Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2008 Jan 14;40(3):293–320. doi: 10.1111/j.1095-8312.1990.tb00541.x

Phylogenetic relationships and molecular evolution in uropeltid snakes (Serpentes: Uropeltidae): allozymes and albumin immunology

JOHN E CADLE 1, HERBERT C DESSAUER 2, CARL GANS 3, DONALD F GARTSIDE 4
PMCID: PMC7161806  PMID: 32313304

Abstract

Multilocus electrophoretic methods and microcomplement fixation comparisons of serum albumin are used to assess phylogenetic relationships among species of uropeltid snakes, to infer aspects of their population biology and biogeography, and to evaluate their relationships to other primitive snakes (Henophidia). There is very good agreement between phylogenetic inferences derived from the electrophoretic data and those derived from the albumin immunological data. Protein variation detected by electrophoresis is relatively high among 17 operational taxonomic units (OTUs) examined. The mean number of alleles per locus (5.1 across all OTUs), levels of polymorphism (25% of loci), and heterozygosity (4–6%), are typical of, or greater than, values reported for other snakes. Species of uropeltids are genetically highly differentiated, as measured by genetic distances (lowest interspecific Nei's unbiased genetic distances, 0.22‐0.27 among several Sri Lankan species; 2.3 between Teretrurus of India and other uropeltines). The phylogenetic tree most consistent with both the immunological and electrophoretic data shows uropeltines from Sri Lanka to be monophyletic, but the Indian species are paraphyletic with respect to those from Sri Lanka. Rhinophis travancoricus of India is inferred to be the sister taxon to the Sri Lankan radiation. As the genera are presently understood, neither Rhinophis nor Uropeltis appears to be monophyletic. A biogeographic scenario derived from the phylogenetic hypothesis suggests an early diversification of uropeltids in India, followed by a single invasion into the lowlands of Sri Lanka. Subsequent evolution on Sri Lanka resulted in occupation of montane biotopes. Cylindrophis is the sister group to uropeltines and is considered a member of the Uropeltidae. The immunological data indicate no phylogenetic association between uropeltids and other ‘anilioid’ taxa, specifically Anilius, Loxocemus or Xenopeltis, although we cannot rule out a very remote relationship. We specifically reject the hypothesis that uropeltines and scolecophidians form a clade relative to henophidians. High levels of genetic variation and a trend toward negative FIS values for polymorphic loci in three populations suggest generally large effective population sizes and outbreeding in these species. The niche‐width variation hypothesis for allozyme loci is not supported by the uropeltid data. In comparison to other vertebrates, the relationship between Nei's genetic distance and albumin immunological distance in uropeltids suggests either conservative albumin evolution or strong differentiation at electrophoretic loci.

Keywords: Uropeltidae, Aniliidae, Serpentes, phylogeny, allozymes, microcomplement fixation, molecular evolution, biogeography, Sri Lanka, India, systematics

REFERENCES

  1. Bachman, E. S. , 1985. Distribution and variability of the Sri Lankan pipe snake (Cy1indrophis maculatus). Journal of the Bombay Natural History Society, 82: 322–327. [Google Scholar]
  2. Bailon, S. , 1988. Un Aniliidé (Reptilia, Serpentes) dans le Pliocène supérieur européen. Comptes Rendus de l'Académie des Sciences, Paris, 306, Ser. II: 1255–1258.
  3. Blanford, W. T. , 1901. The distribution of vertebrate animals in India, Ceylon, and Burma. Philosophical Transactions of the Royal Society of London, 194: 335–436. [Google Scholar]
  4. Cadle, J. E. , 1984. Molecular systematics of neotropical xenodontine snakes. III. Overview of xendontine phylogeny and the history of New World snakes. Copeia, 1984: 641–652. [Google Scholar]
  5. Cadle, J. E. , 1988. Phylogenetic relationships among advanced snakes: a molecular perspective. University of California Publications in Zoology, 119: 1–77. [Google Scholar]
  6. Champion, A. B. , Prager, E. M. , Wachter, D. & Wilson, A. C. , 1974. Microcomplement ixation In Wright C. A. (Ed.), Biochemical and Immunological Taxonomy of Animals: 397–416. London : Academic Press. [Google Scholar]
  7. Cracraft, J. , 1974. Continental drift and vertebrate distribution. Annual Review of Ecology and Systematics, 5: 215–216. [Google Scholar]
  8. Cronin, J. E. & Sarich, V. M. , 1980. Tupaiid and Archonta phylogeny: The macromolecular evidence In Luckett W. P. (Ed.), Comparative Biology and Evolutionary Relationships of Tree Shrews: 293–312. New York , Plenum Press. [Google Scholar]
  9. Cronin, J. E. , Sarich, V. M. & Ryder, O. , 1984. Molecular evolution and speciation in the lesser apes In Preuschoft H., Chivers D., Brockelmen W. & Creel N. (Eds), The Lesser Apes: Evolutionary and Behavioural Biology: 467–485. Edinburgh , Edinburgh University Press. [Google Scholar]
  10. Darlington, P. J. , 1957. Zoogeography, the Geographic Distribution of Animals. New York : John Wiley and Sons. [Google Scholar]
  11. De Silva, P. H. D. H. , 1980. Snakes of Sri Lanka. Colombo : National Museums of Sri Lanka, Dept. of Government Printing. [Google Scholar]
  12. Dessauer, H. C. , Cadle, J. E. & Lawson, R. , 1987. Patterns of snake evolution suggested by their proteins. Fieldiana, Zoology, 34: 1–34. [Google Scholar]
  13. Dessauer, H. C. & Cole, C. J. , 1984. Influence of gene dosage on electrophoretic phenotypes of proteins from lizards of the genus Cnemidophorus. Comparative Biochemistry and Physiology, 77B: 181–189. [Google Scholar]
  14. Dessauer, H. C. & Hafner, M. S. , 1984. Collections of rozen Tissues. Value, Management, ield and Laboratory Procedures, and Directory of Existing Collections. Lawrence , Kansas : Association of Systematic Collections, Museum of Natural History, University of Kansas. [Google Scholar]
  15. Dowling, H. G. , 1988. A new classification of the Serpentes. Abstracts, Joint meeting of the American Society of Ichthyologists and Herpetologists, the Herpetologists' League, and the Society for the Study of Amphibians and Reptiles: 85. Ann Arbor, Michigan.
  16. Dowling, H. G. & Duellman, W. E. , 1978. Systematic Herpetology: A Synopsis of amilies and Higher Categories. New York : HISS Publ. [Google Scholar]
  17. Dowling, H. G. , Highton, R. , Maha, G. C. & Maxson, L. R. , 1983. Biochemical evaluation of colubrid snake phylogeny. Journal of Zoology, London, 201: 309–329. [Google Scholar]
  18. Elston, R. C. & Forthofer, R. , 1977. Testing for Hardy‐Weinberg equilibrium in small samples. Biometrics, 33: 536–542. [Google Scholar]
  19. Fitch, W. M. & Margoliash, E. , 1967. Construction of phylogenetic trees. Science, 155: 279–284. [DOI] [PubMed] [Google Scholar]
  20. Futuyma, D. J. & Peterson, S. C. , 1985. Genetic variation in the use of resources by insects. Annual Review of Entomology, 30: 217–238. [Google Scholar]
  21. Gans, C. , 1966. Uropeltidae. In Liste der rezenten Amphibien und Reptilien. Das Tierreich (Berlin), 84: 1–29. [Google Scholar]
  22. Gans, C. , 1976. Aspects of the biology of uropeltid snakes In Bellairs A. d'A. and Cox C. B. (Eds), Morphology and Biology of Reptiles. Linnean Society Symposium Series No. 3: 191–204. London : Academic Press. [Google Scholar]
  23. Gans, C. , 1987. Automimicry and Batesian mimicry in uropeltid snakes: pigment pattern, proportions and behavior. Journal of the Bombay Natural History Society, 83 (centenary supplement); 152–158. [Google Scholar]
  24. Gans, C. & Baic, D. , 1977. Regional specializations of reptilian scale surfaces. Science, 195: 1349–1350. [DOI] [PubMed] [Google Scholar]
  25. Gans, C. , Dessauer, H. C. & Baic, D. , 1978. Axial differences in the musculature of uropeltid snakes: the freight‐train approach to burrowing. Science, 199: 189–192. [DOI] [PubMed] [Google Scholar]
  26. Gans, C. & Fetcho, J. R. , 1982. The Sri Lankan genus Aspidura (Serpentes: Reptilia: Colubridae). Annals of the Carnegie Museum of Natural History, 51: 271–316. [Google Scholar]
  27. Giblett, E. R. , Hickman, C. G. & Smithies, O. , 1959. Serum transferrins. Nature, 183: 1589–1590. [DOI] [PubMed] [Google Scholar]
  28. Gooch, J. M. & Schopf, T. J. M. , 1973. Genetic variability in the deep sea: relation to environmental variability. Evolution, 26: 545–562. [DOI] [PubMed] [Google Scholar]
  29. Gorman, G. C. & Renzi, J. , 1979. Genetic distance and heterozygosity estimates in electrophoretic studies: effects of sample size. Copeia, 1979: 242–249. [Google Scholar]
  30. Groombridge, B. C. , 1979. Variations in morphology of the superficial palate of henophidian snakes and some possible systematic implications. Journal of Natural History, 13: 447–475. [Google Scholar]
  31. Harris, H. & Hopkinson, D. A. , 1976. Handbook of Enzyme Electrophoresis in Human Genetics. Amsterdam : North‐Holland Publishing Company. [Google Scholar]
  32. Hillis, D. M. , 1987. Molecular versus morphological approaches to systematics. Annual Review of Ecology and Systematics, 18: 23–42. [Google Scholar]
  33. Hoffstetter, R. & Rage, J. ‐C. , 1977. Le gisement de vertébrés miocènes de La Venta (Colombie) et sa faune de serpents. Annales de Paléontologie, 63: 161–190. [Google Scholar]
  34. Jacob, K. , 1949. Land connections between Ceylon and peninsular India. Proceedings of the Natinoal Institute of Science, India, 15: 341–343. [Google Scholar]
  35. Kimura, M. , 1983. The Neutral Theory of Molecular Evolution. Cambridge : Cambridge University Press. [Google Scholar]
  36. Lewontin, R. C. , 1974. The Genetic Basis of Evolutionary Change. New York : Columbia University Press. [Google Scholar]
  37. Li, C. C. & Horvitz, D. G. , 1953. Some methods of estimating the inbreeding coefficient. American Journal of Human Genetics, 5: 107–117. [PMC free article] [PubMed] [Google Scholar]
  38. Maxson, L. R. & Maxson, R. D. , 1979. Comparative albumin and biochemical evolution in plethodontid salamanders. Evolution, 33: 1057–1062. [DOI] [PubMed] [Google Scholar]
  39. Maxson, L. R. , Highton, R. & Wake, D. B. , 1979. Albumin evolution and its phylogenetic implications in the plethodontid salamander genera Plethodon and Ensatina. Copeia, 1979: 502–508. [Google Scholar]
  40. McDonald, J. F. & Ayala, F. J. , 1974. Genetic response to environmental heterogeneity. Nature, 250: 572–574. [DOI] [PubMed] [Google Scholar]
  41. McDowell, S. B. , 1975. A Catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part II. Anilioidea and Pythoninae. Journal of herpetology, 9: 1–79. [Google Scholar]
  42. McDowell, S. B. (1987). Systematics In Seigel R. A., Collins J. T. & Novak S. S. (Eds), Snakes: Ecology and Evolutionary Biology: 3–50. New York : Macmillan Publishing Company. [Google Scholar]
  43. Mitter, C. & Futuyma, D. J. , 1979. Population genetic consequences of feeding habits in some forest Lepidoptera. Genetics, 92: 1005–1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Moore, J. C. , 1960. Squirrel geography of the Indian subregion. Systematic Zoology, 9: 1–17. [Google Scholar]
  45. Nakanishi, M. , Wilson, A. C. , Nolan, R. A. , Gorman, G. C. & Bailey, G. S. , 1969. Phenoxyethanol: protein preservative for taxonomists. Science, 163: 681–683. [DOI] [PubMed] [Google Scholar]
  46. Nei, M. , 1972. Genetic distance between populations. American Naturalist, 106: 283–292. [Google Scholar]
  47. Nei, M. , 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Nei, M. , 1983. Genetic polymorphism and the role of mutation in evolution In Nei M. and Koehn R. K. (Eds), Evolution of Genes and Proteins: 165–190. Sunderland , MA : Sinauer Associates, Inc. [Google Scholar]
  49. Nei, M. , Maruyama, T. & Chakraborty, R. , 1975. The bottleneck effect and genetic variability in populations. Evolution, 29: 1–10. [DOI] [PubMed] [Google Scholar]
  50. Nevo, E. , 1978. Genetic variation in natural populations: patterns and theory. Theoretical Population Biology, 13: 121–177. [DOI] [PubMed] [Google Scholar]
  51. Nevo, E. , 1982. Speciation in subterranean mammals In Barigozzi C. (Ed.), Mechanisms of Speciation: 191–218. New York : Alan R. Liss. [PubMed] [Google Scholar]
  52. Nussbaum, R. A. & Gans, C. , 1981. On the Ichthyophis (Amphibia: Gymnophiona) of Sri Lanka. Spolia Zeylanica, 35: 137–154. [Google Scholar]
  53. Patton, J. L. , 1984. Genetical processes in the Galapagos. Biological Journal of the Linnean Society, 21: 97–111. [Google Scholar]
  54. Prager, E. M. , Brush, A. H. , Nolan, R. A. , Nakanishi, M. & Wilson, A. C. , 1974. Slow evolution of transferrin and albumin in birds according to micro‐complement fixation analysis. Journal of Molecular Evolution, 3: 243–262. [DOI] [PubMed] [Google Scholar]
  55. Rage, J.‐C. , 1981. Les continents péri‐atlantiques au Crétacć Supérieur: migrations des faunes continentales et problèmes paléogéographiques. Cretaceous Research, 2: 65–84. [Google Scholar]
  56. Rage, J.‐C. , 1987. The fossil record and early history of snakes In Seigel R. A., Collins J. T. & Novak S. S. (Eds), Snakes, Ecology and Evolutionary Biology: 51–76, New York : Macmillan Publishing Company. [Google Scholar]
  57. Rainey, W. E. , 1983. Albumin evolution in turtles. Unpublished Ph.D. Dissertation, University of California, Berkeley , California . [Google Scholar]
  58. Rajendran, M. V. , 1985. Studies in Uropeltid Snakes. Madurai : Madurai Kamaraj University. [Google Scholar]
  59. Rieppel, O. , 1977. Studies on the skull of the Henophidia (Reptilia, Serpentes). Journal of Zoology, London, 181: 145–173. [Google Scholar]
  60. Rieppel, O. , 1978. The evolution of the naso‐frontal joint in snakes and its bearing on snake origins. Zezitschrift für Zoologische Systematik und Evolutionsforschung, 16: 14–27. [Google Scholar]
  61. Rieppel, O. , 1979a. The classification of primitive snakes and the testability of phylogenetic theories. Biologisches Zentralblatt, 98: 537–552. [Google Scholar]
  62. Rieppel, O. , 1979b. A cladistic classification of primitive snakes based on skull structure. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 17: 140–150. [Google Scholar]
  63. Rieppel, O. , 1979c. The evolution of the basicranium in the Henophidia (Reptilia: Serpentes). Zoological Journal of the Linnean Society, 66: 411–431. [Google Scholar]
  64. Rogers, J. S. , 1972. Measures of genetic similarity and genetic distance. Studies in Genetics, University of Texas, 7213: 145–153. [Google Scholar]
  65. Romer, A. S. , 1956. The Osteology of the Reptiles. Chicago : University of Chicago Press. [Google Scholar]
  66. Sarich, V. M. , 1977. Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature, 265: 24–28. [DOI] [PubMed] [Google Scholar]
  67. Sarich, V. M. , 1985. Rodent macromolecular systematics In Luckett W. P. & Hartenberger J. L. (Eds), Evolutionary Relationships among Rodents: A Multidisciplinary Analysis: 423–452. NATO Advanced Science Institute Series, Life Sciences, Vol. 92 New York : Plenum Press. [Google Scholar]
  68. Sarich, V. M. & Cronin, J. E. , 1976. Molecular systematics of the primates In Goodman M. & Tashian R. (Eds), Molecular Anthropology: 141–170. New York : Plenum Press. [Google Scholar]
  69. Schnell, G. D. & Selander, R. K. , 1981. Environmental and morphological correlates of genetic variation in mammals In Smith M. H. & Joule J., (Eds), Mammalian Population Genetics: 60–69. Athens , Georgia : University of Georgia Press. [Google Scholar]
  70. Smith, M. A. , 1943. Fauna of British India, Reptilia and amphibia. Vol. III, Serpentes. London : Taylor and rancis. [Google Scholar]
  71. Smithies, O. , 1959. Zone electrophoresis in starch gets and its application to studies of serum proteins. Advances in Protein Chemistry, 14: 65–113. [DOI] [PubMed] [Google Scholar]
  72. Soule, M. , 1976. Allozyme variation: its determinants in space and time In Ayala F. J. (Ed.), Molecular Evolution: 60–77. Sunderland , Massachusetts : Sinauer Associates, Inc. [Google Scholar]
  73. Swofford, D. L. & Berlocher, S. H. , 1987. Inferring evolutionary trees from gene frequency data under the principle of maximum parismony. Systematic Zoology, 36: 293–325. [Google Scholar]
  74. Swofford, D. L. & Selander, R. B. , 1981. BIOSYS‐1: a ORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity, 72: 281–283. [Google Scholar]
  75. Underwood, G. , 1967. A Contribution to the Classification of Snakes. London : British Museum (Natural History). [Google Scholar]
  76. Wallach, V. , 1988. Visceral anatomy of Anomochilus weberi and its systematic implications. Abstracts, combined meeting of ASIH, HL, and SSAR, Univ. of Michigan, Ann Arbor: 187.
  77. Williams, E. E. , 1959. The occipito‐vertebral joint in the burrowing snakes of the family Uropeltidae. Breviora, Museum of Comparative Zoology, 106: 1–10. [Google Scholar]
  78. Wright, S. , 1978. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. Chicago : The University of Chicago Press. [Google Scholar]
  79. Wyles, J. S. & Gorman, G. C. , 1980. The albumin immunological and Nei electrophoretic distance correlation: a calibration for the saurian genus Anolis (Iguanidae). Copeia, 1980: 66–71. [Google Scholar]

Articles from Biological Journal of the Linnean Society. Linnean Society of London are provided here courtesy of Wiley

RESOURCES