adhesion molecules in the human alimentary tract. Ann NY Acad Sci 1992;664:157–179. [DOI] [PubMed] [Google Scholar]
- 307. Brandtzaeg P Baklien K. Characterization of the IgA‐immunocyte population and its product in a patient with excessive intestinal formation of IgA. Clin Exp Immunol 1977;30:77–88. [PMC free article] [PubMed] [Google Scholar]
- 308. Hocini H, et al. High‐level ability of secretory IgA to block HIV type 1 transcytosis: contrasting secretory IgA and IgG responses to glycoprotein 160. AIDS Res Hum Retroviruses 1997;13:1179–1185. [DOI] [PubMed] [Google Scholar]
- 309. Mazzoli S, et al. HIV‐.specific mucosal and cellular immunity in HIV‐seronegative partners of HIV‐seropositive individuals. Nat Med 1997;3:1250–1257. [DOI] [PubMed] [Google Scholar]
- 310. Porter P, Linggood MA. Novel mucosal anti‐microbial functions interfering “with the plasmid‐mediated virulence determinants of adherence and drug resistance”. Am NY Acad Sci 1983;409:564–578. [DOI] [PubMed] [Google Scholar]
- 311. Brandtzaeg P. Development of the mucosal immune system in humans In: Bindels JG, Goedhart AC, Visser HKA, eds. Recent developments in infant nutrition, London : Kluwer Academic Publishers: 1996. p, 349–376. [Google Scholar]
- 312. Quan CP, Berneman A, Pires R., Avrameas S, Bouvet JP. Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect Immun 1997;65:3997–4004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 313. Bouvet JP, Dighiero G. From natural polyreactive autoanti bodies to á la carte monoreactive antibodies to infectious agents: is it a small world after all Infect Immun 1998;66;1–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 314. Bouvet J‐P, Pires R., Quan CP. Protein Fv (Fv fragment binding protein); a mueosaihuman superantigen reacting with normal immunogiobulins In: Zouali M., ed. Human B‐cell superantigens, Austin : RG Landes; 1996. p, 179–187. [Google Scholar]
- 315. Giugliano LG, Ribeiro STG, Vainstein MH, Ulhoa CJ. Free secretory component and Iactoferrin of human milk inhibit the adhesion of cuterotoxigenic Escherichia coil. J Med Microbiol 1995;42:3–9. [DOI] [PubMed] [Google Scholar]
- 316. Dallas SD, Rolfe RD. Binding of Clostridium difficile toxin A to human milk secretory component. J Med Microbiol 1998;47:879–888. [DOI] [PubMed] [Google Scholar]
- 317. Hammerschmidt S, Talay SR, Brandtzaeg R Chhatwal GS. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 1997;25:1113–1124. [DOI] [PubMed] [Google Scholar]
- 318. Brandtzaeg P, Tolo K. Mucosal penetrability enhanced by serum‐derived antibodies. Nature 1977;266;262–263. [DOI] [PubMed] [Google Scholar]
- 319. Paganelli R., Levinsky RJ. Solid phase radioimmunoassay for detection of circulating food protein antigens in human serum. J Immunol Methods 1980;37:333–341. [DOI] [PubMed] [Google Scholar]
- 320. Kilshaw PJ, Cant AJ. The passage of maternal dietary proteins into human breast milk. Int Arch Allergy Appl Immunol 1984;75:8–15. [DOI] [PubMed] [Google Scholar]
- 321. Hushy S, Jensenius JC, Svehag S‐E. Passage of undegraded dietary antigen into the blood of healthy adults. Quantification, estimation of size distribution, and relation of uptake to levels of specific antibodies. Scand J Immunol 1985;22:83–92. [DOI] [PubMed] [Google Scholar]
- 322. Sanderson IR, Walker WA. Uptake and transport of macromolecules by the intestine: possible role in clinical disorders (anupdate). Gastroemerology 1993;104:622–639. [DOI] [PubMed] [Google Scholar]
- 323. Morton HC, van Zandbergen G, van Kooten C., Howard CJ, van de Winkel JGJ, Brandtzaeg P. Immunoglobulin‐binding sites of human FcRI (CD89) and bovine Fc2R are located in their membrane‐distal extracellular domains. J Exp Med 1999;189:1715–1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 324. Wolf HM, Fischer MB, Pühringer H, Samstag A, Vogel E, Eibl MM. Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor‐α, interleukirj‐6) in human monocytes. Blood 1994;83:1278–1288. [PubMed] [Google Scholar]
- 325. Wolf HM, Vogel E, Fischer MB, Rengs H, Schwarz H‐P Eibl MM. Inhibition of receptor‐ dependent and receptor‐independent generation of the respiratory burst in human neutrophils and monocytes by human serum IgA. Pediatr Res 1994;36:235–243. [DOI] [PubMed] [Google Scholar]
- 326. Devière J, et al. IgA triggers tumor necrosis factor a secretion by monocytes: a study in normal subjects and patients with alcoholic cirrhosis. Hepatology 1991;13:670–675. [PubMed] [Google Scholar]
- 327. Abu‐Ghazaleh RI, Fujisawa T., Mesiecky J, Kyle RA, Gleich GJ. IgA‐induced eosinophil degranulation. J Immunol 1989;142:2393–2400. [PubMed] [Google Scholar]
- 328. Taylor B., Norman AP, Orgel HA, Stokes CR, Turner MW, Soothil JJR. Transient IgA deficiency and pathogenesis of infantile atopy. Lancet 1973;2:111–113. [DOI] [PubMed] [Google Scholar]
- 329. Soothili JF. Some intrinsic and extrinsic factors predisposing to allergy. Proc R Soc Med 1976;69:439–442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 330. Sloper KS, Brook CG, Kingston D, Pearson JR, Shiner M. Eczema and atopy in early childhood: low IgA plasma cell counts in the jejunal mucosa. Arch Dis Child 1981;56:939–942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 331. Perkkiö M. Immunohistochemical study of intestinal biopsies from children with atopic eczema due to food allergy. Allergy 1980;35:573–580. [DOI] [PubMed] [Google Scholar]
- 332. , Van Asperen PP , et al. The relationship between atopy and salivary IgA deficiency in infancy. Clin Exp Immunol 1985;62:753–757. [PMC free article] [PubMed] [Google Scholar]
- 333. Kilian M., Husby S, Host A, Halken S. Increased proportions of bacteria capable of deaving IgA1 in the pharynx of infants with atopic disease. Pediatr Res 1995;38:182–186. [DOI] [PubMed] [Google Scholar]
- 334. Lamkhioued B., Gounni AS, Gruart V, Pierce A, Capron A, Capron M. Human eosinophils express a receptor for secretory component. Role in secretory IgA-dependent activation, Eur J Immunol 1995;25:117–125. [DOI] [PubMed] [Google Scholar]
- 335. Motegi Y., Kita H. Interaction with secretory component stimulates effector functions of human eosinophils but not of neutrophils. J Immunol 1998;161:4340–4346. [PubMed] [Google Scholar]
- 336. Peebles RS Jr, Llu MC, Adkinson NF Jr, Lichienstein LM, Hamilton RG. Ragweed‐specific antibodies in bronchoalveolar lavage fluids and serum before and after segmental lung challenge: IgE and IgA associated with eosinophil degranulation. J Allergy Clin Immunol 1998;101:265–73. [DOI] [PubMed] [Google Scholar]
- 337. Iikura M., et al. Secretory IgA induces degranulation of IL‐3‐ primed basophiis. J Immunol 1998;161:1510–1515. [PubMed] [Google Scholar]
- 338. Brandtzaeg P, Haistensen TS, Hvatum M., Kvaie D, Scott H. The serologic and mucosal immunologic basis of celiac disease In: Walker WA, Harmatz PR, Wershil BK, eds. Immunophysiology of the gut. Bristol‐Myers Squibb/Mead Johnson Nutrition Symposia, Vol II, London : Academic Press: 1993. p, 295–333. [Google Scholar]
- 339. Berin MC, Kiliaan AJ, Yang PC, Groot JA, Taminiau JA, Perdue MH. Rapid transepithelial antigen transport in rat jejunum: impact of sensitization and the hypersensitivity reaction. Gastroenterology 1997;113:856–864. [DOI] [PubMed] [Google Scholar]
- 340. Lim PL, Rowley D. The effect of antibody on the intestinal absorption of macromolecules and on intestinal permeability in adult mice. Int Arch Allergy Appl Immunol 1982;68:41–46. [DOI] [PubMed] [Google Scholar]
- 341. Sutton BJ, Gould HJ. The human IgE network. Nature 1993;366:421–428. [DOI] [PubMed] [Google Scholar]
- 342. Mamula MJ, Janeway CA. Do B cells drive the diversification of immune responses Immunol Today 1993;14:151–152. [DOI] [PubMed] [Google Scholar]
- 343. Eynon EE, Parker DC. Small B cells as antigen‐presenting cells in the induction of tolerance to soluble protein antigens. J Exp Med 1992;175:131–138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 344. Pistoia V. Production of cytokines by human B cells in health and disease. Immunol Today 1997;18:343–350. [DOI] [PubMed] [Google Scholar]
- 345. Grdic D, Höornquist E, Kjerrulf M., Lycke NY. Lack of local suppression in orally tolerant CD8 ‐deficient mice reveals a critical regulatory role of CD8+ T cells in the normal gut mucosa. J Immunol 1998;160:754–762. [PubMed] [Google Scholar]
- 346. Kim P‐H, Eckmann L., Lee WJ, Han W., Kagnoff ME. Cholera toxin and cholera toxin B subunit induce IgA switching through the action ofTGF‐131. J Immunol 1998;160:1198–1203. [PubMed] [Google Scholar]
- 347. Söitoft J, Söeberg B. Immunogiobulin‐ containing cells in the small intestine during acute enteritis. Gut 1972;13:535–538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 348. Agus SG, Falchuk ZM, Sessoms CS, Wyatt RG, Dolin R. Increased jejunal IgA synthesis invitro during acute infectious non‐bacterial gastroenteritis. Am J Dig Dis 1974;19:127–131. [DOI] [PubMed] [Google Scholar]
- 349. Siibart LK, Keren DF. Reduction of intestinal carcinogen absorption by carcinogen‐specific secretory immunity. Science 1989;243:1462–1464. [DOI] [PubMed] [Google Scholar]
- 350. Rasmussen MV, Silbart LK. Preoral administration of specific antibody enhances carcinogen excretion. Immunotherapy 1998;21:418–426. [DOI] [PubMed] [Google Scholar]