Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2002 Jan 4;116(Suppl):54–69. doi: 10.1002/ajpa.10018

Loss of N‐glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution

Ajit Varki 1
PMCID: PMC7159735  PMID: 11786991

Abstract

The surface of all mammalian cells is covered with a dense and complex array of sugar chains, which are frequently terminated by members of a family of molecules called sialic acids. One particular sialic acid called N‐glycolylneuraminic acid (Neu5Gc) is widely expressed on most mammalian tissues, but is not easily detectable on human cells. In fact, it provokes an immune response in adult humans. The human deficiency of Neu5Gc is explained by an inactivating mutation in the gene encoding CMP‐N‐acetylneuraminic acid hydroxylase, the rate‐limiting enzyme in generating Neu5Gc in cells of other mammals. This deficiency also results in an excess of the precursor sialic acid N‐acetylneuraminic acid (Neu5Ac) in humans. This mutation appears universal to modern humans, occurred sometime after our last common ancestor with the great apes, and happens to be one of the first known human‐great ape genetic differences with an obvious biochemical readout. While the original selection mechanisms and major biological consequences of this human‐specific mutation remain uncertain, several interesting clues are currently being pursued. First, there is evidence that the human condition can explain differences in susceptibility or resistance to certain microbial pathogens. Second, the functions of some endogenous receptors for sialic acids in the immune system may be altered by this difference. Third, despite the lack of any obvious alternate pathway for synthesis, Neu5Gc has been reported in human tumors and possibly in human fetal tissues, and traces have even been detected in normal human tissues. One possible explanation is that this represents accumulation of Neu5Gc from dietary sources of animal origin. Finally, a markedly reduced expression of hydroxylase in the brains of other mammals raises the possibility that the human‐specific mutation of this enzyme could have played a role in human brain evolution. Yrbk Phys Anthropol 44:54–69, 2001. © 2001 Wiley‐Liss, Inc.

Keywords: sialic acids, human evolution, genomic mutation, great apes

LITERATURE CITED

  1. Ando N, Yamakawa T. 1982. On the minor gangliosides of erythrocyte membranes of Japanese cats. J Biochem (Tokyo) 91: 873–881. [DOI] [PubMed] [Google Scholar]
  2. Andrews GA, Chavey PS, Smith JE, Rich L. 1992. N‐glycolylneuraminic acid and N‐acetylneuraminic acid define feline blood group A and B antigens. Blood 79: 2485–2491. [PubMed] [Google Scholar]
  3. Angata T, Varki A. 2001. Chemical diversity in the sialic acids and related alpha‐keto acids: an evolutionary perspective. Chem Rev (in press). [DOI] [PubMed] [Google Scholar]
  4. Angata T, Varki NM, Varki A. 2001. A second uniquely human mutation affecting sialic acid biology. J Biol Chem 276: 40282–40287. [DOI] [PubMed] [Google Scholar]
  5. Bevilacqua MP, Nelson RM. 1993. Selectins. J Clin Invest 91: 379–387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bouhours J‐F, Bouhours D. 1989. Hydroxylation of CMP‐NeuAc controls the expression of N‐glycolylneuraminic acid in GM3 ganglioside of the small intestine of inbred rats. J Biol Chem 264: 16992–16999. [PubMed] [Google Scholar]
  7. Bozue JA, Tullius MV, Wang J, Gibson BW, Munson RS Jr. 1999. Haemophilus ducreyi produces a novel sialyltransferase—identification of the sialyltransferase gene and construction of mutants deficient in the production of the sialic acid‐containing glycoform of the lipooligosaccharide. J Biol Chem 274: 4106–4114. [DOI] [PubMed] [Google Scholar]
  8. Brinkman‐Van der Linden ECM, Sjoberg ER, Juneja LR, Crocker PR, Varki N, Varki A. 2000. Loss of N‐glycolylneuraminic acid in human evolution—implications for sialic acid recognition by siglecs. J Biol Chem 275: 8633–8640. [DOI] [PubMed] [Google Scholar]
  9. Caccone A, Powell JR. 1989. DNA divergences among hominids. Evolution 43: 925–942. [DOI] [PubMed] [Google Scholar]
  10. Chatterji U, Sen AK, Schauer R, Chowdhury M. 2000. Paracrine effects of a uterine agglutinin are mediated via the sialic acids present in the rat uterine endometrium. Mol Cell Biochem 215: 47–55. [DOI] [PubMed] [Google Scholar]
  11. Chen FC, Li WH. 2001. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet 68: 444–456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A. 1998. A mutation in human CMP‐sialic acid hydroxylase occurred after the HomoPan divergence. Proc Natl Acad Sci USA 95: 11751–11756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collins BE, Kiso M, Hasegawa A, Tropak MB, Roder JC, Crocker PR, Schnaar RL. 1997a. Binding specificities of the sialoadhesin family of I‐type lectins—sialic acid linkage and substructure requirements for binding of myelin‐associated glycoprotein, Schwann cell myelin protein, and sialoadhesin. J Biol Chem 272: 16889–16895. [DOI] [PubMed] [Google Scholar]
  14. Collins BE, Yang LJS, Mukhopadhyay G, Filbin MT, Kiso M, Hasegawa A, Schnaar RL. 1997b. Sialic acid specificity of myelin‐associated glycoprotein binding. J Biol Chem 272: 1248–1255. [DOI] [PubMed] [Google Scholar]
  15. Crocker PR, Feizi T. 1996. Carbohydrate recognition systems: Functional triads in cell‐cell interactions. Curr Opin Struct Biol 6: 679–691. [DOI] [PubMed] [Google Scholar]
  16. Crocker PR, Varki A. 2001a. Siglecs, sialic acids and innate immunity. Trends Immunol 22: 337–342. [DOI] [PubMed] [Google Scholar]
  17. Crocker PR, Varki A. 2001b. Siglecs in the Immune system. Immunology 103: 137–145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Crocker PR, Mucklow S, Bouckson V, McWilliam A, Willis AC, Gordon S, Milon G, Kelm S, Bradfield P. 1994. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin‐like domains. EMBO J 13: 4490–4503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Kehrl JH, Kelm S, Le Douarin N, Powell L, Roder J, Schnaar RL, Sgroi DC, Stamenkovic K, Schauer R, Schachner M, Van den Berg TK, Van der Merwe PA, Watt SM, Varki A. 1998. Siglecs: a family of sialic‐acid binding lectins [letter]. Glycobiology 8: v. [DOI] [PubMed] [Google Scholar]
  20. Delorme C, Brüssow H, Sidoti J, Roche N, Karlsson KA, Neeser JR, Teneberg S. 2001. Glycosphingolipid binding specificities of rotavirus: Identification of a sialic acid‐binding epitope. J Virol 75: 2276–2287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. DeLuca GM, Donnell ME, Carrigan DJ, Blackall DP. 1996. Plasmodium falciparum merozoite adhesion is mediated by sialic acid. Biochem Biophys Res Commun 225: 726–732. [DOI] [PubMed] [Google Scholar]
  22. Deodhar SD. 1986. Review of xenografts in organ transplantation. Transplant Proc 18: 83–87. [PubMed] [Google Scholar]
  23. Devine PL, Clark BA, Birrell GW, Layton GT, Ward BG, Alewood PF, McKenzie IFC. 1991. The breast tumor‐associated epitope defined by monoclonal antibody 3E1.2 is an O‐linked mucin carbohydrate containing N‐glycolylneuraminic acid. Cancer Res 51: 5826–5836. [PubMed] [Google Scholar]
  24. Escalante AA, Ayala FJ. 1994. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci USA 91: 11373–11377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Escalante AA, Barrio E, Ayala FJ. 1995. Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol Biol Evol 12: 616–626. [DOI] [PubMed] [Google Scholar]
  26. Freeze HH. 1999. Human glycosylation disorders and sugar supplement therapy. Biochem Biophys Res Commun 255: 189–193. [DOI] [PubMed] [Google Scholar]
  27. Fujii Y, Higashi H, Ikuta K, Kato S, Naiki M. 1982. Specificities of human heterophilic Hanganutziu and Deicher (H‐D) antibodies and avian antisera against H‐D antigen‐active glycosphingolipids. Mol Immunol 19: 87–94. [DOI] [PubMed] [Google Scholar]
  28. Furukawa K, Chait BT, Lloyd KO. 1988a. Identification of N‐glycolylneuraminic acid‐containing gangliosides of cat and sheep erythrocytes. 252Cf fission fragment ionization mass spectrometry in the analysis of glycosphingolipids. J Biol Chem 263: 14939–14947. [PubMed] [Google Scholar]
  29. Furukawa K, Yamaguchi H, Oettgen HF, Old LJ, Lloyd KO. 1988b. Analysis of the expression of N‐glycolylneuraminic acid‐containing gangliosides in cells and tissues using two human monoclonal antibodies. J Biol Chem 263: 18507–18512. [PubMed] [Google Scholar]
  30. Gagneux P, Varki A. 1999. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9: 747–755. [DOI] [PubMed] [Google Scholar]
  31. Gagneux P, Varki A. 2001. Genetic differences between humans and great apes. Mol Phylogenet Evol 18: 2–13. [DOI] [PubMed] [Google Scholar]
  32. Gagneux P, Wills C, Gerloff U, Tautz D, Morin PA, Boesch C, Fruth B, Hohmann G, Ryder OA, Woodruff DS. 1999. Mitochondrial sequences show diverse evolutionary histories of African hominoids. Proc Natl Acad Sci USA 96: 5077–5082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Goodman M, Bailey WJ, Hayasaka K, Stanhope MJ, Slightom J, Czelusniak J. 1994. Molecular evidence on primate phylogeny from DNA sequences. Am J Phys Anthropol 94: 3–24. [DOI] [PubMed] [Google Scholar]
  34. Gottschalk A. 1960. The chemistry and biology of sialic acids and related substances. Cambridge: Cambridge University Press. [Google Scholar]
  35. Greenwood AD, Capelli C, Possnert G, Paabo S. 1999. Nuclear DNA sequences from late Pleistocene megafauna. Mol Biol Evol 16: 1466–1473. [DOI] [PubMed] [Google Scholar]
  36. Hartnell A, Steel J, Turley H, Jones M, Jackson DG, Crocker PR. 2001. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97: 288–296. [DOI] [PubMed] [Google Scholar]
  37. Hashimoto Y, Yamakawa T, Tanabe Y. 1984. Further studies on the red cell glycolipids of various breeds of dogs. A possible assumption about the origin of Japanese dogs. J Biochem (Tokyo) 96: 1777–1782. [DOI] [PubMed] [Google Scholar]
  38. Hayakawa T, Satta Y, Gagneux P, Varki A, Takahata N. 2001. Alu‐mediated inactivation of the human CMP‐N‐acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci USA 98: 11399–11404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Hennet T, Chui D, Paulson JC, Marth JD. 1998. Immune regulation by the ST6Gal sialyltransferase. Proc Natl Acad Sci USA 95: 4504–4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Higa HH, Paulson JC. 1985. Sialylation of glycoprotein oligosaccharides with N‐acetyl‐, N‐glycolyl‐, and N‐O‐diacetylneuraminic acids. J Biol Chem 260: 8838–8849. [PubMed] [Google Scholar]
  41. Higa HH, Rogers GN, Paulson JC. 1985. Influenza virus hemagglutinins differentiate between receptor determinants bearing N‐acetyl‐, N‐glycolyl‐, and N,O‐diacetylneuraminic acids. Virology 144: 279–282. [DOI] [PubMed] [Google Scholar]
  42. Higashi H, Naiki M, Matuo S, Okouchi K. 1977. Antigen of “serum sickness” type of heterophile antibodies in human sera: indentification as gangliosides with N‐glycolylneuraminic acid. Biochem Biophys Res Commun 79: 388–395. [DOI] [PubMed] [Google Scholar]
  43. Higashi H, Nishi Y, Fukui Y, Ikuta K, Ueda S, Kato S, Fujita M, Nakano Y, Taguchi T, Sakai S. 1984. Tumor‐associated expression of glycosphingolipid Hanganutziu‐Deicher antigen in human cancers. Gann 75: 1025–1029. [PubMed] [Google Scholar]
  44. Higashi H, Sasabe T, Fukui Y, Maru M, Kato S. 1988. Detection of gangliosides as N‐glycolylneuraminic acid‐specific tumor‐associated Hanganutziu‐Deicher antigen in human retinoblastoma cells. Jpn J Cancer Res 79: 952–956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hirabayashi Y, Higashi H, Kato S, Taniguchi M, Matsumoto M. 1987a. Occurrence of tumor‐associated ganglioside antigens with Hanganutziu‐Deicher antigenic activity on human melanomas. Jpn J Cancer Res 78: 614–620. [PubMed] [Google Scholar]
  46. Hirabayashi Y, Kasakura H, Matsumoto M, Higashi H, Kato S, Kasai N, Naiki M. 1987b. Specific expression of unusual GM2 ganglioside with Hanganutziu‐Deicher antigen activity on human colon cancers. Jpn J Cancer Res 78: 251–260. [PubMed] [Google Scholar]
  47. Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S. 2001. Ancient DNA. Nat Rev Genet 2: 353–359. [DOI] [PubMed] [Google Scholar]
  48. Hokke CH, Bergwerff AA, Van Dedem GWK, Kamerling JP, Vliegenthart JFG. 1995. Structural analysis of the sialylated N‐ and O‐linked carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells—sialylation patterns and branch location of dimeric N‐acetyllactosamine units. Eur J Biochem 228: 981–1008. [DOI] [PubMed] [Google Scholar]
  49. Ikuta K, Nishi Y, Shimizu Y, Higashi H, Kitamoto N, Kato S, Fujita M, Nakano Y, Taguchi T, Naiki M. 1982. Hanganutziu‐Deicher type‐heterophile antigen‐positive cells in human cancer tissues demonstrated by membrane immunofluorescence. Biken J 25: 47–50. [PubMed] [Google Scholar]
  50. Inoue S, Kitajima K, Inoue Y. 1996. Identification of 2‐keto‐3‐deoxy‐D‐glycero‐D‐galactonononic acid (KDN, deaminoneuraminic acid) residues in mammalian tissues and human lung carcinoma cells. J Biol Chem 271: 24341–24344. [DOI] [PubMed] [Google Scholar]
  51. Irie A, Koyama S, Kozutsumi Y, Kawasaki T, Suzuki A. 1998. The molecular basis for the absence of N‐glycolylneuraminic acid in humans. J Biol Chem 273: 15866–15871. [DOI] [PubMed] [Google Scholar]
  52. Ito T, Kawaoka Y. 2000. Host‐range barrier of influenza A viruses. Vet Microbiol 74: 71–75. [DOI] [PubMed] [Google Scholar]
  53. Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y. 1997. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227: 493–499. [DOI] [PubMed] [Google Scholar]
  54. Ito T, Suzuki Y, Suzuki T, Takda A, Horimoto T, Wells K, Kida H, Otsuki K, Kiso M, Ishida H, Kawaoka Y. 2000. Recognition of N‐glycolylneuraminic acid linked to galactose by the α2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J Virol 74: 9300–9305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kaessmann H, Wiebe V, Weiss G, Paabo S. 2001. Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nat Genet 27: 155–156. [DOI] [PubMed] [Google Scholar]
  56. Kansas GS. 1996. Selectins and their ligands: current concepts and controversies. Blood 88: 3259–3287. [PubMed] [Google Scholar]
  57. Karlsson KA. 1998. Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol Microbiol 29: 1–11. [DOI] [PubMed] [Google Scholar]
  58. Karlsson KA. 2000. The human gastric colonizer Helicobacter pylori: a challenge for host‐parasite glycobiology. Glycobiology 10: 761–771. [DOI] [PubMed] [Google Scholar]
  59. Kasukawa R, Kano K, Bloom ML, Milgrom F. 1976. Heterophile antibodies in pathologic human sera resembling antibodies stimulated by foreign species sera. Clin Exp Immunol 25: 122–132. [PMC free article] [PubMed] [Google Scholar]
  60. Kawachi S, Saida T. 1992. Analysis of the expression of Hanganutziu‐Deicher (HD) antigen in human malignant melanoma. J Dermatol 19: 827–830. [DOI] [PubMed] [Google Scholar]
  61. Kawai T, Kato A, Higashi H, Kato S, Naiki M. 1991. Quantitative determination of N‐glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor‐associated sialic acid by gas chromatography‐mass spectrometry. Cancer Res 51: 1242–1246. [PubMed] [Google Scholar]
  62. Kawano T, Koyama S, Takematsu H, Kozutsumi Y, Kawasaki H, Kawashima S, Kawasaki T, Suzuki A. 1995. Molecular cloning of cytidine monophospho‐N‐acetylneuraminic acid hydroxylase. Regulation of species‐ and tissue‐specific expression of N‐glycolylneuraminic acid. J Biol Chem 270: 16458–16463. [DOI] [PubMed] [Google Scholar]
  63. Kelm S, Schauer R. 1997. Sialic acids in molecular and cellular interactions. Int Rev Cytol 175: 137–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, De Bellard M‐E, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P, Crocker PR. 1994a. Sialoadhesin, myelin‐associated glycoprotein and CD22 define a new family of sialic acid‐dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 4: 965–972. [DOI] [PubMed] [Google Scholar]
  65. Kelm S, Schauer R, Manuguerra J‐C, Gross H‐J, Crocker PR. 1994b. Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconjugate J 11: 576–585. [DOI] [PubMed] [Google Scholar]
  66. Kelm S, Brossmer R, Isecke R, Gross HJ, Strenge K, Schauer R. 1998. Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur J Biochem 255: 663–672. [DOI] [PubMed] [Google Scholar]
  67. King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 188: 107–116. [DOI] [PubMed] [Google Scholar]
  68. Klotz FW, Orlandi PA, Reuter G, Cohen SJ, Haynes JD, Schauer R, Howard RJ, Palese P, Miller LH. 1992. Binding of Plasmodium falciparum 175‐kilodalton erythrocyte binding antigen and invasion of murine erythrocytes requires N‐acetylneuraminic acid but not its O‐acetylated form. Mol Biochem Parasitol 51: 49–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kozutsumi Y, Kawano T, Yamakawa T, Suzuki A. 1990. Participation of cytochrome b 5 in CMP‐N‐acetylneuraminic acid hydroxylation in mouse liver cytosol. J Biochem (Tokyo) 108: 704–706. [DOI] [PubMed] [Google Scholar]
  70. Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Paabo S. 1997. Neandertal DNA sequences and the origin of modern humans. Cell 90: 19–30. [DOI] [PubMed] [Google Scholar]
  71. Kyogashima M, Ginsburg V, Krivan HC. 1989. Escherichia coli K99 binds to N‐glycolylsialoparagloboside and N‐glycolyl‐GM3 found in piglet small intestine. Arch Biochem Biophys 270: 391–397. [DOI] [PubMed] [Google Scholar]
  72. Lander ES, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921. [DOI] [PubMed] [Google Scholar]
  73. Lanne B, Uggla L, Stenhagen G, Karlsson K‐A. 1995. Enhanced binding of enterotoxigenic Escherichia coli K99 to amide derivatives of the receptor ganglioside NeuGc‐GM3. Biochemistry 34: 1845–1850. [DOI] [PubMed] [Google Scholar]
  74. Lepers A, Shaw L, Cacan R, Schauer R, Montreuil J, Verbert A. 1989. Transport of CMP‐N‐glycoloylneuraminic acid into mouse liver Golgi vesicles. FEBS Lett 250: 245–250. [DOI] [PubMed] [Google Scholar]
  75. Malykh YN, Schauer R. 2001. N‐glycolylneuraminic acid in tumors. Biochimie 83: 623–634. [DOI] [PubMed] [Google Scholar]
  76. Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, Perez R, Ando S. 1996. Gangliosides expressed in human breast cancer. Cancer Res 56: 5165–5171. [PubMed] [Google Scholar]
  77. McConkey EH, Goodman M. 1997. A Human Genome Evolution Project is needed [letter]. Trends Genet 13: 350–351. [DOI] [PubMed] [Google Scholar]
  78. McConkey EH, Varki A. 2000. A primate Genome Project deserves high priority. Science 289: 1295–1296. [DOI] [PubMed] [Google Scholar]
  79. McConkey EH, Fouts R, Goodman M, Nelson D, Penny D, Ruvolo M, Sikela J, Stewart CB, Varki A, Wise S. 2000. Proposal for a Human Genome Evolution Project. Mol Phylogenet Evol 15: 1–4. [DOI] [PubMed] [Google Scholar]
  80. Merrick JM, Zadarlik K, Milgrom F. 1978. Characterization of the Hanganutziu‐Deicher (serum‐sickness) antigen as gangliosides containing N‐glycolylneuraminic acid. Int Arch Allergy Appl Immunol 57: 477–480. [DOI] [PubMed] [Google Scholar]
  81. Mikami T, Kashiwagi M, Tsuchihashi K, Daino T, Akino T, Gasa S. 1998. Further characterization of equine brain gangliosides: the presence of GM3 having N‐glycolyl neuraminic acid in the central nervous system. J Biochem (Tokyo) 123: 487–491. [DOI] [PubMed] [Google Scholar]
  82. Mitsuoka C, Ohmori K, Kimura N, Kanamori A, Komba S, Ishida H, Kiso M, Kannagi R. 1999. Regulation of selectin binding activity by cyclization of sialic acid moiety of carbohydrate ligands on human leukocytes. Proc Natl Acad Sci USA 96: 1597–1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Morito T, Kano K, Milgrom F. 1982. Hanganutziu‐Deicher antibodies in infectious mononucleosis and other diseases. J Immunol 129: 2524–2528. [PubMed] [Google Scholar]
  84. Morito T, Nishimaki T, Masaki M, Yoshida H, Kasukawa R, Nakarai H, Kano K. 1986. Studies on Hanganutziu‐Deicher antigens‐antibodies. I. Hanganutziu‐Deicher antibodies of IgG class in liver diseases. Int Arch Allergy Appl Immunol 81: 204–208. [DOI] [PubMed] [Google Scholar]
  85. Muchmore EA, Milewski M, Varki A, Diaz S. 1989. Biosynthesis of N‐glycolyneuraminic acid. The primary site of hydroxylation of N‐acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem 264: 20216–20223. [PubMed] [Google Scholar]
  86. Muchmore EA, Diaz S, Varki A. 1998. A structural difference between the cell surfaces of humans and the great apes. Am J Phys Anthropol 107: 187–198. [DOI] [PubMed] [Google Scholar]
  87. Nakao T, Kon K, Ando S, Hirabayashi Y. 1991. A NeuGc‐containing trisialoganglioside of bovine brain. Biochim Biophys Acta Lipids Lipid Metab 1086: 305–309. [DOI] [PubMed] [Google Scholar]
  88. Nakarai H, Saida T, Shibata Y, Irie RF, Kano K. 1987. Expression of heterophile, Paul‐Bunnell and Hanganutziu‐Deicher antigens on human melanoma cell lines. Int Arch Allergy Appl Immunol 83: 160–166. [DOI] [PubMed] [Google Scholar]
  89. Nath D, Hartnell A, Happerfield L, Miles DW, Burchell J, Taylor‐Papadimitriou J, Crocker PR. 1999. Macrophage‐tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter‐receptor for the macrophage‐restricted receptor, sialoadhesin. Immunology 98: 213–219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Nishimaki T, Kano K, Milgrom F. 1979. Hanganutziu‐Deicher antigen and antibody in pathologic sera and tissues. J Immunol 122: 2314–2318. [PubMed] [Google Scholar]
  91. Noguchi A, Mukuria CJ, Suzuki E, Naiki M. 1996. Failure of human immunoresponse to N‐glycolylneuraminic acid epitope contained in recombinant human erythropoietin. Nephron 72: 599–603. [DOI] [PubMed] [Google Scholar]
  92. Nohle U, Schauer R. 1981. Uptake, metabolism and excretion of orally and intravenously administered, 14C‐ and 3H‐labeled N‐acetylneuraminic acid mixture in the mouse and rat. Hoppe Seylers Z Physiol Chem 362: 1495–1506. [DOI] [PubMed] [Google Scholar]
  93. Nohle U, Schauer R. 1984. Metabolism of sialic acids from exogenously administered sialyllactose and mucin in mouse and rat. Hoppe Seylers Z Physiol Chem 365: 1457–1467. [DOI] [PubMed] [Google Scholar]
  94. Nohle U, Beau JM, Schauer R. 1982. Uptake, metabolism and excretion of orally and intravenously administered, double‐labeled N‐glycoloylneuraminic acid and single‐labeled 2‐deoxy‐2,3‐dehydro‐N‐acetylneuraminic acid in mouse and rat. Eur J Biochem 126: 543–548. [DOI] [PubMed] [Google Scholar]
  95. Ohashi Y, Sasabe T, Nishida T, Nishi Y, Higashi H. 1983. Hanganutziu‐Deicher heterophile antigen in human retinoblastoma cells. Am J Ophthalmol 96: 321–325. [DOI] [PubMed] [Google Scholar]
  96. Ollomo B, Karch S, Bureau P, Elissa N, Georges AJ, Millet P. 1997. Lack of malaria parasite transmission between apes and humans in Gabon. Am J Trop Med Hyg 56: 440–445. [DOI] [PubMed] [Google Scholar]
  97. Ouadia A, Karamanos Y, Julien R. 1992. Detection of the ganglioside N‐glycolyl‐neuraminyl‐lactosyl‐ceramide by biotinylated Escherichia coli K99 lectin. Glycoconjugate J 9: 21–26. [DOI] [PubMed] [Google Scholar]
  98. Powell LD, Varki A. 1995. I‐type lectins. J Biol Chem 270: 14243–14246. [DOI] [PubMed] [Google Scholar]
  99. Priatel JJ, Chui D, Hiraoka N, Simmons CJT, Richardson KB, Page DM, Fukuda M, Varki NM, Marth JD. 2000. The ST3Gal‐I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O‐glycan biosynthesis. Immunity 12: 273–283. [DOI] [PubMed] [Google Scholar]
  100. Qari SH, Shi YP, Pieniazek NJ, Collins WE, Lal AA. 1996. Phylogenetic relationship among the malaria parasites based on small subunit rRNA gene sequences: monophyletic nature of the human malaria parasite, Plasmodium falciparum . Mol Phylogenet Evol 6: 157–165. [DOI] [PubMed] [Google Scholar]
  101. Rademacher TW, Parekh RB, Dwek RA. 1988. Glycobiology. Annu Rev Biochem 57: 785–838. [DOI] [PubMed] [Google Scholar]
  102. Raju TS, Briggs JB, Borge SM, Jones AJS. 2000. Species‐specific variation in glycosylation of IgG: evidence for the species‐specific sialylation and branch‐specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10: 477–486. [DOI] [PubMed] [Google Scholar]
  103. Reed MB, Caruana SR, Batchelor AH, Thompson JK, Crabb BS, Cowman AF. 2000. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid‐independent pathway of invasion. Proc Natl Acad Sci USA 97: 7509–7514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Reemtsma K. 1989. Xenografts. Transplant Proc 21: 517–518. [PubMed] [Google Scholar]
  105. Rosenberg A, Schengrund C. 1976. Biological roles of sialic acids. New York: and London: Plenum Press; p 295–359 [Google Scholar]
  106. Rutishauser U, Landmesser L. 1996. Polysialic acid in the vertebrate nervous system: a promoter of plasticity in cell‐cell interactions. Trends Neurosci 19: 422–427. [DOI] [PubMed] [Google Scholar]
  107. Ruvolo M. 1997. Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets. Mol Biol Evol 14: 248–265. [DOI] [PubMed] [Google Scholar]
  108. Saida T, Ikegawa S, Takizawa Y, Kawachi S. 1990. Immunohistochemical detection of heterophile Hanganutziu‐Deicher antigen in human malignant melanoma. Arch Dermatol Res 282: 179–182. [DOI] [PubMed] [Google Scholar]
  109. Sandvig K, Prydz K, Ryd M, van Deurs B. 1991. Endocytosis and intracellular transport of the glycolipid‐binding ligand shiga toxin in polarized MDCK cells. J Cell Biol 113: 553–562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Schauer R. 1982. Sialic acids: chemistry, metabolism and function, cell biology monographs, volume 10 New York: Springer‐Verlag. [Google Scholar]
  111. Schlenzka W, Shaw L, Kelm S, Schmidt CL, Bill E, Trautwein AX, Lottspeich F, Schauer R. 1996. CMP‐N‐acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron‐sulphur protein to be described in Eukarya. FEBS Lett 385: 197–200. [DOI] [PubMed] [Google Scholar]
  112. Schwegmann C, Zimmer G, Yoshino T, Enss ML, Herrler G. 2001. Comparison of the sialic acid binding activity of transmissible gastroenteritis coronavirus and E‐coli K99. Virus Res 75: 69–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Sgroi D, Varki A, Braesch‐Andersen S, Stamenkovic I. 1993. CD22, a B cell‐specific immunoglobulin superfamily member, is a sialic acid‐binding lectin. J Biol Chem 268: 7011–7018. [PubMed] [Google Scholar]
  114. Sharon N. 1996. Carbohydrate‐lectin interactions in infectious disease. Adv Exp Med Biol 408: 1–8. [PubMed] [Google Scholar]
  115. Shaw L, Schauer R. 1988. The biosynthesis of N‐glycoloylneuraminic acid occurs by hydroxylation of the CMP‐glycoside of N‐acetylneuraminic acid. Biol Chem Hoppe Seyler 369: 477–486. [DOI] [PubMed] [Google Scholar]
  116. Shaw L, Schneckenburger P, Carlsen J, Christiansen K, Schauer R. 1992. Mouse liver cytidine‐5′‐monophosphate‐N‐acetylneuraminic acid hydroxylase—catalytic function and regulation. Eur J Biochem 206: 269–277. [DOI] [PubMed] [Google Scholar]
  117. Shaw L, Schneckenburger P, Schlenzka W, Carlsen J, Christiansen K, Jürgensen D, Schauer R. 1994. CMP‐N‐acetylneuraminic acid hydroxylase from mouse liver and pig submandibular glands—interaction with membrane‐bound and soluble cytochrome b 5‐dependent electron transport chains. Eur J Biochem 219: 1001–1011. [DOI] [PubMed] [Google Scholar]
  118. Sibley CG, Ahlquist JE. 1987. DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol 26: 99–121. [DOI] [PubMed] [Google Scholar]
  119. Sjoberg ER, Chammas R, Ozawa H, Kawashima I, Khoo K‐H, Morris HR, Dell A, Tai T, Varki A. 1995. Expression of de‐N‐acetyl‐gangliosides in human melanoma cells is induced by genistein or nocodazole. J Biol Chem 270: 2921–2930. [DOI] [PubMed] [Google Scholar]
  120. Smith CI, Chamberlain AT, Riley MS, Cooper A, Stringer CB, Collins MJ. 2001. Neanderthal DNA. Not just old but old and cold? Nature 410: 771–772. [DOI] [PubMed] [Google Scholar]
  121. Stacker SA, Thompson C, Riglar C, McKenzie IF. 1985. A new breast carcinoma antigen defined by a monoclonal antibody. J Natl Cancer Inst 75: 801–811. [DOI] [PubMed] [Google Scholar]
  122. Suzuki T, Horiike G, Yamazaki Y, Kawabe K, Masuda H, Miyamoto D, Matsuda M, Nishimura SI, Yamagata T, Ito T, Kida H, Kawaoka Y, Suzuki Y. 1997. Swine influenza virus strains recognize sialylsugar chains containing the molecular species of sialic acid predominantly present in the swine tracheal epithelium. FEBS Lett 404: 192–196. [DOI] [PubMed] [Google Scholar]
  123. Suzuki Y, Nagao Y, Kato H, Matsumoto M, Nerome K, Nakajima K, Nobusawa E. 1986. Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane‐associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection. Specificity for oligosaccharides and sialic acids and the sequence to which sialic acid is attached. J Biol Chem 261: 17057–17061. [PubMed] [Google Scholar]
  124. Takahata N, Satta Y. 1997. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc Natl Acad Sci USA 94: 4811–4815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Takematsu H, Kawano T, Koyama S, Kozutsumi Y, Suzuki A, Kawasaki T. 1994. Reaction mechanism underlying CMP‐N‐acetylneuraminic acid hydroxylation in mouse liver: Formation of a ternary complex of cytochrome b 5, CMP‐N‐acetylneuraminic acid, and a hydroxylation enzyme. J Biochem (Tokyo) 115: 381–386. [DOI] [PubMed] [Google Scholar]
  126. Takiguchi M, Tamura T, Goto M, Kusakawa S, Milgrom F, Kano K. 1984. Immunological studies on Kawasaki disease. I. Appearance of Hanganutziu‐Deicher antibodies. Clin Exp Immunol 56: 345–352. [PMC free article] [PubMed] [Google Scholar]
  127. Taubenberger JK, Reid AH, Fanning TG. 2000. The 1918 influenza virus: a killer comes into view. Virology 274: 241–245. [DOI] [PubMed] [Google Scholar]
  128. Tettamanti G, Bertona L, Berra B, Zambotti V. 1965. Glycolyl‐neuraminic acid in ox brain gangliosides. Nature 206: 192. [DOI] [PubMed] [Google Scholar]
  129. Traving C, Schauer R. 1998. Structure, function and metabolism of sialic acids. Cell Mol Life Sci 54: 1330–1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Troy FA II. 1992. Polysialylation: from bacteria to brains. Glycobiology 2: 5–23. [DOI] [PubMed] [Google Scholar]
  131. Tsuji S, Datta AK, Paulson JC. 1996. Systematic nomenclature for sialyltransferases. Glycobiology 6: V–VII. [DOI] [PubMed] [Google Scholar]
  132. Vamecq J, Poupaert JH. 1990. Studies on the metabolism of glycolyl‐CoA. Biochem Cell Biol 68: 846–851. [DOI] [PubMed] [Google Scholar]
  133. Vamecq J, Mestdagh N, Henichart J‐P, Poupaert J. 1992. Subcellular distribution of glycolyltransferases in rodent liver and their significance in special reference to the synthesis of N‐glycolylneuraminic acid. J Biochem (Tokyo) 111: 579–583. [DOI] [PubMed] [Google Scholar]
  134. Varki A. 1992. Diversity in the sialic acids. Glycobiology 2: 25–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Varki A. 1994. Selectin ligands. Proc Natl Acad Sci USA 91: 7390–7397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Varki A. 1997. Sialic acids as ligands in recognition phenomena. FASEB J 11: 248–255. [DOI] [PubMed] [Google Scholar]
  137. Varki A. 1998. Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8: 34–40. [DOI] [PubMed] [Google Scholar]
  138. Varki A. 1999a. Historical background and overview In: Varki A, Esko JD, Cummings R, Freeze HH, Hart GW, Marth J, editors. Essentials of glycobiology. Plainview, NY: Cold Spring Harbor Laboratory Press; p 1–16. [Google Scholar]
  139. Varki A. 1999b. Sialic acids In: Varki A, Esko JD, Cummings R, Freeze HH, Hart GW, Marth J, editors. Essentials of glycobiology. Plainview, NY: Cold Spring Harbor Laboratory Press; p 195–210. [Google Scholar]
  140. Varki A. 2000. A chimpanzee genome project is a biomedical imperative. Genome Res 10: 1065–1070. [DOI] [PubMed] [Google Scholar]
  141. Varki A, Marth J. 1995. Oligosaccharides in vertebrate development. Semin Dev Biol 6: 127–138. [Google Scholar]
  142. Venter JC, et al. 2001. The sequence of the human genome. Science 291: 1304–1351. [DOI] [PubMed] [Google Scholar]
  143. Verheijen FW, Verbeek E, Aula N, Beerens CEMT, Havelaar AC, Joosse M, Peltonen L, Aula P, Galjaard H, Van der Spek PJ, Mancini GMS. 1999. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 23: 462–465. [DOI] [PubMed] [Google Scholar]
  144. Wang DQ, Fukui Y, Ito T, Nakajima K, Kato S, Naiki M, Kurimura T, Wakamiya N. 1990. Heterogeneity of Hanganutziu‐Deicher antigen glycoproteins in different species animal sera. Nippon Juigaku Zasshi 52: 567–572. [DOI] [PubMed] [Google Scholar]
  145. Warren L. 1963. The distribution of sialic acids in nature. Comp Biochem Physiol 10: 153–171. [DOI] [PubMed] [Google Scholar]
  146. Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC. 1988. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333: 426–431. [DOI] [PubMed] [Google Scholar]
  147. Wessels MR, Rubens CE, Benedí V‐J, Kasper DL. 1989. Definition of a bacterial virulence factor: sialylation of the group B streptococcal capsule. Proc Natl Acad Sci USA 86: 8983–8987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Willemsen PTJ, de Graaf FK. 1993. Multivalent binding of K99 fimbriae to the N‐glycolyl‐GM3 ganglioside receptor. Infect Immun 61: 4518–4522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Wilson IA, Skehel JJ, Wiley DC. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289: 366–373. [DOI] [PubMed] [Google Scholar]
  150. Wood B, Collard M. 1999. Anthropology—the human genus. Science 284: 65–66. [DOI] [PubMed] [Google Scholar]
  151. Yasue S, Handa S, Miyagawa S, Inoue J, Hasegawa A, Yamakawa T. 1978. Difference in form of sialic acid in red blood cell glycolipids of different breeds of dogs. J Biochem (Tokyo) 83: 1101–1107. [DOI] [PubMed] [Google Scholar]
  152. Ye J, Kitajima K, Inoue Y, Inoue S, Troy FA II. 1994. Identification of polysialic acids in glycoconjugates. Methods Enzymol 230: 460–484. [DOI] [PubMed] [Google Scholar]
  153. Yunis JJ, Prakash O. 1982. The origin of man: a chromosomal pictorial legacy. Science 215: 1525–1530. [DOI] [PubMed] [Google Scholar]
  154. Zhou Q, Hakomori S, Kitamura K, Igarashi Y. 1994. GM3 directly inhibits tyrosine phosphorylation and De‐N‐acetyl‐GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor‐receptor interaction. J Biol Chem 269: 1959–1965. [PubMed] [Google Scholar]

Articles from American Journal of Physical Anthropology are provided here courtesy of Wiley

RESOURCES