Abstract
We characterize the precompact sets in spaces of vector valued continuous functions and use the resulting criteria to investigate asymptotic behaviour of such functions defined on a halfline. This problem arose in the context of a qualitative study of solutions to the abstract Cauchy problem. We give particular consideration to the relationship between vector valued asymptotically almost periodic functions on a subinterval [α, ∞] of the real line and precompactness of the set of its translates. Our compactness criteria are also applied to a question concerning the approximation property for spaces of vector valued continuous functions with topologies induced by weighted analogues of the supremum norm. as well as to obtain nonlinear variants on factorization of compact operators through reflexive Banach spaces.
Dedicated to Heron S. Collins on the occasion of his 65th birthday
References
- 1. Amerio L. and Prouse G., Almost‐periodic functions and functional equations, Van Nostrand, New York: 1971. [Google Scholar]
- 2. Bierstedt K.‐D., Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt, Dissertation, Johannes Gutenberg Universität, Mainz 1970.
- 3. Bierstedt K.‐D., Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt I, J. reine u. angew. Math. 259 (1973) 186–210 [Google Scholar]
- 4. Bierstedt K.‐D., Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt II, J. reine u. angew. Math. 260 (1973) 133–146 [Google Scholar]
- 5. Bierstedt K.‐D., The approximation property for weighted function spaces, Bonner Math. Schriften 81 (1975) 3–25 [Google Scholar]
- 6. Bierstedt K.‐D., Tensor products of weighted spaces, Bonner Math. Schriften 81 (1975) 25–58 [Google Scholar]
- 7. Bochner S., Abstrakte fastperiodische Funktionen, Acta Math. 61 (1933) 149–184 [Google Scholar]
- 8. Bourbaki N., Topologie générale, Chap. X, Hermann, Paris: 1949. [Google Scholar]
- 9. Buck R. C., Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958) 95–104 [Google Scholar]
- 10. Collins H. S. and Ruess W. M., Weak compactness in spaces of compact operators and of vector‐valued functions, Pacific J. Math. 106 (1983) 45–71 [Google Scholar]
- 11. Conway J. B., The strict topology and compactness in the space of measures. Dissertation, Louisiana State University, Baton Rouge 1965.
- 12. Corduneanu C., Almost periodic functions, Tracts in Pure Appl. Math. 22, Interscience, New York: 1968. [Google Scholar]
- 13. Davis W. J., Figiel T., Johnson W. B., and Pelczynski A., Factoring weakly compact operators, J. Functional Anal. 17 (1974) 311–327 [Google Scholar]
- 14. Deysach L. G. and Sell G. R., On the existence of almost periodic motions, Michigan Math. J. 12 (1965) 87–95 [Google Scholar]
- 15. Dunford N. and Schwartz J. T., Linear operators, Vol. I, Tracts in Pure Appl. Math. 7, Interscience, New York: 1958. [Google Scholar]
- 16. Eberlein W. F., Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949) 217–240 [Google Scholar]
- 17. Fink A. M., Almost Periodic Diferential equations, Lecture Notes in Math. 377, Springer; 1974. [Google Scholar]
- 18. Fontenot R. A., Strict topologies for vector‐valued functions, Canad. J. Math. 26 (1974) 841–853 [Google Scholar]
- 19. Frécher M., Les fonctions asymptotiquement presque‐périodiques continues, C. R. Acad. Sci. Paris 213 (1941) 520–522 [Google Scholar]
- 20. Frécher M., Les fonctions asymptotiquement presque‐périodiques, Rev. Sci. 79 (1941) 341–354 [Google Scholar]
- 21. Garnir H. G., de Wilde M., and Schmets J., Analyse fonctionnelle, Vol. III, Birkhauser Verlag, Basel: 1973. [Google Scholar]
- 22. Goullet de Rugy A., Espaces de fonctions pondérables, Israel J. Math. 12 (1972) 147–160 [Google Scholar]
- 23. Grothendiek A., Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc. 16 (1955) [Google Scholar]
- 24. Johson W. B., Factoring compact operators, Israel J. Math. 9 (1971) 337–345 [Google Scholar]
- 25. Kelley J. L., General topology, Van Nostrand, Princeton: 1955. [Google Scholar]
- 26. Kelley J. L. and Namioka I., Linear topological spaces, Van Nostrand, Princeton: 1963. [Google Scholar]
- 27. Kleinsrück G., Der beschränkte Fall des gewichteten Approximationsproblems für vektor wertige Funktionen, Manuscripta Math. 17 (1975) 123–149 [Google Scholar]
- 28. Köthe G., Topological vector spaces I, Springer‐Verlag, New York, 1969. [Google Scholar]
- 29. de Leeuw K. and Glicksberg I., Almost periodic functions on semigroups, Acta math. 105 (1961) 99–140 [Google Scholar]
- 30. Nachbin L., Elements of approximation theroy, Math. Studies 14, Van Nostrand, Princeton: 1967. [Google Scholar]
- 31. Nemystskii V. V. and Stepanov V. V., Qualitative theory of differential equations, Princeton University Press, Princeton: 1960. [Google Scholar]
- 32. Poppe H., Compactness in general function spaces. VEB Deutscher Verlag der Wissen schaften, Berlin: 1974. [Google Scholar]
- 33. Prolla J. B., Weighted spaces of vector‐valued continuous fcutions. Ann. Mat. Pura Appl. 89 (1971) 145–158 [Google Scholar]
- 34. Robertson A. P. and Robertson W., Topological vector spaces, Cambridge University Press, Cambridge: 1964. [Google Scholar]
- 35. Ruess W. M., Compactness and collective competness in spaces of compact operators, J. Math. Anal. Appl. 84 (1981) 400–417 [Google Scholar]
- 36. Ruess W. M., [Weakly] Compact operators and DF spaces, Pacific J. Math. 98 (1982) 419–441 [Google Scholar]
- 37. Ruess W. M. and Summers W. H., Minimal Sets of Almost Periodic Motions, Math. Ann. 276 (1986) 145–158 [Google Scholar]
- 38. Schwartz L., Espaces de fonctions différentiables à valeurs vectorielles, J. Anal. Math. 4 (1954–56) 88–148 [Google Scholar]
- 39. Schwartz L., Théorie des distribution à valeurs vectorielles, Ann. Inst. Fourier, Grenoble 7 (1957) 1–141 [Google Scholar]
- 40. Sentilles F. D., Bounded continuous funtions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972) 311–336 [Google Scholar]
- 41. Walker J. A., Dynamical systems and evolution equations, Math. Concepts and Methods Sci. Eng. 20, Plenum, New York: 1980. [Google Scholar]
- 42. Webb G. F., Nonlinear semigroups and age‐dependent population models, Ann. Mat. Pura Appl. 129 (1981) 43–55 [Google Scholar]
- 43. Wheeler R. F., A survey of Baire measures and strict topologies, Expositiones Math. 2 (1983) 97–190 [Google Scholar]
- 44. Wilansky A., Topology for analysis, Ginn, Waltham: 1970. [Google Scholar]
- 45. Zaidman S., Almost‐periodic functions in abstract spaces, Research Notes in Math. 126, Pitman; Boston: 1985. [Google Scholar]
