Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2008 Jan 28;6(3):259–274. doi: 10.1111/j.1750-3639.1996.tb00854.x

Distinct Patterns of Multiple Sclerosis Pathology Indicates Heterogeneity in Pathogenesis

Claudia F Lucchinetti 1,4, Wolfgang Brück 2,4, Moses Rodriguez 1, Hans Lassmann 3,
PMCID: PMC7161824  PMID: 8864283

Abstract

Multiple sclerosis is an inflammatory demyeli‐nating disease of the central nervous system. The hallmark of its pathology is the demyelinated plaque with reactive glial scar formation. However, a detailed analysis of the patterns of demyelination, oligodendroglia cell pathology and the reaction of other tissue components suggests that the pathogenesis of myelin destruction in this disease may be heterogeneous. In this review we present a new classification scheme of lesional activity on the basis of the molecular composition of myelin degradation products in macrophages. When these criteria are used, different patterns of demyelination can be distinguished, including demyelination with relative preservation of oligodendrocytes, myelin destruction with concomitant and complete destruction of oligodendrocytes or primary destruction or disturbance of myelinating cells with secondary demyelination. Furthermore, in some cases a primary selective demyelination may be followed by secondary oligodendrocyte loss in the established lesions. Finally, some extraordinarily severe conditions may result in destructive lesions with loss of myelin, oligodendrocytes, axons and astro‐cytes. This heterogeneity of plaque pathology is discussed in the context of recent experimental models of inflammatory demyelination, which show that different immunological pathways may lead to the formation of demyelinated plaques that reveal the diverse structural aspects described above. Our data indicate, that the demyelinated plaques of multiple sclerosis may reflect a common pathological end point of a variety of different immunological mechanisms of myelin destruction in this disease.

References

  • 1. Adams CW (1977) Pathology of multiple sclerosis: progression of the lesion. Brit Med Bull 33:15–20. [DOI] [PubMed] [Google Scholar]
  • 2. Allen I (1990) Pathology of multiple sclerosis In McAlpine's Multiple Sclerosis, Matthews W.B. (ed), pp 341–378, Churchill Livingstone: Edinburgh . [Google Scholar]
  • 3. Allen I, Brankin B (1993) Pathogenesis of multiple sclerosis: the immune diathesis and the role of virus. J Neuropathol Exp Neurol 52:95–105. [DOI] [PubMed] [Google Scholar]
  • 4. Babinski J (1885) Recherches sur l'anatomie pathologique de la slerose en plaque et etude comparative des diverses varietes de la scleroses de la moelle. Arch Physiol (Paris) 5–6:186–207.
  • 5. Bo L, Mork S, Kong PA, Nyland H, Pardo CA, Trapp BO (1994) Detection of MHC class II on macrophages and microglia but not astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol 51:135–146. [DOI] [PubMed] [Google Scholar]
  • 6. Breitschopf H, Suchanek G, Gould RM, Coleman DR, Lassmann H (1992) In situ hybridization with digoxigenin‐labelled probes: sensitive and reliable detection method applied to myelinating rat brain. Acra Neuropathol (Berl) 84:581–587. [DOI] [PubMed] [Google Scholar]
  • 7. Broman Y (1964) Blood brain barrier damage in multiple sclerosis plaques. Am J Pathol 137:575–584. [Google Scholar]
  • 8. Brosnan CF, Cannella B, Battistini L, Raine CS (1995) Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species. Neurology 45:S16–S21. [DOI] [PubMed] [Google Scholar]
  • 9. Brück W, Porada P, Poser S, Rieckmann, Hanefeld F, Kretzschmar H, Lassmann H (1995) Monocyte / macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796. [DOI] [PubMed] [Google Scholar]
  • 10. Brück W, Schmied M, Suchanek G, Bruck Y, Breitschopf H, Poser S, Piddlesden S, Lassmann W (1994) Oligodendrocytes in the early course of multiple sclerosis. Ann Neurol 35:65–73. [DOI] [PubMed] [Google Scholar]
  • 11. Brunner C, Lassmann H, Waehnelt ThV, Matthieu JM, Linington C (1989) Differential ultrastructural localization of myelin basic protein, myelin/oligodendrocyte glycopro‐tein and 2′3′‐cyclic nucleotide 3′‐phosphodiesterase in the CNS of adult rats. J Neurochem 52:296–304. [DOI] [PubMed] [Google Scholar]
  • 12. Canella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37:424–435. [DOI] [PubMed] [Google Scholar]
  • 13. Challoner PB, Smith KT, Parker JD, Macleod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL, Garber RL, Chang M, Schad PA, Stewart PA, Nowinski RC, Brown JP, Burmer GC (1995) Plaque‐associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci USA 92:7440–7444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Charcot JM (1868) Histologie de la sclerose en plaque. Gaz Hopital (Paris) 41:554–56. [Google Scholar]
  • 15. Coleman, Kreibich G, Frey AB, Sabatini DD (1982) Synthesis and incorporation of myelin polypeptides into CNS myelin. J Cell Biol 95:598–608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Compston DA, Keller WH, Robertson H, Saucer S, Wood NW (1995) Genes and susceptibility to multiple sclerosis. Acta Neurol Scand 161:43–51. [DOI] [PubMed] [Google Scholar]
  • 17. Dal Canto MC, Rabinowitz SG (1982) Experimental models of virus‐induced demyelination of the central nervous system. Ann Neurol 11:109–127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, McDoanld WI (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis. Brain 117:49–58. [DOI] [PubMed] [Google Scholar]
  • 19. Dawson JW (1916) The histology of disseminated sclerosis. Trans Roy Soc Edinburgh 5:517–740. [Google Scholar]
  • 20. Freedman MS, Ruijs TC, Selin LK, Antel JP (1991) Peripheral blood gamma/delta T cells lyse fresh human brain derived oligodendrocytes. Ann Neurol 30:794–800. [DOI] [PubMed] [Google Scholar]
  • 21. Gay D, Esiri M (1991) Blood‐brain barrier damage in acute multiple sclerosis plaques. An immunocytochemi‐cal study. Brain 114:557–572. [DOI] [PubMed] [Google Scholar]
  • 22. Gold R, Schmied M, Rothe G, Zischler H, Breitschopf H, Wekerle H, Lassmann H (1993) Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem 41:1023–30. [DOI] [PubMed] [Google Scholar]
  • 23. Griot C, Vandevelde M, Richard A, Peterhans E, Stocker R (1990) Selective degeneration of oligodendrocytes mediated by reactive oxygen species. Free Republic Res Commun 11:181–193. [DOI] [PubMed] [Google Scholar]
  • 24. Grossmann RI, Braffman BH, Brorson JR, Goldberg HI, Silberberg DH Gonzales‐Scarano F (1988) Multiple sclerosis: serial study of gadolinium‐enhanced MR imaging. Radiology 169:117–122. [DOI] [PubMed] [Google Scholar]
  • 25. Guo YP, Gao SF (1983) Concentric sclerosis In Clinical and Experimental Neurology, Tyrer JH, Eadie MJ. (eds), Proc Australian Association of Neurologists Vol 19; pp 67–76, Adis Health Science Press, Sydney . [PubMed] [Google Scholar]
  • 26. Guseo A, Jellinger K (1975) The significance of perivas‐cular infiltrations in multiple sclerosis. J Neurol 211:51–60. [DOI] [PubMed] [Google Scholar]
  • 27. Hallpike JF, Adams CW, Bayliss OB (1970) Histochemistry of myelin. Loss of basic protein in early multiple sclerosis plaques. Hisrochem J 2323–328. [DOI] [PubMed]
  • 28. Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL (1986) An imunocytochemical analysis of the cellular infiltrates in multiple sclerosis lesions. Ann Neurol 19(6):578–587. [DOI] [PubMed] [Google Scholar]
  • 29. Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor‐necrosis factor identified in multiple sclerosis brain. J Exp Med 170:607–612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Itoyama Y, Sternberger NH, Webster HdeF, Quarles RH, Cohen SR, Richardson EP Jr (1980) Immunocytochemical observation on the distribution of myelin‐associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann Neurol 14:339–346. [DOI] [PubMed] [Google Scholar]
  • 31. Jordan C, Friedrich V Jr, Dubois Dalcq ME (1989) In situ hybridization analysis of myelin gene transcripts in developing mouse spinal cord. J Neurosci 9:248–257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Jordan CA, Friedrich VL Jr, Godfraind C, Cardellechio CB, Holmes KV, Dubois‐Dalcqu M (1989) Expression of viral and myelin gene transcripts in a murine CNS demyelinating disease caused by a coronavirus. Glia 2:318–329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Kermode AG, Thompson AJ, Tofts B, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113:1477–1489. [DOI] [PubMed] [Google Scholar]
  • 34. Kirk J (1979) The fine structure of the CNS in multiple sclerosis. Vesicular demyelination in an acute case. Neuropathol Appl Neurobiol 5:289–294. [DOI] [PubMed] [Google Scholar]
  • 35. Lampert PW, Carpenter S (1965) Electron microscope studies on the vascular permeability and the mechanisms of demyelination in experimental allergic encephalomyelitis. J Neuropath Exp Neurol 29:11–24. [DOI] [PubMed] [Google Scholar]
  • 36. Lassmann H (1983) Comparative neuropathology of chronic experimental allergic encephalomyelitis and rnuttiple sclerosis. Schriftenr Neurol 25:1–135. [PubMed] [Google Scholar]
  • 37. Lassmann H, Brunner C, Bradl M, Linington C (1988) Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyeli‐nating antibodies determine size and structure of demyelinated lesions. Acta Neuropathol (Berl) 75:566–576. [DOI] [PubMed] [Google Scholar]
  • 38. Lassmann H, Wisniewski HM (1979) Chronic relapsing experimental allergic encephalomyelitis: Morphological sequence of myelin degradation. Brain Res 169:357–368. [DOI] [PubMed] [Google Scholar]
  • 39. Lee SC, Moore GR, Golensky G, Raine CS (1990) Multiple sclerosis: a role for astroglia in active demyelination suggested by class II MHC expression and ultra‐structural study. J Neuopathol Exp Neurol 49:122–136. [DOI] [PubMed] [Google Scholar]
  • 40. Li H, Newcombe J, Groorne NP, Cuzner ML (1993) Characterization and distribution of phagocytic macrophages in multiple sclerosis plaques. Neuropathol Appl Neurobiol 19:214–223. [DOI] [PubMed] [Google Scholar]
  • 41. Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against myelin/oligodendrocyte glycoprotein (MOG). J Neuroimmunol 17:61–69. [PMC free article] [PubMed] [Google Scholar]
  • 42. Linington C, Engelhardt B, Kapocs G, Lassmann H (1992) Induction of persistently demyelinated lesions in the rat following the repeated adoptive transfer of encephalitogenic T‐cells and demyelinating antibodies. J Neuroimmunol 40:219–224. [DOI] [PubMed] [Google Scholar]
  • 43. Ludwin SK (1980) Chronic demyeliantion inhibits remyeli‐nation in the central nervous system. An analysts of contributing factors. Lab Invest 43:382–387. [PubMed] [Google Scholar]
  • 44. Ludwin SK, Johnson ES (1981) Evidence of a “dying‐back” gliopathy in demyelinating disease. Ann Neurol 9:301–305. [DOI] [PubMed] [Google Scholar]
  • 45. Lumsden CE (1970) The neuropathology of multiple sclerosis In Handbook of Clinical Neurology, Vinken PI, Bruyn GW. (eds), vol 9, pp. 217–309, Elsevier: New York . [Google Scholar]
  • 46. Marburg O (1906) Die sogenannte “akute Multiple Sklerose”. Jahrb Psychiatrie 27:211–312. [Google Scholar]
  • 47. Matthieu J‐M, Amiguet P (1990) Myelin/oligodendrocyte glycoprotein expression during development in normal and myelin‐deficient mice. Dev Neurosci 12:293–302. [DOI] [PubMed] [Google Scholar]
  • 48. McGeer RL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA‐DR. Neurosci Lett 79:195–200. [DOI] [PubMed] [Google Scholar]
  • 49. McLean BN, Zeman AZ, Barnes D, Thompson EJ (1993) Patterns of blood brain barrier impairment and clinical features in multiple sclerosis. J Neurol Neurosurg Psychiat 56:356–360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Miller DH, Rudge P, Johnson G, Kendall BE, MacManus DG, Moseley IF, Barnes D, McDonald WI (1988) Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain 111:927–939. [DOI] [PubMed] [Google Scholar]
  • 51. Mitrovic B, Martin FC, Charles AC, Ignarro LJ, Anton PA, Shanahan F, Merrill JE (1994) Neurtotransmitters and cytokines in CNS pathology. Prog Brain Res 103:319–330. [DOI] [PubMed] [Google Scholar]
  • 52. Moore GR, Raine CS (1988) Immunogold localization and analysis of IgG during immune‐mediated demyelination. Lab Invest 59:641–648. [PubMed] [Google Scholar]
  • 53. Nesbit GM, Forbes GS, Scheithauer BW, Okazaki H, Rodriguez M (1991) Histopathologic and MR and/or CT correlation in 37 cases at biopsy and 3 cases at autopsy. Radiology 180:467–474. [DOI] [PubMed] [Google Scholar]
  • 54. Newcombe J, Cuzner ML (1993) Organization and reser‐ach applications of the U.K. Multiple Sclerosis Soiciety tissue bank. J Neurol Transm (Suppl) 39:155–163. [PubMed] [Google Scholar]
  • 55. Newcombe J, Li H, Cuzner ML (1994) Low density lipoprotein uptake by macrophages in multiple sclerosis plaques:implications for pathogenesis. Neuropathol Apl Neurobiol 20:152–162. [DOI] [PubMed] [Google Scholar]
  • 56. Ozawa K, Suchanek G, Breitschopf H, Bruck W, Budka H, Jellinger K, Lassrnann H (1994) Patterns of oligoden‐droglia pathology in multiple sclerosis. Brain 117:1317–1322. [DOI] [PubMed] [Google Scholar]
  • 57. Prineas J (1975) Pathology of the early lesion in multiple sclerosis. Hum Pathol 6:531–554. [DOI] [PubMed] [Google Scholar]
  • 58. Prineas JW (1985) The neuropathology of multiple sclerosis In Handbook of Clinical Neurology, Koetsier JC. (ed), Vol 47, pp 337–395, Elsevier Science. [Google Scholar]
  • 59. Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES (1993) Multiple sclerosis, remyelination of nascent lesions. Ann Neurol 33:137–151. [DOI] [PubMed] [Google Scholar]
  • 60. Prineas JW, Barnard RO, Revesz T, Kwon EE, Sharer L, Cho ES (1993) Multiple sclerosis. Pathology of recurrent lesions. Brain 116:681–693. [DOI] [PubMed] [Google Scholar]
  • 61. Prineas JW, Graham JS (1981) Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 10:149–158. [DOI] [PubMed] [Google Scholar]
  • 62. Prineas JW, Kwon EE, Cho ES, Sharer LR (1984) Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. Ann NY Acad Sci 436:11–332. [DOI] [PubMed] [Google Scholar]
  • 63. Prineas JW, Kwon EE, Goldenberg PZ, Ilyas AA, Quarles RH, Benjamin JA, Sprinkle TJ (1989) Multiple sclerosis. Oligodendrocyte proliferation and differentiation in fresh lesions. Lab Invest 61:489–503. [PubMed] [Google Scholar]
  • 64. Prineas JW, Raine CS (1976) Electron microscopy and immunoperoxidase studies of early multiple sclerosis lesions. Neurology 26:29–32. [DOI] [PubMed] [Google Scholar]
  • 65. Raine CS (1994) Multiple sclerosis: Immune system molecule expression in the central nervous system. J Neuropath Exp Neurol 53:328–337. [DOI] [PubMed] [Google Scholar]
  • 66. Raine CS (1994) The Dale E McFarlin memorial lecture. The immunology of the multiple sclerosis lesion. Ann Neurol 36:S61–S72. [DOI] [PubMed] [Google Scholar]
  • 67. Raine CS, Scheinberg L, Waltz JM (1981) Multiple Sclerosis: Oligodendrocyte survival and proliferation in an active established lesion. Lab Invest 45:534–546. [PubMed] [Google Scholar]
  • 68. Rodriguez M (1992) Central nervous system demyelination and remyelination in multiple sclerosis and viral models of disease. J Neuroimmunol 40:255–263. [DOI] [PubMed] [Google Scholar]
  • 69. Rodriguez M, Lennon VA (1990) Immunoglobulins promote remyelination in the central nervous system. Ann Neurol 27:12–17. [DOI] [PubMed] [Google Scholar]
  • 70. Rodriguez M, Miller DJ (1994) Immune promotion of central nervous system remyelination. Prog in Brain Res 103:343–355. [DOI] [PubMed] [Google Scholar]
  • 71. Rodriguez M, Prayoonwiwat N, Howe C, Sanborn K (1994) Proteolipid protein gene expression in demyelination and remyelination of the central nervous system: a model for multiple sclerosis. J Neuropath Exp Neurol 53:136–1443. [DOI] [PubMed] [Google Scholar]
  • 72. Rodriguez M, Scheithauer B (1994) Ultrastructure of multiple sclerosis. Ultrastructural Pathol 183–13. [DOI] [PubMed]
  • 73. Rodriguez M, Scheithauer EW, Forbes G, Kelly PJ (1993) Oligodendrocyte injury is an early event in lesions of multiple sclerosis. Mayo Clin Proc 68:627–636. [DOI] [PubMed] [Google Scholar]
  • 74. Sanders V, Conrad AJ, Tourtellotte WW (1993) On classification of post‐mortem multiple sclerosis plaques for neuroscientists. J Neuroimmunol 46:207–216. [DOI] [PubMed] [Google Scholar]
  • 75. Schmied M, Breitschopf H, Gold R, Zischler H, Rothe G, Wekerle H, Lassmann H (1993) Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am J Pathol 143:446–452. [PMC free article] [PubMed] [Google Scholar]
  • 76. Scolding NJ, Jones J, Compston DAS, Morgan BP (1990) Oligodendrocyte susceptibility to injury by T‐cell perforin. Immunology I 70:6–10. [PMC free article] [PubMed] [Google Scholar]
  • 77. Scolding NJ, Morgan BP, Houston A, Campbell AK, Linigton C, Compston DAS (1989) Normal rat serum cytotoxicity against syngeneic oligodendrocytes complement activation and attack in the absence of anti‐myelin antibodies. J Neurol Sci 89:289–300. [DOI] [PubMed] [Google Scholar]
  • 78. Seitelberger F (1960) Histochemistry of demyelinating diseases proper, including allergic encephalomyelitis and Pelizaeus Merzbacher's disease In Modern Scientific Aspects of Neurology, Cumings JN. (ed), Arnold: London , pp 146–187. [Google Scholar]
  • 79. Selmaj K, Brosnan CF, Raine CS (1992) Expression of heat shock protein‐65 by oligodendrocytes in vivo and in vitro: implications for multiple sclerosis. Neurology 42:795–800. [DOI] [PubMed] [Google Scholar]
  • 80. Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87:949–954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Selmaj KW, Brosnan CF, Raine CS (1991) Colocalization of lymphocytes bearing gamma delta T‐cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci (USA) 88:6452–6456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Selmaj KW, Raine CS (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23:339–346. [DOI] [PubMed] [Google Scholar]
  • 83. Sobel RA, Mitchell ME (1989) Fibronectin in multiple sclerosis lesions. Am J Pathol 135:161–168. [PMC free article] [PubMed] [Google Scholar]
  • 84. Sobel RA, Mitchell ME, Fondren G (1990) Intercellular adhesion molecule‐1 (ICAM‐1) in cellular immune reactions in the human central nervous system. Am J Parhol 136:1309–1316. [PMC free article] [PubMed] [Google Scholar]
  • 85. Sun J, Link H, Olsson T, Xiao BG, Anderson G, Ekre HP, Linington C, Diener P (1991) T and B cell responses to myelin oligodendroglia glycoprotein in multiple sclerosis. J Immunol 146:1490–1495. [PubMed] [Google Scholar]
  • 86. Tavolato B (1975) Immunoglobulin G distribution in multiple sclerosis brain. An immunofluorescence study. J Neurol Sci 24:1–11. [DOI] [PubMed] [Google Scholar]
  • 87. Traugott U (1987) Multiple sclerosis: relevance of class I and class II MHC‐expressing cells to lesion development. J Neuroimmunol 16:283–302. [DOI] [PubMed] [Google Scholar]
  • 88. Traugott U, Reinherz EL, Raine CS (1983) Distribution of T cell subsets and la‐positive macrophages in lesions of different ages. J Neuroimrnunol 4:201–221. [DOI] [PubMed] [Google Scholar]
  • 89. Ulvestad E, Williams K, Vedeler C, Antel J, Nyland H, Mork S, Matre R (1994) Reactive microglia in multiple sclerosis lesions have increased expression of receptors for the Fc part of IgG. J Neurol Sci 121:125–131. [DOI] [PubMed] [Google Scholar]
  • 90. Van Noort JM, van Sechel AC, Bajramovic J, El Ouagmiri M, Polman CH Lassmann H, Ravid R (1995) A novel candidate autoantigen in multiple sclerosis: ap‐crystallin, a smalll heat shock protein. Nature in press. [DOI] [PubMed]
  • 91. Washington R, Burton J, Todd RF 3rd, Newman W, Dragovic L, Dore‐Duffy P (1994) Expression of immuno‐logically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple scterosis. Ann Neurol 35:89–97. [DOI] [PubMed] [Google Scholar]
  • 92. Woodroofe MN, Cuzner ML (1993) Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by nonradioactive in situ hybridization. Cytokine 5:583–588. [DOI] [PubMed] [Google Scholar]
  • 93. Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler DA (1992) Gamma delta T‐cell receptor repertoire in acute multiple sclerosis lesions. Proc Narl Acan Sci USA 89:4588–4592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Yao DL, Webster HdeF, Hudson LD, Brenner M, Liu DS, Escobar AL, Komoly S (1991) Concentric scerosis (Balo); morphometric and in situ hybridization study of lesions in six patients. Ann Neurol 35:18–30. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology (Zurich, Switzerland) are provided here courtesy of Wiley

RESOURCES