Abstract
Many enveloped viruses are released from infected cells by maturing and budding at the plasma membrane. During this process, viral core components are incorporated into membrane vesicles that contain viral transmembrane proteins, termed ‘spike’ proteins. For many years these spike proteins, which are required for infectivity, were believed to be incorporated into virions via a direct interaction between their cytoplasmic domains and viral core components. More recent evidence shows that, while such direct interactions drive budding of alphaviruses, this may not be the case for negative strand RNA viruses and retroviruses. These viruses can bud particles in the absence of spike proteins, using only viral core components to drive the process. In some cases the spike proteins, without the viral core, can be released as virus‐like particles. Optimal budding and release may, therefore, depend on a ‘push‐and‐pull’ concerted action of core and spike, where oligomerization of both components plays a crucial role.
References
- 1. Tashiro, M. , McQueen, N. L. , Seto, J. T. , Klenk, H. D. and Rott, R. (1996). Involvement of the mutated M protein in altered budding polarity of a pantropic mutant, F1‐R, of Sendai virus. J. Virol, 70, 5990–5997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Cattaneo, R. and Rose, J. K. (1993). Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J. Virol. 67, 1493–1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Zurbriggen, A. , Graber, H. U. and Vandevelde, M. (1995). Selective spread and reduced virus release leads to canine distemper virus persistence in the nervous system. Vet. Microbiol. 44, 281–288. [DOI] [PubMed] [Google Scholar]
- 4. Strauss, J. H. and Strauss, E. G. (1994). The alphaviruses: Gene expression, replication, and evolution. Microbiol. Revs 58, 491–562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Schlesinger, S. and Schlesinger, M. J. 1996. Togaviridae: The viruses and their replication In Fields Virology, 3rd edn, vol. 1 (ed. Fields B. N., Knipe D. M. and Howley P. M.), pp. 825–841. Lippincott‐Raven Publishers, Philadelphia. [Google Scholar]
- 6. Cheng, R. H. , Kuhn, R. J. , Olson, N. H. , Rossmann, M. G. , Choi, H. K. , Smith, T. J. and Baker, T. S. (1995). Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80, 621–630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Fuller, S. D. , Berriman, J. A. , Butcher, S. J. and Gowen, B. E. (1995). Low pH induces swiveling of the glycoprotein heterodimers in the Semliki Forest virus spike complex. Cell 81, 715–725. [DOI] [PubMed] [Google Scholar]
- 8. Wahlberg, J. M. , Bron, R. , Wilschut, J. and Garoff, H. (1992). Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Virol. 66, 7309–7318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Suomalainen, M. , Liljestrom, P. and Garoff, H. (1992). Spike protein‐nucleocapsid interactions drive the budding of alphaviruses. J. Virol. 66, 47374747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Strauss, J. H. , Strauss, E. G. and Kuhn, R. J. (1995). Budding of alphaviruses. Trends Microbiol. 3, 346–350. [DOI] [PubMed] [Google Scholar]
- 11. Ivanova, L. and Schlesinger, M. J. (1993). Site‐directed mutations in the Sindbis virus E2 glycoprotein identify palmitoylation sites and affect virus budding. J. Virol. 67, 2546–2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Zhao, H. , Lindqvist, B. , Garoff, H. , von Bonsdorff, C. H. and Liljeström, P. (1994). A tyrosine‐based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. EMBO J. 13, 4204–4211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Lee, S. et al. (1996). Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure 4, 531–541. [DOI] [PubMed] [Google Scholar]
- 14. Owen, K. E. and Kuhn, R. J. (1997). Alphavirus budding is dependent on the interaction between the nucleocapsid and hydrophobic amino acids on the cytoplasmic domain of the E2 envelope glycoprotein. Virology 230, 187–196. [DOI] [PubMed] [Google Scholar]
- 15. Skoging, U. , Vihinen, M. , Nilsson, L. and Liljeström, P. (1996). Aromatic interactions define the binding of the alphavirus spike to its nucleocapsid. Structure 4, 519–529. [DOI] [PubMed] [Google Scholar]
- 16. Pavan, A. et al. (1992). Dynamics of transmembrane proteins during Sindbis virus budding. J. Cell Sci. 102, 149–155. [DOI] [PubMed] [Google Scholar]
- 17. Ekström, M. , Liljeström, P. and Garoff, H. (1994). Membrane protein lateral interactions control Semliki Forest virus budding. EMBO J. 13, 1058–1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Forsell, K. , Griffiths, G. and Garoff, H. (1996). Preformed cytoplasmic nucleocapsids are not necessary for alphavirus budding. EMBO J. 15, 6495–6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Liljeström, P. , Lusa, S. , Huylebroeck, D. and Garoff, H. (1991). In vitro mutagenesis of a full‐length cDNA clone of Semliki Forest virus: the 6,000‐molecular‐weight membrane protein modulates virus release. J. Virol. 65, 4107–4113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Loewy, A. , Smyth, J. , von Bonsdorff, C. H. , Liljeström, P. and Schlesinger, M. J. (1995). The 6‐kilodalton membrane protein of Semliki Forest virus is involved in the budding process. J. Virol. 69, 469–475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Gaedigk‐Nitschko, K. and Schlesinger, M. J. (1991). Site‐directed mutations in Sindbis virus E2 glycoprotein's cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology 183, 206–214. [DOI] [PubMed] [Google Scholar]
- 22. Sanz, M. A. , Perez, L. and Carrasco, L. (1994). Semliki Forest virus 6K protein modifies membrane permeability after inducible expression in Escherichia coli cells. J. Biol. Chem. 269, 12106–12110. [PubMed] [Google Scholar]
- 23. Lamb, R. A. and Kolakofsky, D. 1996. Paramyxoviridae: The viruses and their replication In Fields Virology, 3rd edn, vol. 1 (ed. Fields B. N., Knipe D. M. and Howley P. M.), pp. 1177–1204. Lippincott‐Raven Publishers, Philadelphia. [Google Scholar]
- 24. Justice, P. A. , Sun, W. , Li, Y. , Grigera, P. R. and Wagner, R. R. (1995). Membrane vesiculation function and exocytosis of wild type and mutant matrix proteins of vesicular stomatitis virus. J. Virol. 69, 3156–3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Mebatsion, T. , König, M. and Conzelmann, K. K. (1996). Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84, 941–951. [DOI] [PubMed] [Google Scholar]
- 26. Enami, M. and Enami, K. (1996). Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J. Virol. 70, 6653–6657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Kretzschmar, E. , Bui, M. and Rose, J. K. (1996). Membrane association of influenza virus matrix protein does not require specific hydrophobic domains or the viral glycoproteins. Virology 220, 37–45. [DOI] [PubMed] [Google Scholar]
- 28. Jin, H. , Leser, G. P. and Lamb, R. A. (1994). The influenza virus hemagglutinin cytoplasmic tail is not essential for virus assembly or infectivity. EMBO J. 13, 5504–5515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Garcia‐Sastre, A. and Palese, P. (1995). The cytoplasmic tail of the neuraminidase protein of influenza A virus does not play an important role in the packaging of this protein into viral envelopes. Virus Res. 37, 37–47. [DOI] [PubMed] [Google Scholar]
- 30. Mitnaul, L. J. , Castrucci, M. R. , Murti, K. G. and Kawaoka, Y. (1996). The cytoplasmic tail of influenza A virus neuraminidase (NA) affects NA incorporation into virions, virion morphology, and virulence in mice but is not essential for virus replication. J. Virol. 70, 873–879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Jin, H. , Leser, G. P. , Zhang, J. and Lamb, R. A. (1997). Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J. 16, 1236–1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Mebatsion, T. and Conzelmann, K.‐K. (1996). Specific infection of CD4+ target cells by recombinant rabies virus pseudotypes carrying the HIV‐1 envelope spike protein. Proc. Natl. Acad. Sci. USA 93, 11366–11370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Naim, H. Y. and Roth, M. G. (1993). Basis for selective incorporation of glycoproteins into the influenza virus envelope. J. Virol. 67, 4831–4841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Schnell, M. J. , Buonocore, L. , Kretzschmar, E. , Johnson, E. and Rose, J. K. (1996). Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc. Natl Acad. Sci. USA 93, 11359–11365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Luan, P. , Yang, L. and Glaser, M. (1995). Formation of membrane domains created during the budding of vesicular stomatitis virus. A model for selective lipid and protein sorting in biological membranes. Biochemistry 34, 9874–9883. [DOI] [PubMed] [Google Scholar]
- 36. Kim, J. and Kamata, M. (1994). Further analysis of the effect of Ca2+ on morphogenesis of HVJ (Sendai virus) in LLC‐MK2 cells: effects on phosphorylated M protein associated with viral morphogenesis. Cell Struc. Func. 19, 325–333. [DOI] [PubMed] [Google Scholar]
- 37. Coffin, J. M. 1996. Retroviridae: The viruses and their replication In Fields Virology, 3rd edn, vol. 1 (ed. Fields B. N., Knipe D. M. and Howley P. M.), pp. 1767–1847. Lippincott‐Raven Publishers, Philadelphia. [Google Scholar]
- 38. Rhee, S. S. and Hunter, E. (1990). A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus. Cell 63, 77–86. [DOI] [PubMed] [Google Scholar]
- 39. Delchambre, M. et al. (1989). The GAG precursor of simian immunodeficiency virus assembles into virus‐like particles. EMBO J. 8, 2653–2660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Gheysen, D. et al. (1989). Assembly and release of HIV‐1 precursor Pr55gag virus‐like particles from recombinant baculovirus‐infected insect cells. Cell 59, 103–112. [DOI] [PubMed] [Google Scholar]
- 41. Zhou, W. , Parent, L. J. , Wills, J. W. and Resh, M. D. (1994). Identification of a membrane‐binding domain within the amino‐terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J. Virol. 68, 2556–2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Nelle, T. D. and Wills, J. W. (1996). A large region within the Rous sarcoma virus matrix protein is dispensable for budding and infectivity. J. Virol. 70, 2269–2276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Morikawa, Y. et al. (1996). Complete inhibition of human immunodeficiency virus Gag myristoylation is necessary for inhibition of particle budding. J. Biol. Chem. 271, 2868–2873. [DOI] [PubMed] [Google Scholar]
- 44. Zhou, W. J. and Resh, M. D. (1996). Differential membrane binding of the human immunodeficiency virus type 1 matrix protein. J. Virol. 70, 8540–8548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Barklis, E. et al. (1997). Structural analysis of membrane‐bound retrovirus capsid proteins. EMBO J. 16, 1199–1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Gitti, R. , Lee, B. , Walker, J. , Summes, M. , Yoo, S. and Sundquist, W. I. (1996). Structure of the amino‐terminal core domain of the HIV‐1 capsid protein. Science 273, 231–235. [DOI] [PubMed] [Google Scholar]
- 47. Momany, C. et al. (1996). Crystal structure of dimeric HIV‐1 capsid protein. Nature Struct. Biol. 3, 763–770. [DOI] [PubMed] [Google Scholar]
- 48. Nermut, M. V. , Hockley, D. J. , Jowett, J. B. M. , Jones, I. M. , Garreau, M. and Thomas, D. (1994). Fullerene‐like organization of HIV gag‐protein shell in virus‐like partciles produced by recombinant baculovirus. Virology 198, 288–296. [DOI] [PubMed] [Google Scholar]
- 49. Rao, Z. , Belyaev, A. S. , Fry, E. , Roy, P. , Jones, I. M. and Stuart, D. I. (1995). Crystal structure of SIV matrix antigen and implications for virus assembly. Nature 378, 743–747. [DOI] [PubMed] [Google Scholar]
- 50. Freed, O. E. and Martin, M. A. (1996). Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J. Virol. 70, 341–351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Dorfman, T. , Mammano, F. , Haseltine, W. A. and Göttlinger, H. G. (1994). Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J. Virol. 68, 1689–1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Lodge, R. , Lalonde, J. P. , Lemay, G. and Cohen, E. A. (1997). The membraneproximal intracytoplasmic tyrosine residue of HIV‐1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J. 16, 695–705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Lee, Y. M. , Tang, X. B. , Cimakasky, L. M. , Hildreth, J. E. K. and Yu, X. F. (1997). Mutations in the matrix protein of human immunodeficiency virus type 1 inhibit surface expression and virion incorporation of viral envelope glycoproteins in CD4(+) T lymphocytes. J. Virol. 71, 1443–1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Cosson, P. (1996). Direct interaction between the envelope and matrix proteins of HIV‐1. EMBO J. 15, 5783–5788. [PMC free article] [PubMed] [Google Scholar]
- 55. Salzwedel, K. , Johnston, P. B. , Roberts, S. J. , Dubay, J. W. and Hunter, E. (1993). Expression and characterization of glycophospholipid‐anchored human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 67, 5279–5288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Wilk, T. , Pfeiffer, T. and Bosch, V. (1992). Retained in vitro infectivity and cytopathogenicity of HIV‐1 despite truncation of the C‐terminal tail of the env gene product. Virology 189, 167–177. [DOI] [PubMed] [Google Scholar]
- 57. Gabuzda, D. H. , Lever, A. , Terwillinger, E. and Sodroski, J. (1992). Effects of deletions in the cytoplasmic domain on biological functions of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 66, 3306–3315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Freed, E. O. and Martin, M. A. (1995). Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid subsitutions in the human immunodeficiency virus type 1 matrix. J. Virol. 69, 1984–1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Mammano, F. , Kondo, E. , Sodroski, J. , Bukovsky, A. and Göttlinger, H. G. (1995). Rescue of human immunodeficiency virus type 1 matrix protein mutants by envelope glycoproteins with short cytoplasmic domains. J. Virol. 69, 3824–3830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Zingler, K. and Littman, D. R. (1993). Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases env incorporation ino particles and fusogenicity and infectivity. J. Virol. 67, 2824–2831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Vzorov, A. N. and Compans, R. W. (1996). Assembly and release of SIV Env proteins with full‐length or truncated cytoplasmic domains. Virology 221, 22–33. [DOI] [PubMed] [Google Scholar]
- 62. Klimkait, T. , Strebel, K. , Hoggan, M. D. , Martin, M. A. and Orenstein, J. M. (1990). The human immunodeficiency virus type 1‐specific protein vpu is required for efficient virus maturation and release. J. Virol. 64, 621–629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63. Strebel, K. , Klimkait, T. and Martin, M. A. (1988). A novel gene of HIV‐1, vpu, and its 16‐kilodalton product. Science 241, 1221–1223. [DOI] [PubMed] [Google Scholar]
- 64. Schubert, U. , Bour, S. , Ferrer‐Montiel, A. V. , Montal, M. , Maldarell, F. and Strebel, K. (1996). The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J. Virol. 70, 809–819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Ewart, G. D. , Sutherland, T. , Gage, P. W. and Cox, G. B. (1996). The Vpu protein of human immunodeficiency virus type 1 forms cation‐selective ion channels. J. Virol. 70, 7108–7115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66. Göttlinger, H. G. , Dorfman, T. , Cohen, E. A. and Haseltine, W. A. (1993). Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc. Natl Acad. Sci. USA 90, 7381–7385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Arroyo, J. , Boceta, M. , Gonzales, M. E. , Michel, M. and Carrasco, L. (1995). Membrane permeabilization by different regions of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. J. Virol. 69, 4095–4102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68. Chernomordik, L. , Chanturiya, A. N. , Suss‐Toby, E. , Nora, E. and Zimmerberg, J. (1994). An amphipatic peptide from the C‐terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J. Virol. 68, 7115–7123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Miller, M. A. et al. (1993). Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP‐1) of HIV‐1 transmembrane protein. Virology 196, 89–100. [DOI] [PubMed] [Google Scholar]
- 70. Yang, C. , Spies, C. P. and Compans, R. W. (1995). The human and simian immunodeficiency virus envelope glycoprotein transmembrane subunits are palmitoylated. Proc. Natl Acad. Sci. USA 92, 9871–9875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Bour, S. , Schubert, U. , Peden, K. and Strebel, K. (1996). The envelope glycoprotein of human immunodeficiency virus type 2 enhances viral particle release: a Vpu‐like factor? J. Virol. 70, 820–829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Ritter, G. D. , Yamshchikov, G. , Cohen, S. J. and Mulligan, M. J. (1996). Human immunodeficiency virus type 2 glycoprotein enhancement of particle budding: Role of the cytoplasmic domain. J. Virol. 70, 2669–2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73. Rolls, M. M. , Webster, P. , Balba, N. H. and Rose, J. K. (1994). Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self‐replicating RNA. Cell 79, 497–506. [DOI] [PubMed] [Google Scholar]
- 74. Simons, K. and Fuller, S. D. (1985). Cell surface polarity in epithelia. Ann. Rev. Cell Biol. 1, 243–288. [DOI] [PubMed] [Google Scholar]
- 75. Rodriguez‐Boulan, E. and Nelson, W. J. (1989). Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718–725. [DOI] [PubMed] [Google Scholar]
- 76. Wandinger‐Ness, A. , Bennett, M. K. , Antony, C. and Simons, K. (1990). Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells. J. Cell Biol. 111, 987–1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77. Thomas, D. C. , Brewer, C. B. and Roth, M. G. (1993). Vesicular stomatitis virus glycoprotein contains a dominant cytoplasmic basolateral sorting signal critically dependent upon a tyrosine. J. Biol. Chem. 268, 3313–3320. [PubMed] [Google Scholar]
- 78. Stephens, E. B. , Compans, R. W. , Earl, P. and Moss, B. (1986). Surface expression of viral glycoproteins is polarized in epithelial cells infected with recombinant vaccinia viral vectors. EMBO J. 5, 237–245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79. Brewer, C. B. and Roth, M. G. (1991). A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J. Cell Biol. 114, 413–421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80. Lisanti, M. P. and Rodriguez‐Boulan, E. (1990). Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends Biochem. Sci. 15, 113–118. [DOI] [PubMed] [Google Scholar]
- 81. Brown, D. A. , Crise, B. and Rose, J. K. (1989). Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245, 1499–1501. [DOI] [PubMed] [Google Scholar]
- 82. Breitfeld, P. P. , McKinnon, W. C. and Mostov, K. E. (1990). Effect of nocodazole on vesicular traffic to the apical and basolateral surfaces of polarized MDCK cells. J. Cell Biol. 111, 2365–2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83. Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569–572. [DOI] [PubMed] [Google Scholar]
- 84. Onashi, M. et al. (1995). A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature 377, 544–547. [DOI] [PubMed] [Google Scholar]
- 85. Liscovitch, M. and Cantley, L. C. (1995). Signal transduction and membrane traffic: The PITP/phosphoinositide connection. Cell 81, 659–662. [DOI] [PubMed] [Google Scholar]
- 86. Mallabiabarrena, A. and Malhotra, V. (1995). Vesicle biogenesis: The coat connection. Cell 83, 667–669. [DOI] [PubMed] [Google Scholar]
- 87. Nieva, J. L. , Bron, R. , Corver, J. and Wilschut, J. (1994). Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J. 13, 2797–2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88. Malvoisin, E. and Wild, F. (1990). Effect of drugs which inhibit cholesterol synthesis on syncytia formation in vero cells infected with measles virus. Biochim. Biophys. Acta 1042, 359–364. [DOI] [PubMed] [Google Scholar]
- 89. Aloia, R. C. , Tian, H. and Jensen, F. C. (1993). Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc. Natl Acad. Sci. USA 90, 5181–5185. [DOI] [PMC free article] [PubMed] [Google Scholar]