Abstract
Ectopeptidases are transmembrane proteins present in a wide variety of tissues and cell types. Dysregulated expression of certain ectopeptidases in human malignancies suggests their value as clinical markers. Ectopeptidase interaction with agonistic antibodies or their inhibitors has revealed that these ectoenzymes are able to modulate bioactive peptide responses and to influence growth, apoptosis and differentiation, as well as adhesion and motility, all functions involved in normal and tumoral processes. There is evidence that ectopeptidase‐mediated signal transduction frequently involves tyrosine phosphorylation. Combined analyses of gene organization and regulation of ectopeptidases by various physiological factors have provided insights into their structure–function relationships. Understanding the roles of ectopeptidases in pathophysiology may have implications in considering them as therapeutic targets. BioEssays 23:251–260, 2001. © 2001 John Wiley & Sons, Inc.
REFERENCES
- 1. Goding JW. Ecto‐enzymes physiology meets pathology. J Leuk Biol 2000; 67:285–311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Hooper NM, Karran EH, Turner AJ. Membrane protein secretases. Biochem J 1997; 321:265–279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Yamamoto S, Higuchi Y, Yoshiyama K, Shimizu E, Kataoka M, Hijiya N, Matsuura K. ADAM family proteins in the immune system. Immunol Today 1999; 20:278–284. [DOI] [PubMed] [Google Scholar]
- 4. Letarte M, Greaves A, Ishii E. The biological functions of CD10/endopeptidase‐24.11 in normal and malignant cells In Kenny AJ, Boustead CM. ed; Cell‐Surface Peptidases in Health and Disease, Oxford: BIOS Scientific Publishers; 1997. p 329–339. [Google Scholar]
- 5. Riemann D, Kehlen A, Langner J. CD13 ‐ not just a marker in leukemia typing. Immunol Today 1999; 20:83–88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. De Meester I, Korom S, Van Damme J, Scharpé S. CD26, let it cut or cut it down. Immunol Today 1999; 20:367–375. [DOI] [PubMed] [Google Scholar]
- 7. Alhenc‐Gelas F, Costerousse O, Danilov S. Genetic and physiological aspects of angiotensin I‐converting enzyme In Kenny AJ, Boustead CM. ed; Cell‐Surface Peptidases in Health and Disease. Oxford: BIOS Scientific Publishers; 1997, p 119–135. [Google Scholar]
- 8. Tate SS, Meister A. γ‐glutamyltranspeptidase: catalytic, structural and functional aspects. Mol Cell Biochem 1981; 39:357–368. [DOI] [PubMed] [Google Scholar]
- 9. Krause SW, Rehli M, Andreesen R. Carboxypeptidase M as a marker of macrophage maturation. Immunol Rev 1998; 161:119–127. [DOI] [PubMed] [Google Scholar]
- 10. Wang J, Lin Q, Wu Q, Cooper MD. The enigmatic role of glutamyl aminopeptidase (BP‐1/6C3 antigen) in immune system development. Immunol Rev 1998; 161:71–77. [DOI] [PubMed] [Google Scholar]
- 11. Kurachi K. Hepsin In Kenny AJ, Boustead CM. ed; Cell‐Surface Peptidases in Health and Disease. Oxford: BIOS Scientific Publishers; 1997, p 255–262. [Google Scholar]
- 12. Pineiro‐Sanchez ML, Goldstein LA, Dodt J, Howard L, Yeh Y, Chen WT. Identification of the 170‐kDa melanoma membrane‐bound gelatinase (seprase) as a serine integral membrane protease. J Biol Chem 1997; 272:7595–7601. [DOI] [PubMed] [Google Scholar]
- 13. Shipp MA, Look AT. Hematopoietic differentiation antigens that are membrane‐associated enzymes: cutting is the key! Blood 1993; 82:1052–1070. [PubMed] [Google Scholar]
- 14. Carbone A, Cozzi M, Gloghini A, Pinto A. CD26/dipeptidylpeptidase IV expression in human lymphomas is restricted to CD30‐positive anaplastic large cells and a subset of T‐cell non Hodgkin's lymphomas. Hum Pathol 1994; 25:1360–1365. [DOI] [PubMed] [Google Scholar]
- 15. Raikhlin N, Bukaeva I, Probatova N, Smirnova E, Tupitsyn N, Sholokhova E, Gossrau R. Membrane proteases in human malignant lymphoma. Acta Histochem Cytochem 1997; 30:513–516. [Google Scholar]
- 16. Norén O, Sjöström H, Olsen J. Aminopeptidase N. In Kenny AJ, Boustead CM. ed; Cell‐Surface Peptidases in Health and Disease. Oxford: BIOS Scientific Publishers; 1997, p 175–191. [Google Scholar]
- 17. Lendeckel U, Arndt M, Frank K, Wex T, Ansörge S. Role of alanyl aminopeptidase in growth and function of human T cells. Int J Mol Med 1999; 4:17–27. [PubMed] [Google Scholar]
- 18. Morell A, Losa G, Carrel S, Heumann D, Von Fliedner VE. Determination of ectoenzyme activities in leukemic cells and in established hematopoietic cell lines. Am J Hematol 1986; 21:289–298. [DOI] [PubMed] [Google Scholar]
- 19. Kondo S, Kotani T, Tamura K, Aratake Y, Uno H, Tsubouchi H, Inoue S, Niho Y, Ohtaki S. Expression of CD26/dipeptidyl peptidase IV in adult T cell leukemia/lymphoma (ATLL). Leuk Res 1996; 20:357–363. [DOI] [PubMed] [Google Scholar]
- 20. Kramers MT, Catovsky D. Cell membrane enzymes: L‐γ‐glutamyl transpeptidase, leucine aminopeptidase, maltase and trehalase in normal and leukaemic lymphocytes. Br J Haematol 1978; 38:453–461. [DOI] [PubMed] [Google Scholar]
- 21. Ziaber J, Baj Z, Pasnik J, Chmielewski H, Tchorzewski H. Increased expression of neutral endopeptidase (NEP) and aminopeptidase N (APN) on peripheral blood mononuclear cells in patients with multiple sclerosis. Immunol Lett 2000; 71:127–129. [DOI] [PubMed] [Google Scholar]
- 22. Hafler DA, Fox DA, Manning ME, Schlossman SF, Reinherz EL, Weiner HL. In vivo activated T lymphocytes in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. N Engl J Med 1985; 312:1405–1411. [DOI] [PubMed] [Google Scholar]
- 23. Riemann D, Schwachula A, Hentschel M, Langner J. Demonstration of CD13/aminopeptidase N on synovial fluid T cells from patients with different forms of joint effusions. Immunobiology 1993; 187:24–35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Mizokami A, Eguchi K, Kawakami A, Ida H, Kawabe Y, Tsukada T, Aoyagi T, Maeda K, Morimoto C, Nagataki S. increased populatin of high fluorescence 1F7 (CD26) antigen on T cells in synovial fluid of patients with rheumatoid arthritis. J Rheumatol 1996; 23:2022–2026. [PubMed] [Google Scholar]
- 25. Cutrona G, Leanza N, Ulivi M, Melioli G, Burgio VL, Mazzarello G, Gabutti G, Roncella S, Ferrarini M. Expression of CD10 by human T cells that undergo apoptosis both in vitro and in vivo. Blood 1999; 94:3067–3076. [PubMed] [Google Scholar]
- 26. Nanus DM, Papandreou CN, Albino AP. Expression of cell‐surface peptidases in neoplastic cells In: Kenny AJ, Boustead CM. ed. Cell‐Surface Peptidases in Health and Disease. Oxford: BIOS Scientific Publishers; 1997, p 353–369. [Google Scholar]
- 27. Kelly T, Kechelava S, Rozypal TL, West KW, Korourian S. Seprase, a membrane‐bound protease, is overexpressed by invasive ductal carcinoma cells of human breast cancers. Mod Pathol 1998; 11:855–863. [PubMed] [Google Scholar]
- 28. Tanimoto H, Yan Y, Clarke J, Korourian S, Shigemasa K, Parmley TH, Parham GP, O'Brien TJ. Hepsin, a cell surface serine protease identified in hepatoma cells, is overexpressed in ovarian cancer. Cancer Res 1997; 57:2884–2887. [PubMed] [Google Scholar]
- 29. Wesley UV, Albino AP, Tiwari S, Houghton AN. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med 1999; 190:311–322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Stefanovic V, Ardaillou N, Vlahovic P, Placier S, Ronco P, Ardaillou R. Interferon‐γ induces dipeptidylpeptidase IV expression in human glomerular epithelial cells. Immunology 1993; 80:465–470. [PMC free article] [PubMed] [Google Scholar]
- 31. Bauvois B, Djavaheri‐Mergny M, Rouillard D, Dumont J, Wietzerbin J. Regulation of CD26/DPPIV gene expression by interferons and retinoic acid in tumor B cells. Oncogene 2000; 19:265–272. [DOI] [PubMed] [Google Scholar]
- 32. Yamabe T. Takakura K, Sugie K, Kitaoka Y, Takeda S, Okubo Y, Teshigawara K, Yodoi J, Hori T. Induction of the 2B9 antigen/dipeptidylpeptidase IV/CD26 on human natural killer cells by IL‐2, IL‐12 or IL‐15. Immunology 1997; 91:151–158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Cordero OJ, Salgado FJ, Vinuela JE, Nogueira M. Interleukin‐12‐dependent activation of human lymphocyte subsets. Immunol Lett 1998; 61:7–13. [DOI] [PubMed] [Google Scholar]
- 34. Karp DR, Carlisle ML, Mobley AB, Nichols TC, Oppenheimer‐Marks N, Brezinschek RI, Holers VM. Gamma‐glutamyl transpeptidase is up‐regulated on memory T lymphocytes. Int Immunol 1999; 11:1791–1800. [DOI] [PubMed] [Google Scholar]
- 35. Böhm SK, Gum JR, Erickson RH, Hicks HW, Kim YS. Human dipeptidylpeptidase IV gene promoter: tissue‐specific regulation from a TATA‐less GC‐rich sequence characteristic of a housekeeping gene promoter. Biochem J 1995; 311:835–843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Erickson RH, Gum JR, Lotterman CD, Hicks JW, Lai RS, Kim YS. Regulation of the gene for human dipeptidyl peptidase IV by hepatocyte nuclear factor 1α. Biochem J 1999; 338:91–97. [PMC free article] [PubMed] [Google Scholar]
- 37. Goldstein LA, Ghersi G, Pineiro‐Sanchez ML, Salamone M, Yeh Y, Flessate D, Chen WT. Molecular cloning of seprase: a serine integral membrane protease from human melanoma. Biochim Biophys Acta 1997; 1361:11–19. [DOI] [PubMed] [Google Scholar]
- 38. Courtay C, Heisterkamp N, Siest G, Groffen J. Expression of multiple γ‐glutamyltransferase genes in man. Biochem J 1994; 297:503–508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Morris C, Courtay C, Geurts van Kessel A, ten Hoeve J, Heisterkamp N, Groffen J. Localization of a gamma‐glutamyl‐transferase‐related gene family on chromosome 22. Hum Genet 1993; 1:31–36. [DOI] [PubMed] [Google Scholar]
- 40. Lu B, Gerard NP, Kolakowski LF Jr, Bozza M, Zurakowski D, Finco O, Carroll MC, Gerard C. Neutral endopeptidase modulation of septic shock. J Exp Med 1995; 181:2271–2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Sturiale S, Barbara G, Qiu B, Figini M, Geppetti P, Gerard N, Gerard C, Grady EF, Bunnett NW, Collins SM. Neutral endopeptidase (EC3.4.24.11) terminates colitis by degrading substance P. Proc Nat Acad Sci USA 1999; 96:11653–11658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Bernstein KE. Examining the renin‐angiotensin system one hundred years after its discovery. Nephrologie 1998; 19:391–395. [PubMed] [Google Scholar]
- 43. Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, Welch JE, Smithies O, Krege JH, O'Brien DA. Angiotensin‐converting enzyme and male fertility. Proc Natl Acad Sci USA 1998; 95:2552–2557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Lieberman MW, Wiseman A, Shi Z, Carter BZ, Barrios R, Ou CN, Chevez‐Barrios P, Wang Y, Habib GM, Goodman JC, Huang SL, Lebovitz RM, Matzuk MM. Growth retardation and cysteine deficiency in γ‐glutamyl transpeptidase‐deficient mice. Proc Natl Acad Sci USA 1996; 93:7923–7926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Lawrence BP, Will Y, Reed DJ, Kerkvliet NI. γ‐glutamyl‐transpeptidase knockout mice as a model for understanding the consequences of diminished glutathione on T cell‐dependent immmune responses. Eur J Immunol 2000; 30:1902–1910. [DOI] [PubMed] [Google Scholar]
- 46. Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, Ribel U, Watanabe T, Drucker DJ, Wagtmann N. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Nat Acad Sci USA 2000; 97:6874–6879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Niedermeyer J, Kriz M, Hilberg F, Garin‐Chesa P, Bamberger U, Lenter MC, Park J, Viertel B, Püschner H, Mauz M, Rettig WJ, Schnapp A. Targeted disruption of mouse fibroblast activation protein. Mol Cell Biol 2000; 20:1089–1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. von Bonin A, Hühn J, Fleisher B. Dipeptidyl‐peptidase IV/CD26 on T cells: analysis of an alternative T‐cell activation pathway. Immunol Rev 1998; 161:43–53. [DOI] [PubMed] [Google Scholar]
- 49. Kähne T, Lendeckel U, Wrenger S, Neubert K, Ansorge S, Reinhold D. Dipeptidyl peptidase IV: A cell surface peptidase involved in regulating T cell growth. Int J Mol Med 1999; 4:3–15. [DOI] [PubMed] [Google Scholar]
- 50. Sekine K, Fujii H, Abe F. Induction of apoptosis by bestatin (ubenimex) in human leukemic cell lines. Leukemia 1999; 13:729–734. [DOI] [PubMed] [Google Scholar]
- 51. Rosenzwajg M, Tailleux L, Gluckman JC. CD13/N‐aminopeptidase is involved in the development of dendritic cells and macrophages from cord blood CD34+ cells. Blood 2000; 95:453–460. [PubMed] [Google Scholar]
- 52. Nichols KE, Chitneni SR, Moore JO, Weinberg JB. Monocytoid differentiation of freshly isolated human myeloid leukemia cells and HL‐60 cells induced by the glutamine antagonist acivicin. Blood 1989; 74:1728–1737. [PubMed] [Google Scholar]
- 53. Weinberg JB, Mason SN. Relationship of acivicin‐induced monocytoid differentiation of human myeloid leukemia cells to acivicin‐induced modulation of growth factor, cytokine, and protooncogene mRNA expression. Cancer Res 1991; 51:1202–1209. [PubMed] [Google Scholar]
- 54. Bauvois B, Laouar A, Rouillard D, Wietzerbin J. Inhibition of γ‐glutamyl transpeptidase activity at the surface of human myeloid cells is correlated with macrophage maturation and transforming growth factor β production. Cell Growth Differ 1995; 6: 1163–1170. [PubMed] [Google Scholar]
- 55. Graber R, Losa GA. Apoptosis in human lymphoblastoid cells induced by acivicin, a specific γ‐glutamyltransferase inhibitor. Int J Cancer 1995; 62:443–448. [DOI] [PubMed] [Google Scholar]
- 56. Schindler R, Dinarello CA, Koch KM. Angiotensin‐converting‐enzyme inhibitors suppress synthesis of tumor necrosis factor and interleukin 1 by human peripheral blood mononuclear cells. Cytokine 1995; 7:526–533. [DOI] [PubMed] [Google Scholar]
- 57. Constantinescu CS, Goodman DB, Ventura ES. Captopril and lisinopril suppress production of interleukin‐12 by human peripheral blood mononuclear cells. Immunol Lett 1998; 62:25–31. [DOI] [PubMed] [Google Scholar]
- 58. Napoleone E, Di Santo A, Camera M, Tremoli M, Lorenzet R. Angiotensin‐converting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ Res 2000; 86:139–143. [DOI] [PubMed] [Google Scholar]
- 59. Stanovic S, Boranic M, Petrovecki M, Nemet D, Skodlar J, Golubic‐Cepulic B, Batinic D, Labar B. Thiorphan stimulates clonal growth of GM‐CFU in short term cultures of bone marrow from a healthy donor and from patients with non‐Hodgkin lymphoma. Biomed Pharmacother 1998; 52:397–402. [DOI] [PubMed] [Google Scholar]
- 60. Blazsek I, Comisso M, Misset JL. Modulation of bone marrow cell functions in vitro by bestatin (ubenimex). Biomed Pharmacother 1991; 45:81–86. [DOI] [PubMed] [Google Scholar]
- 61. Comte L, Lorgeot V, Volkov L, Allegraud A, Aldigier JC, Praloran V. Effects of the angiotensin‐converting‐enzyme inhibitor enalapril on blood hematopoietic progenitors and acetyl‐N‐Ser‐Asp‐Lys‐Pro concentrations. Eur J Clin Invest 1997; 27:788–790. [DOI] [PubMed] [Google Scholar]
- 62. del Bello B, Paolicchi A, Comporti M, Pompella A, Maellaro E. Hydrogen peroxide produced during γ‐glutamyl transpeptidase activity is involved in prevention of apoptosis and maintainance of proliferation of U937 cells. FASEB J 1999; 13:69–79. [DOI] [PubMed] [Google Scholar]
- 63. Gaetaniello L, Fiore M, De Filippo S, Pozzi N, Tamasi S, Pignata C. Occupancy of dipeptidylpeptidase IV activates an associated tyrosine kinase and triggers an apoptotic signal in human hepatocarcinoma cells. Hepatology 1998; 27:934–942. [DOI] [PubMed] [Google Scholar]
- 64. Brezinschek RI, Lipsky PE, Galea P, Vita R, Oppenheimer‐Marks N. Phenotypic characterization of CD4+ T cells that exhibit transendothelial migratory capacity. J Immunol 1995; 154:3062–3077. [PubMed] [Google Scholar]
- 65. Delmas B. Cell‐surface peptidases as receptors for pathogens and toxins In Kenny AJ, Boustead CM. eds; Cell‐Surface Peptidases in Health and Disease. Oxford: BIOS Scientific Publishers; 1997, p 371–379. [Google Scholar]
- 66. Ikushima H, munata Y, Ishii T, Iwata S, Terashima M, Yanaka H, Schlossman SF, Morimoto C. Internalization of CD26 by mannose 6‐phosphate/insulin‐like growth factor II receptor contributes to T cell activation. Proc Natl Acad Sci USA 2000; 97:8439–8444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Nichols TC, Guthridge JM, Karp DR, Molina H, Fletcher DR, Holers VM. γ‐glutamyl transpeptidase, an ecto‐enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol 1998; 28:4123–4129. [DOI] [PubMed] [Google Scholar]
- 68. Robinson MJ, Cobb MH. Mitogen‐activated protein kinase pathways. Curr Opin Cell Biol 1997; 9:180–186. [DOI] [PubMed] [Google Scholar]
- 69. LaFlamme SE, Auer KL. Integrin signaling. Semin Cancer Biol 1996; 7:111–118. [DOI] [PubMed] [Google Scholar]
- 70. Beaumont A, Fournié‐Zaluski M‐C, Noble F, Maldonado R, Roques BP. The chemistry and pharmacology of cell‐surface peptidase inhibitors In Kenny AJ, Boustead CM. ed; Cell‐Surface Peptidases in Health and Disease. Oxford: BIOS Scientific Publishers; 1997, p 59–78. [Google Scholar]
- 71. Glicklich D, Kapoian T, Gilman J, Tellis V, Croizat H. Effects of erythropoietin, angiotensin II, and angiotensin‐converting enzyme inhibitor on erythroid precursors in patients with posttransplantation erythrocytosis. Transplantation 1999; 68:62–66. [DOI] [PubMed] [Google Scholar]
- 72. Chari RV. Targeted delivery of chemotherapeutics: tumor‐activated prodrug therapy. Adv Drug Deliv Rev 1998; 31:89–104. [DOI] [PubMed] [Google Scholar]
- 73. Multani PS, Grossbard ML. Monoclonal antibody‐based therapies for hematologic malignancies. J Clin Oncol 1998; 16:3691–3710. [DOI] [PubMed] [Google Scholar]