Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2005 Feb 5;5(6):257–260. doi: 10.1002/bies.950050606

Coronavirus leader‐RNA‐primed transcription: An alternative mechanism to RNA splicing

Michael M C Lai 1
PMCID: PMC7161880  PMID: 3551939

Abstract

Many viral and cellular mRNA species contain a leader sequence derived from a distant upstream site on the same gene by a process of RNA splicing. This process usually involves either nuclear functions or self‐splicing of RNA molecules. Coronavirus, a cytoplasmic RNA virus, unfolds yet another mechanism of joining RNA, which involves the use of a free leader RNA molecule. This molecule is synthesized and dissociates from the template RNA, and subsequently reassociates with the template RNA at down‐stream initiation sites of subgenomic mRNAs to serve as the primer for transcription. This leader‐primed transcriptional process thus generates viral mRNAs with a fused leader sequence. A similar mechanism might also operate in the mRNA transcription of African trypanosomes.

References

  • 1. Sturman, L. S. & Holmes, K. V. (1983). The molecular biology of coronaviruses. Adv. in Virus Res. 28, 35–112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Lai, M. M. C. , Patton, C. D. & Stohlman, S. A. (1982). Replication of mouse hepatitis virus: negative‐stranded RNA and replicative form RNA are of genome length. J. Virol. 44, 487–492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Massalski, A. , Coulter‐Mackie, M. & Dales, S. (1981). Assembly of mouse hepatitis virus strain JHM. In Biochemistry and Biology of Coronaviruses (ed. V. ter Meulen, S. Siddell and H. Wege), p. 111–118. [DOI] [PubMed]
  • 4. Lai, M. M. C. , Brayton, P. R. , Armen, R. C. , Patton, C. D. , Pugh, C. & Stohlman, S. A. (1981). Mouse hepatitis virus A59: messenger RNA structure and genetic localization of the sequence divergence from the hepatotropic strain MHV 3. J. Virol. 39, 823–834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Leibowitz, J. L. , Weiss, S. R. , Paavola, E. & Bond, C. W. (1982). Cell‐free translation of murine coronavirus RNA. J. Virol. 43, 905–913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Rottier, P. J. M. , Spaan, W. J. M. , Horzinek, M. & van der Zeijst, B. A. M. (1981). Translation of three mouse hepatitis virus (MHV‐A59) subgenomic RNAs in Xenopus laevis oocytes. J. Virol. 38, 20–26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Leibowitz, J. L. , Wilhelmsen, K. C. & Bond, C. W. (1981). The virus‐specific intracellular RNA species of two murine coronaviruses: MHV‐A59 and MHV‐JHM. Virology 114, 29–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Spaan, W. , Delius, H. , Skinner, M. , Armstrong, J. , Rottier, P. , Smeekens, S. , van der Zeijst, B. A. M. & Siddell, S. G. (1983). Coronavirus mRNA synthesis involves fusion of noncontiguous sequences. EMBO J. 2, 1939–1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Lai, M. M. C. , Baric, R. S. , Brayton, P. R. & Stohlman, S. A. (1984). Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic virus. Proc. Natl. Acad. Sci. USA 81, 3626–3630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Lai, M. M. C. , Patton, C. D. & Stohlman, S. A. (1982). Further characterization of mouse hepatitis virus: presence of common 5′‐end nucleotides. J. Virol. 41, 557–565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Brayton, P. R. , Ganges, R. G. & Stohlman, S. A. (1981). Host cell nuclear function and murine hepatitis virus replication. J. Gen. Virol. 56, 457–460. [DOI] [PubMed] [Google Scholar]
  • 12. Wilhelmsen, K. C. , Leibowitz, J. L. , Bond, C. W. & Robb, J. A. (1981). The replication of murine coronaviruses in enucleated cells. Virology 110, 225–230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Jacobs, L. , Spaan, W. J. M. , Horzinek, M. C. & van der Zeijst, B. A. M. (1981). The synthesis of the subgenomic mRNAs of mouse hepatitis virus is initiated independently: evidence from UV transcriptional mapping. J. Virol. 39, 401–406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Baric, R. S. , Stohlman, S. A. & Lai, M. M. C. (1983). Characterization of replicative intermediate RNA of mouse hepatitis virus: presence of leader RNA sequences on nascent chains. J. Virol. 48, 633–640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Baric, R. S. , Stohlman, S. A. , Razavi, M. K. & Lai, M. M. C. (1985). Characterization of leader‐related small RNAs in coronavirus‐infected cells: further evidence for leader‐primed mechanism of transcription. Virus Res. 3, 19–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Makino, S. , Stohlman, S. A. & Lai, M. M. C. (1986). Leader sequences of murine coronavirus mRNAs can be freely reassorted: evidence for the role of free leader RNA in transcription. Proc. Natl. Acad. Sci. USA. 83, 4204–4208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Shieh, C. K. , Soe, L. , Makino, S. , Stohlman, S. A. & Lai, M. M. C. (1986). The 5′‐end sequence of murine coronavirus genome: implication for multiple fusion sites in leader‐primed transcription. Virology (In press). [DOI] [PMC free article] [PubMed]
  • 18. Budzilowicz, C. J. , Wilczynski, S. P. & Weiss, S. R. (1985). Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genomic RNA contain a common nucleotide sequence that is homologous to the 3′‐end of the viral mRNA leader sequence. J. Virol. 53, 834–840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Mills, D. R. , Dabkin, C. & Kramer, F. R. (1978). Template‐determined, variable rate of RNA chain elongation. Cell 15, 541–550. [DOI] [PubMed] [Google Scholar]
  • 20. Kassavetis, G. A. & Chamberlin, M. J. (1981). Pausing and termination of transcription within the early region of bacteriophage T7 DNA. in vitro J. Biol. Chem. 256, 2777–2786. [PubMed] [Google Scholar]
  • 21. Makino, S. , Keck, J. G. , Stohlman, S. A. & Lai, M. M. C. (1986). High‐frequency RNA recombination of murine coronaviruses. J. Virol. 56, 729–737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Campbell, D. A. , Thornton, D. A. & Boothroyd, J. C. (1984). Apparent discontinuous transcription of Trypanosoma brucei variant surface antigen genes. Nature 311, 350–355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Sather, S. & Agabian, N. (1985). A 5′‐spliced leader is added in trans to both α‐ and β‐tubulin transcripts in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 82, 5695–5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Krug, R. M. (1981). Priming of influenza viral RNA transcription by capped heterologous RNAs. Curr. Topics in Microbiol. and Immunol. 93, 125–150. [DOI] [PubMed] [Google Scholar]
  • 25. Patterson, J. L. , Holloway, B. & Kolakofsky, D. (1984). La Crosse virions contain a primer‐stimulated RNA polymerase and a methylated cap‐dependent endo‐nuclease. J. Virol. 52, 215–222. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bioessays are provided here courtesy of Wiley

RESOURCES