Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2008 Mar 20;5(3):461–470. doi: 10.1002/cbdv.200890045

Phytochemical Analysis and in vitro Antiviral Activities of the Essential Oils of Seven Lebanon Species

Monica R Loizzo 1, Antoine M Saab 2, Rosa Tundis 1, Giancarlo A Statti 1, Francesco Menichini 1, Ilaria Lampronti 3, Roberto Gambari 4, Jindrich Cinatl 5, Hans Wilhelm Doerr 5
PMCID: PMC7161995  PMID: 18357554

Abstract

The chemical composition of the essential oils of Laurus nobilis, Juniperus oxycedrus ssp. oxycedrus, Thuja orientalis, Cupressus sempervirens ssp. pyramidalis, Pistacia palaestina, Salvia officinalis, and Satureja thymbra was determined by GC/MS analysis. Essential oils have been evaluated for their inhibitory activity against SARS‐CoV and HSV‐1 replication in vitro by visually scoring of the virus‐induced cytopathogenic effect post‐infection. L. nobilis oil exerted an interesting activity against SARS‐CoV with an IC 50 value of 120 μg/ml and a selectivity index (SI) of 4.16. This oil was characterized by the presence of β‐ocimene, 1,8‐cineole, α‐pinene, and β‐pinene as the main constituents. J. oxycedrus ssp. oxycedrus oil, in which α‐pinene and β‐myrcene were the major constituents, revealed antiviral activity against HSV‐1 with an IC 50 value of 200 μg/ml and a SI of 5.

Keywords: Severe acute respiratory syndrome (SARS), Antiviral activity, Cytotoxic activity, Essential oils, Laurus nobilis, Juniperus oxycedrus ssp. oxycedrus, Thuja orientalis, Cupressus sempervirens ssp. pyramidalis, Pistacia palaestina, Salvia officinalis, Satureja thymbra

References

  • 1. Khan M. T. H., Ather A., Thompson K. D., Gambari A., Antiviral Res. 2005, 67, 107. [DOI] [PubMed] [Google Scholar]
  • 2. Loizzo M. R., Saab A., Tundis R., Statti G. A., Lampronti I., Menichini F., Gambari G., Cinatl J., Doerr H. W., Phytomedicine 2007, in press. [DOI] [PubMed] [Google Scholar]
  • 3. Peiris J. S., Guan Y., Yuen K. Y., Nat. Med. 2004, 10, S88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Coen D. M., Adv. Exp. Med. Biol. 1996, 394, 49. [DOI] [PubMed] [Google Scholar]
  • 5. Ernst M. E., Franey R. J., Ann. Pharmacother. 1998, 32, 111. [DOI] [PubMed] [Google Scholar]
  • 6. Hafizoğlu B., Reunanen M., Fat Sci. Technol. 1993, 95, 304. [Google Scholar]
  • 7. Hassan H. T., Drize N. J., Sadovinkova E. Yu., Gan O. I., Gohla S., Neth R. D., Immunol. Lett. 1996, 50, 119. [DOI] [PubMed] [Google Scholar]
  • 8. Karaman I., Şahin F., Güllüce M., Őğütçü H., Adıgüzel A. Şengül, J. Ethnopharmacol. 2003, 85, 231. [DOI] [PubMed] [Google Scholar]
  • 9. Nolkemper S., Reichling J., Stintzing F. C., Carle R., Schnitzler P., Planta Med. 2006, 72, 1378. [DOI] [PubMed] [Google Scholar]
  • 10. Chorianopoulos N., Kalpoutzakis E., Aligiannis N., Mitaku S., Nychas G. J. E., Haroutounian S. A., J. Agric. Food Chem. 2004, 52, 8261. [DOI] [PubMed] [Google Scholar]
  • 11. Armaka M., Papanikolaou E., Sivropoulou A., Arsenakis M., Antiviral Res. 1999, 43, 79. [DOI] [PubMed] [Google Scholar]
  • 12. McCutcheon A. R., Roberts T. E., Gibbons E., Ellis S. M., Babiuk L. A., Hancock R. E., Towers G. H., J. Ethnopharmacol. 1995, 49, 101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Adams R., ‘Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy’, Allured Publishing Co., Carol Stream, 1995. [Google Scholar]
  • 14. Rabenau H. F., Kampf G., Cinatl J., Doerr H. W., J. Hosp. Infect. 2005, 61, 107. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chemistry & Biodiversity are provided here courtesy of Wiley

RESOURCES